Abelian varieties over finite fields with commutative endomorphism algebra: theory and algorithms - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Abelian varieties over finite fields with commutative endomorphism algebra: theory and algorithms

Résumé

We give a categorical description of all abelian varieties with commutative endomorphism ring over a finite field with $q=p^a$ elements in a fixed isogeny class in terms of pairs consisting of a fractional $\mathbb Z[\pi,q/\pi]$-ideal and a fractional $W\otimes_{\mathbb Z_p} \mathbb Z_p[\pi,q/\pi]$-ideal, with $\pi$ the Frobenius endomorphism and $W$ the ring of integers in an unramified extension of $\mathbb Q_p$ of degree $a$. The latter ideal should be compatible at $p$ with the former and stable under the action of a semilinear Frobenius (and Verschiebung) operator; it will be the Dieudonn\'e module of the corresponding abelian variety. Using this categorical description we create effective algorithms to compute isomorphism classes of these objects and we produce many new examples exhibiting exotic patterns.
Fichier principal
Vignette du fichier
Abelian_varieties_over_finite_fields_with_commutative_endomorphism_algebra__theory_and_algorithms.pdf (660.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04798935 , version 1 (22-11-2024)

Licence

Identifiants

Citer

Jonas Bergström, Valentijn Karemaker, Stefano Marseglia. Abelian varieties over finite fields with commutative endomorphism algebra: theory and algorithms. 2024. ⟨hal-04798935⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More