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Abelian varieties over finite fields with commutative
endomorphism algebra: theory and algorithms

Jonas Bergstrom, Valentijn Karemaker, and Stefano Marseglia

Abstract

We give a categorical description of all abelian varieties with commutative endomorphism ring over
a finite field with ¢ = p® elements in a fixed isogeny class in terms of pairs consisting of a fractional
Z[rm, q/7]-ideal and a fractional W ®z, Zp[m, q/7]-ideal, with 7 the Frobenius endomorphism and W the
ring of integers in an unramified extension of Q, of degree a. The latter ideal should be compatible at p
with the former and stable under the action of a semilinear Frobenius (and Verschiebung) operator; it
will be the Dieudonné module of the corresponding abelian variety. Using this categorical description
we create effective algorithms to compute isomorphism classes of these objects and we produce many
new examples exhibiting exotic patterns.

1 Introduction

In order to classify abelian varieties over a finite field up to isomorphism one needs a way to represent
them. However, representing abelian varieties over fields of positive characteristic is notoriously hard,
since describing them with equations becomes impractical already in dimension two. As a first step,
one can consider the classification and representation problem up to isogeny; an isogeny is a surjective
homomorphism with finite kernel. Over finite fields, this problem has been completely solved by Honda-
Tate theory in terms of the characteristic polynomial of the Frobenius endomorphism of the abelian
variety. The isogeny classes can also be computed effectively, see e.g. [8]. In this article we consider
the representation and classification problem up to isomorphism for any fixed isogeny class of abelian
varieties over finite fields with commutative endomorphism algebra.

To state our results we now introduce some notation. Fix a prime power ¢ = p® and let 7 be the
Frobenius endomorphism of an abelian variety X with commutative endomorphism algebra, defined over
the finite field F,. Note that the condition of the endomorphism algebra being commutative is equivalent
to the condition that the characteristic polynomial of the Frobenius endomorphism is square-free. Let A
be the category of abelian varieties isogenous to X. Morphisms in this category will be homomorphisms
defined over F,,.

Main contribution

Put R := Z[r,q/7] C E := Q[x]. For any rational prime ¢, including ¢ = p, set E;, = E ®q Q; and
Ry = R®z Z¢. Let L be an unramified extension of Q, of degree a, with W its maximal Z,-order, and
put Wg = W ®z, R, C A= L®q, E,. The algebra A comes with an action of o, the Frobenius map
of L over @, and an embedding A : E, — A. For more details on these definitions see Section Fix
an additive map F' such that FA = A\°F for all A € L and such that F* = A(w). Put V = pF~". With
a Wgr{F,V}-ideal we will mean a fractional Wg-ideal in A which is stable under the action of F and V.
Finally, for each /¢, let iy be the injection F — E,.

Now let C, be the category whose objects are pairs (I, M), where I is a fractional R-ideal in F and
M is a Wgr{F,V}-ideal such that A='(M) = i,(I)R,. The homomorphisms between objects (I, M) and
(J,N) in C, are the elements o € E such that ol C J and A(i,(a))M C N.

Our first main result can now be stated as follows.

Theorem 5.2. There is an equivalence of categories ¥ : C, — A;.

This result is closely related to [34] Theorem 2.1] and is based on Tate’s theorem (see [3I, Main
theorem]). The idea goes back (at least) to Waterhouse [33, Theorem 5.1] and can loosely be stated as



follows (cf. [34, Theorem 2.1]): in a pair (I, M), the ideal M determines the Dieudonné module (which
is equivalent to the p-divisible group) of the abelian variety. The ideal I encodes the Tate modules
of the abelian variety for all £ # p, partial information about the Dieudonné module, as well as “global
information” which is determined by an element of the class group of the endomorphism ring of the abelian
variety. Indeed, the endomorphism ring of the corresponding abelian variety is A~ ({z € A: 2M C M})
locally at p and {x € E': oI C I} locally at every other prime.

Comparison with previous results

There are several equivalence of categories in the literature that are similar to ours, some of which consider
very large subcategories of the category of abelian varieties over a finite field F,. To more easily compare
our results to these ones, in the rest of this section we will only discuss previous results on isogeny classes
with commutative endomorphism algebra.

Recall that each Dieudonné module of an abelian variety over a finite field splits into three parts: the
étale part, its ‘dual’ the multiplicative part, and the local-local part. The difficulty in realizing categorical
equivalences can be measured by the exponent a of ¢ = p® and the complexity of the local-local part.
The p-rank of an abelian variety measures how large each of these parts is. For example, the p-rank is
maximal (that is, it equals the dimension g of the variety) if the local-local part is trivial.

In [7], Deligne uses canonical liftings to represent ordinary (meaning of p-rank g) abelian varieties
over a finite field in terms of fractional R-ideals. So in this case we have a close relation between abelian
varieties over finite fields and CM-abelian varieties over the complex numbers (the canonical liftings).

In [3], this is extended by Centeleghe and Stix, in line with the techniques of Waterhouse rather than
using canonical liftings, to represent all abelian varieties over a finite prime field (meaning of cardinality
g = p) in terms of fractional R-ideals. The change of technique is connected to the fact that canonical
liftings do not exist in general if the abelian variety is not ordinary nor almost ordinary (meaning of
p-rank g — 1).

In the case of ordinary abelian varieties as well as the case of abelian varieties over prime fields, the
Dieudonné module plays no special role and behaves in the same way as the Tate modules for ¢ # p.
We show, see Proposition that the same always holds for the étale-local and local-étale parts of the
Dieudonné module. The local-local part will behave quite differently as soon as we leave these realms.

An almost-ordinary abelian variety has a Dieudonné module with nonzero local-local part, whose
endomorphism ring is maximal, see [24, Proposition 2.1]. If the place of E, of slope 1/2 (called the
supersingular part) in an isogeny class of almost-ordinary abelian varieties is unramified, then there
are two isomorphism classes of Dieudonné modules; in the ramified case there is one. In the ramified
case, Oswal and Shankar in [24] use a canonical lifting to give a categorical equivalence between almost-
ordinary abelian varieties and fractional S-ideals, where S is the minimal overorder of R that has maximal
endomorphism ring at the supersingular part. In the unramified case, they use canonical liftings of
different CM-types to distinguish between the two isomorphism classes of Dieudonné modules; this gives
rise to two disjoint equivalences of such abelian varieties with fractional S-ideals.

In [2], Bhatnagar and Fu use the techniques of [24] to give a similar description for abelian varieties
over finite fields with maximal real multiplication and such that p is split in the ring of integers of the
maximal real extension. As in the almost-ordinary case, the endomorphism ring of the local-local part
of the Dieudonné module of these abelian varieties is necessarily maximal, and [2, Theorem 1.3] can be
compared with [33, Theorem 5.3].

Theorem subsumes all of the above equivalences for the isogeny classes with commutative en-
domorphism algebra. In the almost-ordinary case, Theorem also gives a description of morphisms
between abelian varieties with non-isomorphic supersingular parts, which is not present in [24]. Moreover,
Theorem also works for almost-ordinary abelian varieties in characteristic 2, while the results in [24]
do not.

In [4], Centeleghe and Stix give a categorical description of all abelian varieties over a finite field. Fix
any abelian variety X that is isogenous to a square-free product of simple abelian varieties. Then there
is a ring Sx such that the category of abelian varieties which are isogenous to a power of X is equivalent
to the category of Sx-modules that are free and finite rank over Z, cf. [4, Theorem 1.1]. The immediate
issue if one would like to make an effective algorithm based on this equivalence — which is one of the main
aims of this article — is that the ring Sx will in general be non-commutative. This is shown to be the
case as soon as X is not ordinary nor defined over a prime field.



Finally, let us mention that there are other categorical descriptions of abelian varieties in the literature,
such as [13], [14], [16] and [36].

Effectiveness of our result

The description given in Theorem is amenable to concrete computations and the second main result of
this article is that we have created effective algorithms to compute isomorphism classes of abelian varieties
over a finite field with commutative endomorphism algebra. Our most important contribution here is
Algorithm [3] which computes isomorphism classes of Dieudonné modules even when the endomorphism
ring of the local-local part is not maximal. To our knowledge, this is the first algorithm that can compute
isomorphism classes of Dieudonne modules with non-maximal endomorphism ring. To do so, we leverage
the fact that the local-local parts of Dieudonné modules with maximal endomorphism ring have been
classified by Waterhouse, see [33, Theorem 5.1]. Interestingly, in all isogeny classes of abelian varieties
whose isomorphism classes we have computed, which are not defined over a prime field, nor ordinary,
nor almost ordinary, it turns out that there are examples of isomorphism classes of abelian varieties with
Dieudonné modules whose local-local part has a non-maximal endomorphism ring. The implementation
of the code is available at https://github.com /stmar89/ IsomClAbVarFqummEndAlgﬂ

The examples we compute in Section |8 show that the endomorphism rings that appear in a given
isogeny class of abelian varieties (which are not defined over a prime field, nor ordinary, nor almost
ordinary) behave quite wildly. To make this concrete, let S be the set of overorders of R = Z[r,q/7]
and let £ be the subset of S consisting of orders T' such that there exists an abelian variety X € A,
with End(X) = T, and consider the following three statements which are true in the ordinary and
almost-ordinary case, as well as over a prime field:

1. Forevery Se £ and T € S,if SCT thenT € &.
2. The order S = NpeeT is in £.

3. For every S in &, n(Og) divides n(S), where n(S) (resp. n(Og)) is the number of isomorphism
classes of abelian varieties in A, with endomorphism ring S (resp. Og).

In Section[§] among other things, we give examples that violate all three of these statements. Our explicit
knowledge of the Dieudonné modules also allows us to compute the a-numbers of the abelian varieties
and study their distribution in the isogeny class.

Outline of the paper

In Section [2] we describe the isomorphism classes of abelian varieties over finite fields in a fixed isogeny
class in terms of isomorphism classes of Tate and Dieudonné modules together with the class groups of the
endomorphism ring they determine. From here on, we only consider abelian varieties with a commutative
endomorphism ring.

The Tate modules of our abelian varieties can then be viewed as fractional Ry-ideals for primes ¢ # p.
Even though these are local objects, we show in Section [3]how they can be described in terms of fractional
ideals of some overorders of R (see Theorem , which are global objects. There are well-established
algorithms to compute isomorphism classes of these types of ideals (see Algorithm [4]).

Inspired by Waterhouse [33, Section 5], we show in Subsections and how to realize the
Dieduonné modules of our abelian varieties as fractional Wgr{F,V}-ideals. In Subsection we then
show a series of results about the structure of Wr{F,V}-ideals corresponding to the connected-étale
sequence of Dieudonné modules. In particular, there is an étale part R,{,O} (resp. multiplicative part Rél})
of R, and we show in Corollary that the étale (resp. multiplicative) part of Wr{F,V }-ideals can be
described as fractional R;O}—ideals (respectively R,{,l}—ideals).

The descriptions of Tate modules and Dieudonné modules in Sections [2Hd] are put together in Section [j]
to give a categorical equivalence between pairs of a fractional R-ideal and a fractional Wg{F, V' }-ideal
and abelian varieties in our fixed isogeny class, see Theorem also stated above. In Proposition
and Corollary [5.8 we show some consequences of this equivalence for the possible endomorphism rings
of our abelian varieties.

IThe examples in this paper where computed using the code at commit c25be473adfeb1dba9932d47961e54649889fa78
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In Section |§| we show how to create algorithms to compute isomorphism classes of Wxr{F, V }-ideals.
To avoid precision issues, we globalize our objects like in Section |3 considering fractional ideals in étale
Q-algebras rather than in étale (Q,-algebras. Since Subsectiondeals with the étale and multiplicative
parts of the Dieudonné modules, we focus our attention on the local-local part. We extend Waterhouse’s
classification of isomorphism classes of Wgr{F,V }-ideals with maximal endomorphism ring ([33, Theo-
rem 5.1]) by describing the fibers of the extension map from (the local-local part of) Wg-ideals to ideals
of the maximal order. Finally, we show that checking whether our ideals are stable under F' and V can
be done up to a power of the prime p, i.e., in a finite quotient; see Algorithm [3]

In Section [7] we use the categorical equivalence of Theorem together with the results of the
previous sections to create Algorithm [7] which computes isomorphism classes of abelian varieties in
our fixed isogeny class. The representative we compute for each isomorphism class contains complete
information about the Tate modules of the corresponding abelian variety for each ¢ # p. Moreover, we
get an approximation of F' and V acting on the Dieudonné module modulo some power of p, which is
sufficiently large to detect stability. This approximation can in principle be made arbitrarily accurate.

Finally, in Section [8 we give examples of computations of isomorphism classes of abelian varieties
using our algorithms. In particular, we study the behavior of the endomorphism rings that appear for g-
dimensional abelian varieties of p-rank < g — 1, which shows patterns very different from abelian varieties
with higher p-rank (that is, ordinary and almost-ordinary abelian varieties, as referred to above), see
Examples and

At the end of the paper we collect a list of the notation used.
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2 Tate and Dieudonné modules

Let X be an abelian variety over a finite field IF, of characteristic p. In this section we discuss a general
description of the isogeny class of X over F,, as also contained in [34] (cf. [35]). Since we will focus on
abelian varieties with commutative endomorphism algebra in this article, we will restrict to this case at
the end of this section.

By Poincaré reducibility, the abelian variety X admits an isogeny decomposition X ~ X fl XX XPr
over [F, into simple abelian varieties X; with respective multiplicities k;. By Honda-Tate theory, the
isogeny class of X is determined by the characteristic polynomial h(z) of its Frobenius endomorphism.
The isogeny decomposition of X implies that h(z) = hy(x)** - ... h.(2)¥ € Z[z], where each h;(x) is
the characteristic polynomial of the Frobenius endomorphism 7; of X;. Write m(z) = my(z) ... -m,(x)
and let R = Z[r, q/7] denote the Z-order in the étale algebra F = Q[x]/(m(z)) with 7 :=  mod m(x).

Set k = (ki1,...,k;). We denote by A, ; the category whose objects are the abelian varieties Fy-
isogenous to X together with Fg-homomorphisms. We write Aiff’km for the set of F,-isomorphism classes
in Az . If k= (1,...,1), then the subscript k& will be omitted from the notation.

All homomorphisms will be assumed to be defined over ;. Recall that the endomorphism ring
End(X) is an order in the endomorphism algebra

End’(X) := End(X) ®z Q ~ Maty, (End(X1)) x ... x Maty, (End)(X,)). (1)
Consider the group scheme G x over Z such that
Gx (Ro) = (End(X) X7, R())>< (2)

for any commutative ring Ry with unit.

For a rational prime ¢ # p, let Ty(X) be the ¢-adic Tate module of X and set V3(X) = T¢(X) ®z, Qs.
Let M(X) be the covariant Dieudonné module of X (which is categorically equivalent to its p-divisible
group). Put Ry := R ®y Zy for any prime ¢, including ¢ = p.

Definition 2.1. Out of the Tate and Dieudonné modules of X, we build

Xk = {left Ry-lattices in V(X)) of full rank} for all £ # p;

H/ .’%m&g = {(T0)ezp € H %ﬂ&g : Ty = Ty(X) for all but finitely many ¢ # p};
t#p t#p

§m£,p := {Dieudonné submodules in M (X) ®z, Q, of full rank};

~ ! ~
Xk =Xrpp < [ Xrre
LF#p

As before, if k= (1,...,1) then it will be omitted from the notation.
By Tate’s theorem, gfw is in bijection with
Az, = { quasi-isogenies ¢ : X’ — X, up to isomorphism } (3)

by mapping (¢ : X’ = X) — (0 (M (X)), (p«(Te(X")))ep); a quasi-isogeny ¢ : X’ — X is an element of
Hom(X', X) ®7Q such that there exists an integer N for which N is an isogeny. This map ./Tﬂ,k — %ﬂ&
is Gx (Ay)-equivariant by construction, where A; denotes the finite adele ring of Q.

Further, we may project ,Zﬁ,k —» Aiff’kfn by mapping (¢ : X’ — X) to the isomorphism class of X'.
Since two quasi-isogenies ¢ : X' — X “and w2 : X” — X are considered isomorphic if there is an
isomorphism « : X’ — X" such that @9 o @ = @1, this surjection can be viewed as taking the Gx(Q)-

orbits of jﬂ& .
Definition 2.2. Starting with the objects in Definition 2.1} we let
Xn o= im&g up to isomorphism of Ry-modules;
Xnkyp = %ﬂ&p up to isomorphism of Dieudonné modules;

xﬂ—,E = %ﬂ-vﬁm X H xﬂ?&vg'
LF#p



Thus we obtain a projection map %mk — Xr . Consider the fiber jm&y in ./L& ~ %mk above
an element Y = (M/ ~, (T})izp/ ~) in Xr . By definition, it consists of all isomorphism classes of
quasi-isogenies ¢ : X’ — X such that the Dieudonné and Tate modules of the source abelian varieties X’
satisfy M (X') ~ M and Ty(X') ~ T, for each ¢ # p.

The group Gx (Ay) acts transitively on the set of quasi-isogenies on each fiber jﬂ,by. The stabilizer
of any given ¢ : X’ — X in ./Tw&y under this action is the open compact subgroup

Uy := Aut(M) x ] Autg, (T) (4)
L#p

of Gx(Ay). Hence, the fiber can be described as

Arky ~ Gx(Af)/Uy. (5)

For all X’ € A, j, we have that End(X) and End(X’) are locally equal at all but finitely many
rational primes. It follows that Gx/(Q) ~ Gx(Q) and Gx/(Ay) ~ Gx(Ay) for all X’ € Ay, where
Gx/(Ry) = (End(X’) ®z Ro)*, cf. (). In particular, we have

Gx(Q) =Gy (Q) % ... x Gyr, (Q)

1

and
GX(Af)ﬁGXfl(Af) XGXk,( )

By contrast, in general, the same splitting does not apply to Uy, since it is an integral object.

Finally, and similarly to A — X, 1, we obtain a surjective map & : fc’bm — Xy 1 by associating to

an abelian variety the isomorphism classes of its Dieudonné and Tate modules. Recall that ./Z,r, K~ Aiff’km
arises from taking Gx (Q)-orbits. It then follows from and the commutative diagram

Arkg — Xrk

! !

Alsgm 2
that the fiber AX™, above Y € X in ARG satisfies
ARy ~ Gx(Q\Gx(Af)/Uy. (6)

By construction, this fiber consists exactly of all isomorphism classes of abelian varieties in .Alsom that
are everywhere locally isomorphic, with Dieudonné and Tate modules given by the vector Y. Rangmg
over all local isomorphism types Y, we obtain the following result.

Proposition 2.3. (cf. [34, Theorem 2.1]) The set of isomorphism classes Aiff’km of X can be described
algebraically as a

pt e | Gx(@\Gx(Af)/Uy; (7)

YeEX i

here, the isomorphism class of X is sent to the neutral element.
Corollary 2.4. The number of isomorphism classes of abelian varieties in Ay i equals
| ARG = Z Z IGx (Q\Gx(Ay)/Unxnl,
MEXx k,p NGHI;'#I) Xrok,e
where the sums run over the local isomorphism types Y = M X N € Xy jp X Hbﬁp Xrkt = Xn k-

As mentioned above, in this article we will restrict our attention to abelian varieties with commutative
endomorphism algebra. By [3I, Theorem 2.(c)], this is equivalent to requiring h to be square-free, i.e.
k; = 1 for all i. From now on, we will therefore omit the multiplicities from the notation and simply



write Ay, AlSom X, X p and X . In particular, Equation then reads End° (X) ~ EndO(Xl) X ... X
End’(X,). Furthermore, the fiber above Y = M x N, given as in @, then equals the (usual) class group
Cl(Oy), where

Oy = End’(X) N [ End(M) x [ Endg, (T0) | ; (8)
L#£p

this intersection takes place in End’(X) ®q As. This also implies that its cardinality is the (usual) class
number h(Oy). We summarize this discussion in the following corollary.

Corollary 2.5. The number of isomorphism classes of abelian varieties with commutative endomorphism

algebra in A, equals
Ao = Y Y. h(Oumxn).

Mexﬂ—,p NEHZ;ép .‘fﬂ-)(

3 Global representatives of Tate modules

In Section [2] we realized the Tate modules of abelian varieties as Ry-ideals. In this section we will
find global representatives of these local fractional ideals, namely, as certain fractional R-ideals, see
Theorem In Section [7] this will provide an effective method to compute (recalling Definition [2.2)
representatives of [], 4p Xm0, see Algorithm 4l Even though IL 4p Xre is local in nature, Algorithm
only uses exact techniques which are not affected by precision issues. We will also use the results of this
section to compute isomorphism classes of fractional ideals of a Z,-order; see Subsection

3.1 Isomorphism classes of fractional ideals

Let Z be either Z or Z,, and let @) be the field of fractions of Z. Let S be a Z-order in an étale Q-
algebra E with maximal order O. For a fractional S-ideal I, the multiplicator ring (I : I) is an order.
For a maximal ideal £ in Z, set Fy = E ®q Q¢, Se = S ®z Z¢, and Iy = I ®z Z;. Let [ be a maximal
ideal of S. Denote by Sy the completion of S at . Set I} = I ®g S;.

Definition 3.1. Let S be a (possibly infinite) set of maximal ideals £ of Z, and T be a (possibly infinite)
set of maximal ideals [ of S. We define the following objects:

{fractional S-ideals}

We(8) = {I; ~ J; as Sp-modules}’
_ {fractional S-ideals}
W(S) = {I ~ J; as S;-modules}’
W(S) = {fractional S-ideals}
~ {I; ~ J; as Sy-modules, for every ¢}’
B {fractional S-ideals}
Ws(S) = {I;, ~ J; as Sy-modules, for every ¢ € S}’
fractional S-ideals
Wr(S) L )

- {I; ~ J; as Si-modules, for every [ € T}’

We denote the class of a fractional S-ideal I in W,(S) (resp. Wi(S), W(S), Ws(S), Wr(S)) by [I]e
(vesp. [I]y, [1], [I]s, [I)7)-

This subsection will be devoted to studying the relations between the objects defined in Definition [3.1
which are local in nature, and to giving a concrete description of them by means of global representatives.

Remark 3.2. If Z = Z, then W(S) coincides with the set of S-linear isomorphism classes of fractional
S-ideals.

Remark 3.3. Ideal multiplication endows each set defined in Definition [3.1] with a commutative monoid
structure, whose unit is given by the class of the order .S. This structure will not be used in this article.
The class [I] of I in W(S) is often called the genus of I. There is a vast literature studying genera of



fractional ideals and more generally of finitely generated modules. See for example [27], [26], [10], [11]
and [25]. Moreover, two fractional S-ideals I and J are in the same genus if and only if they are weakly
equivalent, that is, their localizations at every maximal ideal of S are isomorphic, see [I8], Section 5].
The definition of weak equivalence was originally given in [6]. Results to compute and classify weak
equivalence classes are given in [20], [22] and [23].

Lemma 3.4. Let I and J be two fractional S-ideals and fix a mazximal ideal £ of Z. Then the following
statements are equivalent:

(i) e = [J]e-
(i) Iy ~ J; as Si-modules for every mazimal ideal | of S above £.

Proof. Denote by [y, ...,[, the maximal ideals of S above £. Since Sy is a complete semilocal ring, we
have a canonical isomorphism

S[ﬁS[l X ... XS[n.
Tensoring with I and .J, we obtain the equivalence of [(i)] and O

Lemma 3.5. Let [ be a maximal ideal of S above the maximal ideal £ of Z.

(i) For every fractional Se-ideal I there exists a fractional S-ideal I such that I ®4 Z; = I. The

class [I]¢ in We(S) is uniquely determined by the class [I]¢ in W(S;). Hence, we have a canonical
bijection We(S) «— W(S,).

(i) Similarly, we have a canonical bijection Wi(S) «— W(S)).

Proof. Identify E with its image in Ey. Then I=INE satisfies f@NZ Zy = I. Morever, we see that if J
is a second fractional Sp-ideal, then [I] = [J] if and only if [I], = [J],. This completes the proof of
For assume that [ =[y,..., [, are the maximal ideals of S above ¢ and that we are given a fractional
Si-ideal I. Consider the fractional Sy-ideal I’ = I x Sy, x ... S, and the fractional S-ideal I such that
I®y Zy=1I'. We get that (I); = I and that the class of I in W(S) is uniquely determined by the class
of I in W(S)). O

Given a set S as above, denote by Sy the finite subset of S consisting of maximal ideals of Z dividing
the index [O : S]. Define Wg, (S) and [I]s, analogously to Ws(S) and [I]s. Similarly, given a set 7 as
above, denote by Ty the finite subset of 7 consisting of maximal ideals of S containing the conductor
f=(5:0) of S. Define Wy, (S) and [I]7, analogously.

Proposition 3.6. Consider the natural surjections

W(S) 5 Ws(S) =2 We, (5)
and . ]

W(S) 25 Wr(S) 25 Wr, (9).

Then iy and jo are bijections. Moreover, i1 is a bijection if and only if S contains all maximal ideals above
the index [O : S], and j1 is a bijection if and only if T contains all mazimal ideals above the conductor f

of S.

Proof. A maximal ideal ¢ does not divide the index [O : S] if and only if S; = O,. For such a prime ¢,
every fractional S-ideal I satisfies Iy ~ Oy, since Oy is a principal ideal ring. This immediately implies
the statements about i; and i5. The statements about j; and js follow analogously from the observation
that a maximal ideal [ of S does not divide the conductor § of S if and only if Sy = O;. O

The construction described in the following lemma will also be used in Algorithms [1| and

Lemma 3.7. Let [1,..., [, be mazimal ideals of S. Consider a vector of fractional S-ideals (I1,...,I)
such that each I; is contained in S. For each i, let k; be a nonnegative integer such that [f S, C (I)y,
Set

n
J=> @+
i=1 j#i
Then Jy, = (I;)y, for each i, and Jy = Si for every other mazimal ideal | of S.



Proof. See the proof of [23] Theorem 4.4]. O
Proposition 3.8. The natural maps
Ws,o (S) — T We(S)
LeSy

and

Wr (S) — [ Wi(s),

1€To
are bijections.
Proof. The maps are injective by construction. Surjectivity follows from Lemma O
Proposition 3.9. Let ¢ be a mazimal ideal of Z and let ly,... L, be the mazimal ideals of S above ¢ and

above the conductor f = (S : O). We have a natural bijection
@ Wi(S) — [ (9).
i=1

Proof. As pointed out above, if [ is a maximal ideal of S which does not divide the conductor, then S| = Oy,
which is a principal ideal ring. Hence, for every fractional S-ideal I, we have I} ~ O, or equivalently,
Wi(S) is trivial. Therefore ¢ is injective by Lemma Surjectivity follows from Lemma 0O
The next proposition is [23] Proposition 4.3].
Proposition 3.10. Let [ be a mazimal ideal of S. Let k be a nonnegative integer such that (*O); C Si.
Then the natural map
W(S +1FO) — Wi(S)

s a bijection.

Remark 3.11. In the statement of Proposition [3.10} we can take k = valy([O : S]) to achieve (I*O); C S,
where v, denotes the f-adic valuation. Note also that if ([k(’))[ C Syand k' > k then S+ FO =S+ IFO.

3.2 Determining [],, X,

As in Section [2] we consider an isogeny class A, of abelian varieties over F,, where ¢ = p® for some
prime p, with commutative endomorphism algebra E = Q[rr]. We now use the results of the previous
subsection to give a concrete description of the set Hlfsép Xre

Theorem 3.12. Set R = Z[r, g/7].
(i) For each £ # p, localization at ¢ induces a bijection
Wg(R) — ff.,r’g.

(ii) Denote byly,..., L, the mazimal ideals of R which divide the conductor (R : O) and do not contain p.
For each i, let k; be a nonnegative integer such that ([f"’@)[i C Ry,. Then we have a bijection

[ITWER+E0) — ] %xe-

i=1 L#p
Proof. Fix a prime ¢ # p and an abelian variety X € A,. After identifying V;(X) = Ty(X) ®z, Q¢ with
E; = Q[n]¢ we see that

X, ¢ = {fractional Ry-ideals in E, up to isomorphism as R,-modules}.

Hence, localization at ¢ induces a natural injective map
W[(R) — xﬂ-’g.
Surjectivity follows from the fact that every fractional Ry-ideal J is of the form J = I ® p Ry for some
fractional R-ideal I, cf. Lemma (i). This completes the proof of |(i)
Combining Propositions (applied with S consisting of all rational primes ¢ # p), and we
see that there is a natural bijection from [[;_, W(R + [in) to [,,, We(R). By applying |(i)| for each
O

£ # p, we obtain



4 Dieudonné modules and where to find them

In Subsections and [4.2] we will find representatives of Dieudonné modules as certain fractional Wg(:=
W ®z, Ry)-ideals in A = L ®q, Ep, where W is the maximal order in an unramifed extension L of Q, of
degree a. These fractional ideals should be stable under operators F : A — A and V = pF~!, where F has
the Frobenius property, see Definition they are called Wr{F, V}-ideals. Maps between Wgr{F,V}-
ideals will be given by elements from E, via the diagonal embedding A : E, — A, see Lemma @
Theorem [4.9 gives a bijection between isomorphism classes of Dieudonné modules and A-isomorphism
classes of Wr{F,V }-ideals.

In Subsection we study an analogue for Wgr{F, V' }-ideals of the connected-étale sequence, which
gives a decomposition of any Wgr{F, V}-ideal into an étale part, a multiplicative part and a local-local
part. The étale and multiplicative parts are studied in Subsection [:3.3] A classification due to Water-
house of all possible local-local parts with maximal endomorphism ring is given in Subsection [4.3.4i

Later, in Section[6] we will create an effective algorithm to find global representatives of A-isomorphism
classes of Wr{F,V }-ideals.

4.1 The Frobenius property

Firstly, we introduce some notation, closely following that of Waterhouse [33] Section 5]. Let ¢ = p®
again be a power of a prime p. We consider an isogeny class A, of abelian varieties over Fy with commu-
tative endomorphism algebra E = Q[x], or equivalently, of abelian varieties such that the characteristic
polynomial of their Frobenius endomorphism 7 is square-free. Let R be the order of E generated by the
Frobenius and Verschiebung endomorphisms, that is, R = Z[r, ¢/7].

We are interested in the completions £, = E®qQ,, of F, and R, = R®zZ, C E, of R, at the rational
prime p. For each place v of E,, let e, denote the ramification index and f, the inertia degree of E, over
Qp. Also let n, = e, f, = [E, : Qp] and denote by m, the image of 7 in E,. Note that E, = Hy‘p E,.

Let L be the totally unramified extension of @, of degree a and let W = Of, be the maximal Z,-order
of L. We know that L = Qp({4—1) and W = Z,[(;—1], where ;1 is a primitive (¢ — 1)-st root of unity.

Observe that L ®q, E, is an etalé Q,-algebra, that is, it is isomorphic to a direct sum of finitely many
finite extensions of Q. Indeed,

L®g, By~ [ [LE, x ... xLE, | = A, (9)
N—_———
vip g, copies

where g, = ged(a, f,). Denote the v-component of A by A,. For an element b = (b,),), of A =[], 4,
we denote by b, ; the i-th component of b, in A, = ?”:1 LE,. Wee see E,, embeds diagonally into A4,
for each v. Hence we have an induced embedding

A:E,— A,

which endows A with an E,-algebra structure.
The isomorphism in Equation @ restricted to a component A, is given on simple tensors w ® B €
L ®qQ, E, by
L—1
w® B (Why,w Byy ..., w” By, (10)
where o is the Frobenius of L over Q,. This means that A has an L-algebra structure, and the image of

A € L in each A, equals
A7, A7,

We also have an action of o on A, via
gv—1 o o2 oIv
(Wﬁmwgﬂuw-wwg 51/) = (w 6V7w ﬁm---aw ﬁu) (11)

Since w’” B, = (wpB,)™, where 7, is the Frobenius of LE, over E,, we see that o acts on each 4, as a
cyclic permutation followed by 7, in the last component. By slight abuse of notation, we will denote the
maps induced by o on A, and A also by o.

10



Definition 4.1. A map F, : A, — A, will be said to have the Frobenius property if it is additive and
satisfies F,A = A7 F), for all A € L and F? = Alg, (m,) € A,.

Given a set S of places v of E,, amap F': ][], s A, — A, will be said to have the Frobenius property
if F'|4, has the Frobenius property for all places v of E,,.

Lemma 4.2. For every oy, = (0w 1,...,0u4,) € A, we have

a-1
au'ag"'ag :(ﬂua”'vﬂv)EAm

where
Bv=Nip,/p, (w1 aug,) € Ey.

Proof. For ease of notation, set g = g, and N = Ny, /g, , and write 7 = 7, for the Frobenius of LE, over

E,. As above, we see T has order a/g and satisfies 09(c) = (7(c11),...,7(ay)). Foreach0 <k <a/g—1
and each 0 < i < g — 1, we have
o*H (a) = (T (aiga), .. T ag), TV (an), T (00)).
Hence
5 lg-1
a-oa)---0" Y a) = H H "9t ()
k=0 i=0
g1 (57 i i 51
=TI | I (). I (), IT 7 (). T 75 (i)
i=0 \ k=0 k=0 k=0 k=0
g—1
=[] ™V (eit1), ... N(ag), N(ea), ..., N(e:))
i=0

= (N(o1---ag),...,N(a1--ayg)),
as required. O

Lemma 4.3. Let a, € A, be such that

a—1

OZV'CYU"' Z :(’/TV,...,TI'V)GAw (*)

v (07

For z € A,, define F,,(2) =, - 27, i.e. F,, = a,, 00, and extend this component-wise to obtain a map F
on A. Then F has the Frobenius property.

Proof. Tt is enough to check the desired properties on each component A,. Rather than doing so using
the isomorphism given by Equation (10]), we use a different presentation of A,. Namely, let h, (z) be the
minimal polynomial of 7, over Q, and write

hy(z) = fi(z) - fr(z)
for its factorization into irreducible factors over L[z]. Then we have an L-algebra isomorphism

L[z]
filx)

T
@:Ayl)H
i=1

The action of o on A,, in this presentation is induced by the automorphism of L[z] sending s(z) = Y, axa®
to s(z)” =Y, aZz".

For z € A,, we have p(z) = ([sz,1(2)],...,[szr(2)]) for some s, ;(z) € L[z], where [s, ;(x)] denotes
the class of s, ;(x) in the quotient L[z]/f;(z). For any A € L,

P(F,(A2) = ([, i()s a2y i (2)], - ) = (N80, i (2)s2,0(2)7); ) = 9(ATF(2)),

which shows that F,\ = A\? F,,, as required. Finally, we have by construction that

a—1

Sa,i(T) * 8a,,i(T)7 - 8a,.i(2)7  s.4(x) — 2 € (fi(z)),

for i =1,...,r. This shows that p(F?%) = ¢(m,), completing the proof. O
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In [33] p. 544] there is the following construction of an element «, € A, enjoying property (x) of
Lemma Since the degree a/g, of the unramified extension LE,/E, divides the v-adic valuation
val, (m,), it follows that 7, is the norm of an element u, € LE,. We can then put o, = (1,1,...,1,u,) €
A,. The following definition will reappear later in Proposition and in Algorithm

Definition 4.4. If F,, : A, — A, is a map with the Frobenius property defined by F,(z) = a,, - 27 for
an element o, = (1,1,...,1,u,) € A, then we will say that F,, is of W -type.

Given a set S of places v of E,, amap F': [[ .5 A, — A, will be said to be of W-type if F
W-type for all places v of E,.

vES A, is of

4.2 Determining X,
In this section we describe X, in terms of isomorphism classes of Wgr{F, V }-ideals, see Theorem

Definition 4.5. Put Wz = W ®z, R, which is a Z,-order inside A. Let a € A be an element such
that ' = a o ¢ has the Frobenius property; this implies that F is bijective on A. Put V = pF~!. By
Wgr{F,V }-ideals, we will mean fractional Wg-ideals inside A which are stable by the action of F and V.
Given two objects Ji, Jo, let:

e Homyy,(pv1(J1,J2) consist of the Wg-linear morphisms from J; to Jp that commute with the
action of F' and V.

° HomA(Jl, JQ) = {a: S Ep : A(x)Jl - JQ}

Note that Wg does not in general respect the splitting of A given by Equation @, that is, it cannot
be written as a direct sum of components, each lying inside one A,. On the other hand, the maximal
order O4 of A, which is the image of W ® O, under @D, does respect the splitting.

The following lemma can be seen as a version of Tate’s isogeny theorem (see [B, Theorem A.1.1.1]) in
this setting.

Lemma 4.6. Let J; and Jo be any two fractional Wg-ideals. Then A induces a bijection
HomWR{F,V}(Jla Jg) — HomA(Jl, JQ),
which is in fact an isomorphism of R,-modules.

Proof. The map A gives an injection of Homa (J1, J2) into Homyy, t7v}(J1, J2). We now show that this
map is also surjective.

Since every Wg-linear morphism ¢ determines a unique A-linear endomorphism of A, we get that ¢
is actually multiplication by some element y € A, that is, p(x) = yx for every x € A.

We restrict ourselves to the component A, of A. We want to show that since y, € A, commutes
with F),, it belongs to A(E,). Put J;, = J1 NA,. Commuting with F,, means that for every z € J , we
have

Foy(yv2) = yu Fl(2).

Since Jy,, and Oy, are Z,-lattices of the same rank, the quotient (J1, + Oa,)/J1,, is a finite abelian
group, say of exponent n. Then A, (n)(J1,, + Oa,) C J1,,, which implies that A, (n) € Ji, since
1€ Ji,+0O4,. We have

F(yVA|EU ('ﬂ)) =« (yu,27 Yv,3,- -+, yu,gyaT(yl))A|EV (n)

and
Y F (A, (1) = @ (Yo,1, Y2+ s Yrgu—15 Ying, ) By, (1)
with a # 0, which shows that y,1 = ... =y, 4, and y, 4, = 7(yu,1) 80 Yo € A, (Ey). O

Definition 4.7. Two fractional Wg-ideals will be called A-isomorphic if they are isomorphic as R,-
modules via multiplication by an invertible element of A(E,).

Corollary 4.8. Two fractional Wgr{F,V}-ideals are isomorphic precisely if they are A-isomorphic.
Moreover, being stable under F' and V is a well-defined notion on A-isomorphism classes.
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Proof. The first statement is a direct application of Lemma [4.6] The second statement follows from the
fact that F’ and V act trivially on the elements of A(E,). O

From now on, we will use Lemma to identify Homyy, (v} (J1, Jo) with the corresponding subset
of Ep.

Theorem 4.9. There is a bijection between X, , and the A-isomorphism classes of Wr{F,V }-ideals.

Proof. A Dieudonné module is a Wgr{F,V}-module, with F' having the Frobenius property (cf. Defini-
tion and V = pF~1, that is free over W of rank 2g, cf. [33, Chapter 1]. Morphisms between them are
Wg-linear morphisms that commute with the action of F' and V. Every Wg-module that is free over W
of rank 2g is Wg-linearly isomorphic to a fractional ideal in A (which are all free over W of rank 2g).
The result then follows from Lemma 6l O

4.3 Isomorphism classes of Wxr{F,V}-ideals
4.3.1 The connected-étale sequence

For a place v of E, put s(v) = val,(m)/(ae,). This will be rational number between 0 and 1 (which is
equal to i,/n, in the notation of [33} p. 527]) called the slope of v. Let pp, denote the maximal ideal
of O, corresponding to v.

The splitting Op, = Hy‘p OF, does not necessarily descend to R,. However, R, is complete and
semilocal, so it can be identified with the direct sum of the completions at its maximal ideals. The
maximal ideals of R, are exactly equal to pg, N R, = {z € R, : val,(z) > 0}, which might coincide for
different . We denote the set of maximal ideals of R, by Pg,.

Lemma 4.10. Let * denote one of {0}, {1} or the open interval (0,1). Let v and p be two places of E.
Assume that s(v) € x. If pp, N R, = pg, N R, then s(u) € *, as well.

Proof. We have R, = Zy[r,q/7]. Say that s(v) = 0 and s(u) > 0, then 7 € pg, N R, but 7 ¢ pp, N Ry,
contradiction. Say that s(v) = 1 and s(u) < 1, then ¢/7 € pg, NR, but ¢/ & pp, NR,, contradiction. [

Notation 4.11. We partition Pr, = 731{32} U 73}(%’1) U PI{%I,,} according to Lemma That is, for each
* € {{0},{1},(0,1)}, let Py, denote the maximal ideals pg, N R, of R, for which s(v) € x. We decompose

R, = R x R x R{M,

where

Ry = H R,.

PE’PEP

In this product we put R =0 if P = (). For ease of notation, we will write R, = R;E,O’l) from now on.
The decomposition of R, induces a corresponding decomposition of E,, of A, of Wg, of any fractional
Wr{F,V}-ideal, and of their endomorphism rings. All these decompositions will be denoted analogously
to that of R,. In particular, we will write E/, Wy, A’, A’, F’ and V’. In the same vein, by a A*-morphism
we will mean a morphism given by multiplication by an invertible element of A(Ey) and F* will denote
the restriction of F' to A*.

The decomposition of the endomorphism rings can be deduced from the connected-étale sequence, see
[5, Example 3.1.6]. The three parts corresponding to {0}, (0,1) and {1} will be called the étale part, the
local-local part, and the multiplicative part, respectively.

Proposition 4.12. There is a bijection between Pgi} (resp. 7)1%}) and the mazimal ideals of Z,[n] that
do not contain 7 (resp. of Zylg/m] that do not contain q/m).

Proof. Note that 73}{?2} consists of the maximal ideals of R, not containing 7. Let p be a maximal ideal of
Zp|m] that does not contain m. Then ¢/m € (Zp[r]), and hence R, = (Z,[r]),. Since R, is isomorphic to
the direct product of the completions of R at the maximal ideals above p, and (Zy[r]), is local, we get that

there is only one maximal ideal of R above p, proving bijectivity. The proof for ’P]%} is analogous. O
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Corollary 4.13. There is a bijection between the maximal ideals not containing m (resp. q/7) of R, and
the irreducible factors f(z) # x modulo p of the minimal polynomial of .

Proof. There is a bijection between the maximal ideals of Z,[r] and the irreducible factors modulo p
of the minimal polynomial of 7, see [30, Theorem 8.2]. An irreducible factor f(z) corresponds to the
maximal ideal pZ,[r] 4 f(7)Zy[r]. The maximal ideals that do not contain 7 therefore correspond to the
irreducible factors different from x. The result now follows from Proposition O

Proposition 4.14. The set P}DLP s non-empty if and only if the isogeny class Ay is non-ordinary. If so,
then P}%p consists of one element, the mazimal ideal p = (p,m,q/m) of Ry, which has residue field Fy,. If
g = p® is not prime, that is, a > 1, then p is singular and R, is not the mazimal order of E,,.

Proof. The first statement is clear. Assume for the rest of the proof that the isogeny class is non-ordinary.

If we set p = (p,m,q/m) then
R,  Zy[m,q/n]
— =" -~ ~F. 12
b ) 12

Hence p is a maximal ideal of R, with residue field F,. Let pg, be any maximal ideal of O, associated
to a place of slope in the interval (0,1). Since both 7 and ¢/7 belong to pg, , we have that pg, N R, = p.
So p is the unique element of 73}31).

Assume that a > 1. We now show the last statement by contradiction: assume that p is regular, that
is, R, is a DVR, with valuation val,. Let s = val,(7)/ae, be the slope of the place associated with p.
If 0 < s < 1/2 then there must a place of slope 1 — s, contradicting the fact that ”P}%p consists of one
element. Hence s = 1/2. By Equation , we have

ep = epfp = [Ep : Qp] > 1,

where the inequality follows from the fact that the endomorphism ring is commutative and so
1
fovaly(m)/a = s[E, : Qp] = §[EIJ 1 Q) € Z,

see [33, p. 527]. Hence e, > 2 which implies that p € p?. Since p is fixed by the automorphism of E,
sending 7 to ¢/, we get that

1
val, (7) = val,(g/7) = sae, = 5a€p >a> 1
This implies that 7, q/m € p? as well. It follows that p = p? which is impossible. Therefore, p is a singular

maximal ideal and, hence, R, is not the maximal order of E,. O

Conversely, it is not true that if p is singular, then ¢ is not a prime; see Example

4.3.2 Duality

The CM involution 7 +— 7 = ¢/7 induces an involution ¢ : E, — E, by ¢(3_, ; a; ;mTl) = D a; jmIT
with a; ; € Q,. If v is a place of E, then 7 = v o ¢ is also a place of E, with s(7) =1 — s(v). We also
define ¢ : A = A by ¢(3, ; aijrCi17'7) = 3, ;aijkCi_ym 7. The proof of the following lemma is
omitted.

Lemma 4.15. Choose any F, = « o o with the Frobenius property. Then F, = ¢(«) o o will have the
Frobenius property, and ¢ induces a bijection, taking Wg, {F,,V,}-ideals I to Wg_{Fy, Vs }-ideals ¢(I).
4.3.3 The étale and multiplicative parts

By Theorem Dieudonné modules in X, are in bijection with Wr{F,V}-ideals. In this section,
we show that we can describe the étale and multiplicative part of the Dieudonné module, that is when
* = {0} or x = {1}, in terms of R;-ideals in £ rather than Wx{F™, V" }-ideals in A*.

Proposition 4.16. If x is either {0} or {1} then one can choose F* with the Frobenius property such
that the following hold.
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(i) If I is an Ry -ideal then W ®z, I is a W{F*, V" }-ideal.

(it) If J is a WH{F*,V*}-ideal then J = W @z, (A*)~'(J N A*(E})).

(i11) For any WE{F*,V*}-ideals J1, Jo there is a bijection

HomA* (Jl N A*(E;), J2 N A*(E;)) — HomWI’%{F*,V*}(le JQ)

Remark 4.17. Note that F™* chosen in Proposition [£.16] and in Corollary [£.18| below, is not necessarily
of W-type.

Proof.

(i)

We first prove the case * = {0}. Arguing as in the proof of [33] Theorem 7.4], we can find an
invertible element « of Wl{zo} such that F{% = a oo has the Frobenius property. Since oc(W®I)C
W ® I it follows that FI%H(W ® I) € W ® I. Furthermore, pa~! is in ngo} since o is a unit, and
hence VIO (W @ I) C W @ I, as well.

Now consider x = {1}. Since 7/q is a unit in Rz{,l}, [33, Theorem 7.4] can be used in the same way

to find an invertible element u of Wz{al} such that F{} = (pu) o o has the Frobenius property. It
then follows in the same way as above that W @ I will be stable under F{1} and V{1,

In the rest of this proof we use terminology and results of [9, Chapter 0] to carry out a descent
argument.

(i)

(iii)

Let G be the Galois group of L = Q,({4—1) over Q,. We have that G = {0} };=1,... o with 0;({4—1) =
511. The group G acts on W = Z,[(;—1] and therefore has an induced action on W ®z, R;.

Moreover, Ry = (W ®z, R;‘,)G because WY = 7Z,.

For any i = 1,...,p% — 1, let x; = (p* — 1)~* q__’l e Wand y; = C(Ll € W. Any (not necessarily
primitive) (p® — 1)-st root of unity except 1 is a root of 2" =2 + 27" =3 + ... 4 1 and hence,

rl 1S i, [1ifj=a,
R D M e I SR
£ a—1.

a
p i=1

Let J be any Wi {F™,V*}-ideal. It follows from [9, Theorem 1.6.(ii")] that W ®z, R}, over Ry is a
G-Galois-extension of commutative rings. Moreover, .J is stable under G, in fact J& = J N A(Ey).
Consider the descent datum on J defined by ®,, = o; for all j = 1,...,a. From [9, Theorem 7.1]
it follows that J = W @ (A*)~'(J N A*(E)).

The set Homa-(J1 N A*(Ey), Jo N A*(Ey)) can be identified with the set of 2 € Ej such that
z(J1 VA*(Ey)) € Jo N A*(Ey). By Lemma we may identify Homyy«(p- vy (J1,J2) with the
set of x € E such that A*(x)J; C Ja. Since &, A*(z) = A*(z)®,, for any j, we conclude from
[9, Theorem 7.2] that the map x — A*(z) induces a bijection.

O

Corollary 4.18. If x is either {0} or {1} then one can choose F** with the Frobenius property such that
the map ¢ : [[|rs — [ @ W]a~ is a bijection from isomorphism classes of Ry-ideals to A*-isomorphism
classes of WE{F*,V*}-ideals.

Proof. 1t follows from Proposition ()| and that the map 1) is well defined and injective, since the
bijection in Proposition restricts to a bijection on the subsets of Homa~ resp. Homyy; consisting
of isomorphisms. Surjectivity follows from Proposition O
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4.3.4 The local-local part in the maximal endomorphism ring case

In [33] proof of Theorem 5.1], Waterhouse gave an explicit description of isomorphism classes of fractional
O 4/-ideals which are stable by the action of F" and V'. We paraphrase it in (i) of Proposition [.19 below,
adding a formula for their number in (ii).

Each fractional O 4s-ideal is a direct sum of fractional O 4 -ideals. Moreover, the action of F’ and V'
preserves v-components. Hence it is enough to focus our attention on a single v-component A, of A’.
Let t, be a uniformizer of F,. Then ¢, is also a uniformizer of LE, and every fractional O 4, -ideal is
uniquely determined by its generator, which has the form (Si,...,#,°*) for some nonnegative integers
€1,...,€g,-

Proposition 4.19. For each place v of E with s(v) € (0,1) consider the set x, all ordered g, -tuples

0<ny,...,ng, <e,
such that
g,,val )
S -
For each such tuple, sete1 =0 ande; =€;_1 +n;_1, fori=2,...,q,.
Fiz any F' of W-type (see Definition [}.4]). Then:
(i) The map v, given by (e1,...,e4,) > (t51,..., 1) induces a bijection between ' = Hs(u)e(0,1) Xv

and the set of A’-isomorphism classes of fractional WR{F',V'}-ideals with multiplicator ring O 4;

(ii) We have
ol =3y (gy> (guvaum/a (e, + 1) +g, 1>’ (19)

i=0 ¢ g —1
with d = min(g,, |g,val, (7,)/(alg, + 1))])-

Proof. The set x, is defined as in [33], Theorem 5.1]. In the proof of loc. cit., it is shown that v, can
be found in the wanted form, and that an ideal determined by g,-tuples of the form (t5t,...,#,%) is a
Wr{F’,V'}-ideal if and only if, for all v, the number ¢; is any integer and ¢; for ¢ = 2,..., g, are as in
the statement. Since we are working up to A’-isomorphism, we can scale and hence assume that e; = 0.

The cardinality |y, | is equal to the number of ways of writing m = g, val,(m,)/a as a sum of positive
integers (i.e., weak compositions) with each positive integer bounded by e,. The formula can be
found by noticing that it is also equal to the coefficient of ™ in the polynomial

(1 _ zeVJrl)gy .

1 ) =
I+z+...+2%) T

the coefficient of z*(°*1) in the numerator of the rational expression equals (—1)* '(9), and the coefficient
27 for 7 > 0 in the expansion of the denominator equals (] 1o ) One then considers all choices of i, j
such that i(e, + 1) + j = m. For a reference, see for instance [1 Equation (4.0)]. O

Definition 4.20. Using the notation from Proposition [£.19] put

T:={ H vy(€1,...,€q,) t (€1,-..,€4,) € X for all s(v) € (0,1)}.
s(v)e(0,1)

5 Equivalences of categories

In this section we will extend the results of Section [2] to give a categorical equivalence in Theorem [5.2]
between the isogeny class A, and a category C, of pairs of ideals, see Definition [5.1] The pairs of ideals
will respectively give representatives of the Tate modules and the Dieudonné Inodule of the corresponding
abelian variety.
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Definition 5.1. For each ¢, let iy be the injection £ — E,. Let C; be the category whose objects are pairs
(I, M), where I is a fractional R-ideal in E, and M is a Wg{F, V }-ideal such that A~Y(M) = i,(I)R,.
The homomorphisms between objects (I, M) and (J, N) in C, are the elements o € F such that af C J
and A(iy(a))M C N.

Theorem 5.2. There is an equivalence of categories ¥ : C, — Aj.

Proof. Recall that we have fixed an abelian variety X in A,. For each object (I, M) in C,, we fix positive
integers k, np, and ny, for all £ # p, such that

Ty(X) Sk -ig(I) CTy(X) and p"M(X)Ck-M C M(X).

For all ¢ # p, let K,(I) be the subgroup of X (F,)[¢™] = Tp(X)/0™Ty(X) equal to k - ig(I)/™Te(X).
Define K, (I) analogously. This is possible by the results of Section [2| together with Theorem and
Theorem Let K be the subgroup of X generated by all K,(I) together with K, (I).

Define the abelian variety X(; ) = X/K in A;. By Tate’s theorem, there exists an isogeny ¢ :
X1,y — X such that . (Te(X(1,a))) = k-i¢(1) € Tp(X) and @ (M (X (1 ar))) = k-M C M(X). Finally,
define the quasi-isogeny ¢ ary = @/k : X(7,0) — X and put W((I, M)) = X1 ar)-

Let o : (I, M) — (J,N) be a homomorphism between objects of C,. We will first only consider
a € E*, which will correspond via U to isogenies in A,. The pair (al,,(a)M), which belongs to C,
since @ € E*, gives rise (by Tate’s theorem, as above) to a quasi-isogeny ¢, : XaLip(@m)y — X.
Multiplication with o € E* is then the same as an isomorphism €, : X7 ar) = X(ar,i, (o)) such that
©(1,M) = Pa © €a. Again by Tate’s theorem, the inclusion (o, i,(c) M) C (J, N) gives rise to an isogeny
€ X(ar,i,(a)m) = X(s,n) such that @ ary = @8y 0 €0 €q. We put W(a: (I, M) — (J,N)) = €0 €.

Since VU respects composition and the identity, it is a functor. It also follows directly that the functor ¥
is essentially surjective.

Each isogeny X7 ny — X(s,n) is equal to ga(_J%N) oo for some a € E*, viewed as a quasi-
isogeny of X, and necessarily af C J and A(iy(a))M C N. Moreover, if a # 8 € E we see directly that
U(a: (I,M) = (J,N)) # U(8: (I,M) — (J,N)). This shows that ¥ is both full and faithful when
restricted to homomorphisms of C; in E* and isogenies in A, .

Let us now consider any o € E. The isogeny decomposition X ~ X7 X ... x X, gives a corresponding
decomposition E = F7 X ... X E.. An element o = (ay,...,a,) € F is in E* precisely if «; # 0 for all
i =1,...,r. Moreover any morphism between simple factors X, and X is either an isogeny (and then
necessarily ¢ = j), or the zero morphism. It is now immediate that ¥ is both full and faithful on all
homomorphisms. O

Definition 5.3. For any overorder S O R in E, let D, (S) denote the category of fractional S-ideals with
homomorphisms between two S-ideals I, J being a € E such that al C J.

The following corollary reproves the second part of [21], Corollary 4.4], which builds upon [3] and [7].
Corollary 5.4. Assume that (at least) one of the following conditions holds:
(i) The number g = p is a prime;
(i) The category A, consists of ordinary abelian varieties,

then there is an equivalence of categories between Dy (R) and A, inducing a bijection between ICM(R)
and Alsom,

Proof. 1f either of the conditions holds, define a functor = : D, (R) — A, by letting =(I) = ¥(I,W ® I)
and E(a: I = J)=Y(a: I — J).

If ¢ = p is a prime, then W = Z,, and Wg{F, V }-ideals are nothing but R,-ideals. Theorem ﬂ then
shows that = is an equivalence.

Say now that A, consists of ordinary abelian varieties. Proposition shows that all Wr{F,V}-
ideals are of the form W ® I, with I a fractional R-ideal. Theorem then shows that also in this case
= is an equivalence. ]

In the next result we restrict ourselves to abelian varieties such that the local-local part of their
Dieudonné module has maximal endomorphism ring. This gives an equivalence that is similar in spirit
to, for instance, [33 Theorems 5.1 and 5.3], [24, Theorems 1.1 and 4.5] (see further in Example and
[2, Theorem 1.3].
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Corollary 5.5. Let S denote the smallest order in Op containing R and such that S, contains OEL‘
Let r be the number of A’-isomorphism classes of Wp{F',V'}-ideals whose endomorphism ring contains
(’)E;. Then there are full and faithful functors U; : D.(S) = Ay fori = 1,..,r that induce a bijection
between the isomorphism classes of abelian varieties Z in Ay with O, C End(Z), and the disjoint union
of v copies of ICM(S).

Proof. Let M{, ..., M/ be representatives of each A’-isomorphism class of Wy {F’, V'}-ideals whose endo-
morphism ring contains (’)E;. Choose F1% and F{U1} as in Proposition so that, foreach i =1,... 7,

M; =W e M ewlM

isa Wg{F,V} = W{O}{F{O} VIO x WR{F', V'} x W{l}{F{l} Vilhideal. Since A™Y(M;) = R{O}
O, x R{ V for any fractional S-ideal I it follows that A= (A (i, (1)) M;) = ip (1) A™H(M;) = ip(1 )(R,{)O}

Op; x R{ }) and hence (I, A(i,(I))M;) will be an object in C.

TFor each i = 1,...,7, define a functor ¥; : D (S) — A, by putting ¥;(I) = ¥((I, A(ip(I))M;)) and
Ui(aw: I —J)=T(a: I,A>GI)M;) — (J,A(ip(J))M;)). That these functors are full and faithful
follows from the corresponding facts for W.

Finally, take any abelian variety Z in Ar with Op, C End(Z),. Then there is an object (I, M) in Cy
such that W((Z, M)) is isomorphic to Z. Write I, = iy, (I)R;,. Since I}, is a principal Op; -ideal, there
is a 8 € E such that A'(B)M’ = A’(1,) M for some j € ?1, ...,7}. Then

BI, = BAH (M) = AN (M) = IOp, = I, (14)

By the strong approximation theorem we can find a new element § € E such that still holds, and
moreover (y € R, for any ¢ # p, and 35 € (R5)* for x € {{0},{1}}. Then put 7 = (' for any
"€ (I:1)*. Tt follows that A'(y)M' = I,M] and that vI = I. By Proposition we get that if

Ny and N, are any W {F{0} V{0 ideals such that (A)=1(N;) = (AL ~1(N: ) then Ny = Ns.

The corresponding statement also holds for Wél}{F{l}, vV} ideals. Tt follows that yM = A(i,(I))M;.
Hence, ¥, (I) is isomorphic to U((I,M)) ~ Z in A,, viay € E. O

Example 5.6. If A, consists of almost-ordinary abelian varieties, then there is a unique place v above p
with slope s(v) € (0,1) and it will have slope 1/2. It follows from [24, Proposition 2.1] that the en-
domorphism ring of all W}’%{F ', V'}-ideals contains Op;. Corollary can then be compared with [24]
Theorem 4.5.(3)]. Equation (13]) shows that if v is the place above p with s(v) = 1/2, then the number r
of A’-isomorphism classes of WR{F ", V'}-ideals whose endomorphism ring contains Opy equals r = 2 if
e, = 1, and equals r = 1 if ¢, = 2. Note that Corollary - 5| holds also for even g, while [24, Theorem
4.5.(3 )] does not.

In the case when e, = 1, we can use Theorem to describe isogenies between two abelian varieties
X1 =Uy(I) and Xo = ¥o(J). Say that M7 is generated as a Oz, -ideal by (1,1) € A, = LE, ® LE,,
and M} by (1,t,) € A,, where t, is a uniformizer of £, C LE, (compare with Proposition . We
see that every o € (J : I) N E* induces an isogeny X; — Xo, but f € (I : J) N E* induces an isogeny
Xy — X; if and only if val, (8) > 0. These types of isogenies are not described in [24].

Note finally that if ¢ is not prime, then R; is singular by Proposition So, in this case R cannot
be an endomorphism ring of an almost-ordinary abelian variety.

In the following two results we will draw some consequences from Theorem [5.2]on the endomorphism
rings of abelian varieties in A.

Proposition 5.7. Say that there is a Wi{F',V'}-ideal M' with endomorphism ring T' C E;, such that
A’ (M) is invertible in T'. Let S be any overorder of R such that S, contains T'. Then there is an
abelian variety in A, with endomorphism ring S.

Proof. Choose F1% and F{'} as in Proposition and let M be the Wr{F,V} = WI%O}{F{O}, Vi0hy x
WE{F', V'Y x WEHFD, v bideal (WL @ R @ M' @ (WY @ REY). Fix the fractional R-
ideal I such that i,(I)Ry = R, and such that i,(I)R, = A™'(M), whose existence is guaranteed by
[32, Theorem 9.4.9, Lemma 9.5.3]. Since A~ (A(i,(S))M) = i,(S)A™H(M) = i,(SI)R, we have that
(SI,A(ip(S))M) € Cr, and since I is locally principal for all ¢ (including p), we have that (SI: SI) =
(§:8)=S5. The abelian variety ¥((SI, A(i,(S))M)) then has endomorphism ring S. O
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Corollary 5.8. Let S be any overorder of R. There exists an abelian variety in the isogeny class whose
endomorphism ring T satisfies S¢ ~ T, for every £ # p and Sy ~ T, for * equal to {0} or {1}.

Proof. 1t follows from [33, Theorem 5.1] that there is a W {F’, V'}-ideal M" with maximal endomorphism
ring. The abelian variety W((S1I, A(i,(S))M)) constructed as in the proof of Proposition [5.7| then has an
endomorphism ring with the wanted properties. O

6 Computing fractional Wr{F,V }-ideals

The goal of this section is to provide an effective method to compute representatives of the A-isomorphism
classes of Wgr{F,V}-ideals.

By the discussion after Notation , the decomposition R, = RZ{;O} x R, x R;{)l} induces a decompo-
sition of A-isomorphism classes of W{F, V }-ideals, which yields a natural bijection

{A-isom. classes of Wr{F,V}-ideals} «—
{A*-isom. classes of WE{F*, V*}-ideals}. (15)
#€{{0},(0,1),{1}}

The next proposition states that for * € {{0},{1}} the computation of the terms on the right hand
side of reduces to computations of known objects discussed in Section

Proposition 6.1. For x € {{0},{1}} we have a natural bijection
{A*-isom. classes of WE{F™*, V" }-ideals} +— H W,, (R), (16)
pVEPRp,s(u)E*
where denotes p, the intersection with R, of the mazimal ideal inducing v.

Proof. By Corollary |4.18] the left-hand side of is in bijection with {A*-isom. classes of Rj-ideals},
which is just W(R;) by Remark Since Ry is the direct product of the rings Ry, for p, € Pg such
that s(v) € x, the latter set is in bijection with the right hand side of by Proposition O

In view of Proposition we restrict our attention to computing the A’-isomorphism classes of
Wr{F', V'}-ideals. We can view E as a subset of E, and A’ as a subset of A, so that A : F, — A
restricted to F, is precisely A’. We say that two fractional Wp-ideals I and J are A’-isomorphic if there
exists a non-zero divisor v € R}, such that A’(y)I = J. Note that A’-isomorphism implies isomorphism
as R;—modules, but that conversely two fractional Wi-ideals can be isomorphic as R;—modules while not
being A’-isomorphic.

The computation of A’-isomorphism classes is divided into three steps:

1. Compute W-isomorphism classes of fractional Wp-ideals.

2. Compute the partition of each Wp-isomorphism class into A’-isomorphism classes of fractional
W -ideals.

3. Determine which A’-isomorphism classes of fractional Wp-ideals are stable under the action of F'
and V, that is, which are Wi{F’, V'}-ideals.

The three steps will be discussed in Subsections [6.2} [6.3] and [6.4] respectively. In Section [7, we will
summarize all steps in one algorithm.

Even though the rings R; and Wy, are Zy-orders, the method we describe will be exact, in the sense
that every computation will be performed globally with fractional ideals of Z-orders. To do so, we now
introduce some further notation.
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6.1 Global setting

Recall that L is an unramified extension of degree a of Q,. Let ¢(z) be a lift to Z[z] of any irreducible
factor of degree a of z7! — 1 over Fp[z]. We have L ~ Q,[z]/c(x). Set L = Q[z]/c(x) and denote by ¢
the class of z in L. Note that L ®gQ, ~ L. Moreover L has a unique place above p, which is unramified.

Let g1(z),...,g-(z) be the irreducible factors over L[z] of the characteristic polynomial h(z) of .
Define _
777 Ll 5 _ 17 Ozl
A= and Wg = . 17
1156 =110 ()

The association 7 — (2 + (g;()))i=1,...» induces an embedding A:E— A
Remark 6.2.
(i) We have isomorphisms A ®q Qp ~ A and WR ®yz L, ~ Wg giving inclusions WR CACA.
(ii) For every fractional Wg-ideal I C A, there is a unique fractional Wg-ideal I such that I ®y, Zy,=1

and I ®7 Zy = O+ @7 Zy for every prime £ # p; see for example [32] Theorem 9.4.9, Lemma 9.5.3],

as in Proposition 5.7} Note that the maximal order O 3 of A satisfies O;= (5A. Also, if I C J are
fractional Wg-ideals then

~

~l <
~| <

is a finite Wgr-module annihilated by a power of p.

(iii) Let p be a maximal ideal of W and p be as in Then ’VIV/R,% ~ Wgp.

(iv) Assume for a moment that L is a normal extension of Q. Let &7, be any generator of the decom-
position group of the maximal ideal pO; of O;. Then o, extends to the Frobenius o of L. Let 74

denote the element ﬁ(w) Since h(x) is square-free, the elements 14,74, ... ,Wjeg(h) form a L-basis
of A. In other words, A can be described as

A=1,-Lons-La...ori=®. L (18)

Using the presentation given in Equation define 5 : A — A by fixing 74 and acting on the
L-coefficients as or,. Observe that o extends to the automorphism o of A.

To simplify the exposition, we will assume that L is normal in the following algorithms. Nevertheless,
we will always need only to compute the action of o on finite quotients of O 7. We detail in Remarks
[6.12 and [6.18 how to do this efficiently. Computing such finite approximations does not require us
to compute the decomposition group of pO;, and, in fact, it does not even require L to be normal.

(v) Let v be a place of E,. Then we have

OA,, = OLE,, X ... X OLE,,,

g, —times

cf. Equation )] The unique maximal ideal of O, is denoted pg,. A maximal ideal of O4, is equal
to the unique maximal ideal prr, = pr,OLp, in exactly one of the g, factors, and to the ideal
generated by 1 in all other factors. In particular, there are exactly g, maximal ideals B, 1, ..., B 4,
of O,4, extending v. Let t1,...,t4, be some corresponding uniformizers. If ¢, € E, is a uniformizer
for v then its image in A, via the embedding induced by A is (t,,...,t,) = (vit1,...,vg,tg, ) for
units v; € OF g, For each i, consider the maximal ideal ‘33”71- of O3 built using Any lift of a
basis element of the Og/‘j??,,,i-vector space ‘iw/‘i?jz will map to a uniformizer of Oz & >~ Oasp, .-
However, since O4 is generally not an integral domain, such a lift might not be a unit in the
completions at the other maximal ideals above v. For example, such a lift might be a zero-divisor.
We address this issue in Lemma [6.3] below.
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(vi) Let S” be an order in A’, let I’ be a fractional S’-ideal, and let p’ be a maximal ideal of S’
Consider the order in A = A0} x A’ x A1} given by S = O 01 x 8’ x O 401y and its maximal
ideal p = Q403 X p' X Oq13. Set I = O 0y X I’ x Oyq1y. Define S as the order in A satisfying
S @y Z, ~ S, and p as the prime of S such that P ®z Zp ~ p, and I as the fractional S-ideal such
that I ®z Z, ~ I, all using (ii). Then we have canonical isomorphisms

§E ~ S, ~S;, and fg ~ 1, ~ 1.
With this convention we have 6A/ =0j3.

Lemma 6.3. Let ’i%h e ,&ﬁy,gy be the mazimal ideals of O3 extending a place v of E,. Fiz an index i
and consider the natural surjective ring homomorphism

SE R
371‘ : Hj;éi ;BV,]' 12/,1‘ i#] mu,j

0: 05> =

Pick b; € ‘fJ}m \‘f]}g’z and let t,; be an element of Oz such that o(t,;) equals the class of b; in the i-th
component and the class of 1 in every other component. Then the image of t,; via the natural ring
homomorphism O 7 — qu} >~ Oaysmp,; is a uniformizer if j =i and a unit otherwise.

D :

Proof. Omitted. O

6.2 Step 1: Wj-isomorphism classes

Lemma 6.4. Let S be the set of primes P of Wg. Then we have a natural bijection

W(Wg) «— [ W (Wa).
PeS

Proof. Note that W, is canonically isomorphic to the direct product of the completions Wg ¢ where P

ranges over the set §. The statement follows from the canonical isomorphism WR‘TS ~ Wgqp, see
Remark [6.2] (i), and from Remark O

Building on the previous lemma, in the following algorithm we will compute the isomorphism classes of
fractional Wp-ideals, concluding the first step of the computation of isomorphism classes of Wr{F", V'}-
ideals.

Algorithm 1.
Input: The order R. .
Output: A set of fractional Wg-ideals representing W(W5,).

(1) Compute the orders O ;7 and W

(2) Compute the set p1,. .., p, of maximal ideals of WR that lie below the maximal ideals of O 7 extending
the places of E, with slope in (0, 1);

(3) Set k = val, ([0 : Wg);

(4) For each p; compute a set of representatives W; of W(WR +pFO ), for example, using [23], Algorithm
ComputeW];

(5) Construct a set of representatives of W(W7},) by combining the sets Wi, ..., W,, using Lemma
Theorem 6.5. Algorithm/[1] is correct.

Proof. This is an immediate consequence of Lemma and Proposition [3.10 O
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6.3 Step 2: A’-isomorphism classes

In this section, given a fractional W-ideal I, we will denote by [I]w, its class in W(Wpg) and by
[I]as its A’-isomorphism class. Since every A’-isomorphism is also a Wi-linear isomorphism, we see
that [I]y, splits into a disjoint union of A’-isomorphism classes. We denote by e; the extension map
[I']ar = [I'O’4]ar from the set of A’-isomorphism classes of fractional Wy-ideals that are Wp,-isomorphic
to I, to the set of A’-isomorphism classes of fractional O 4-ideals.

In the next proposition, we describe the fibers of the extension map ey : [I'|as +— [I’O’]as. Then we
include a series of results dedicated to explicitly computing these fibers using global elements. The whole
procedure to obtain A’-isomorphism classes of W-ideals is wrapped up in Algorithm [2| below.

Proposition 6.6. Let I be a fractional Wi-ideal. Set S = (I : 1) and J = IO 4/. The association y — I
for v € OF, induces a free and transitive group action of O%,/S*A'(OF,) on the fiber e ([J]ar).

Proof. If v € O}, then yI04 = J. Now I = I if and only if v € $*, and I is A’-isomorphic to I if
and only if v € A’(EI’,X). We claim that

0% NS*A(E)) = S*N(0F)).

Recall that A" = [], A, where v runs over the places of Ej, and that A, is a direct product of g,-
copies of LE,. We denote here by val, both the valuation on E, and its (unramified) extension to LE,.
Indeed, for any y € O, N S*A'(E,™) there exist s € S* and z € A’(E}™) such that y = sz € O},.
Then 0 = val, (s,;2,,;) = val,(z,;) for each v and each 0 < i < g,, and hence z,; € OEL' Note that
xy,; = x,,; for all 7, j by assumption, so z € A’(O}, ). This shows that the group action is well-defined
and free. !

Pick [Iy]as in e;'([J]a’). By assumption there are § € A’ and j € A(EI’)X) such that Iy = §I and
1004 = BJ. Put v = §/B. By construction, we have vI = 3711, which shows that [yI]as = [Io]a. So,
to conclude that the group action is also transitive, it suffices to show that v € O7,, as we now do. Recall
that by hypothesis we have J = IO 4,. Hence

1
’}/IOA/ = %IOA/ = BIQOA/ = JZ I(QAI7

which implies that v € O7,. O

In Algorithm [2| below, we will use that, given an overorder S of W}, the quotient O}, /S*A(OF, ) is
P

the cokernel of the inclusion o
X
S*A (OE;) O;;/
Sx Sx 7

as we now show.

Lemma 6.7. The subgroup H = Wi A'(OF, )/Wy is generated by the elements of O, /W fized by the
action induced by the automorphisms o: A, — A, for v ranging over the places of E, with s(v) € (0,1).
Let S be any overorder of Wr. The subgroup S* A (O, )/S* is generated by the image of H via the

natural projection O, /Wp — O}, /S*.

Proof. Recall from Equation that o acts on A, = ®LE, as a cyclic permutation on the g, copies of
LE, followed by 7, on the last component. Therefore, the elements of OEV fixed by o are those whose

components are all the same, hence in the image of A’, and are fixed by 7,,. This is precisely A'(O%, ).

The first statement then follows since o acts also on Wg . The second statement is a consequence of the

fact that we have S*WZA'(OF, ) = S*A(O}, ). O
P P

In what follows, we will describe how to compute O%,/S*, and consequently also O%,/S*A(OF,),
p
using global representatives; see Remark [6.9] for a summary.
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Lemma 6.8. Let? be the conductor of S in Oz and P1,...,p, the mazimal ideals of S corresponding

to the finitely many mazimal ideals of S. For i =1...,r, set k; = Valp(\g/ﬂ)/valpﬂg/ﬁi\), Then the
natural ring homomorphism
~ OZ

f—’_Hl:lpllog

has kernelﬁfv—k T, ﬁf and it induces a group isomorphism

X
< O A >
Oi’ ~ ? Hi:l ~p§iOA

e

Proof. By [15, Lemma 2.3], fori = 1,...,r, we have p*’ gﬁi C %i and hence also p* O3 € Af%i Oas, = ¥5i.
The kernel of the homomorphism in the statement is

SnG+]Iw oz
i=1

we now show that it equals ¥+ H:=1 ﬁfl It suffices to check the equality locally at every maximal ideal
of S. Let p be a maximal ideal not in the set {py,...,p,}. Then

<?+HE§"'> 5 — <§ﬂ<¥+H5§“O;)> |
i=1 p p

i=1
while . .
(7115t ) - (SnF+ T3t o)
i=1 P i=1 P
fori=1,...,r.

The argument used above shows that, for each ¢, we have isomorphisms

z ~ ~

(19)

o ()

inducing
OA’,)L: ~ Ogﬁz‘ ~ O‘Z’Ei
b o (IR 0s)

pi

(20)

For the second part of the statement, we observe that the decomposition S ~ ©,.S;,, where the direct
sum is over the finitely many maximal ideals p of S, induces a decomposition Q4 ~ @, 04 . If p does
not lie above the conductor § of S in 04/ then S, = 04/ . Hence we have the following isomorphism:

OX/ O;;/
Sg ~ P SX"’. (21)
jCp TP

For p lying above the conductor f, there is a natural bijection between the finite set of primes of Oy,
and the set of maximal ideals of O4s p,/f,, where f, is the completion of § at p. Hence the map

X
Oﬁ/ p — (OA/’p>
’ fp

induced by taking quotients is surjective. The composition

y 0Au;:>x (Oarp/p)”
O , NIV
A < W) S
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has kernel Sy. Therefore, by Equation , we get

Oy O of1)" »
s =D G -

We conclude by combining Equations 7 and and the fact that we have canonical ring
isomorphisms

f"‘Hz 1131 i 1(f—|—H2 1131 )N

and
9z

?“‘ H2:1gfio~

AEZ
H(HTL 1131 )~

O

Remark 6.9. Lemma gives a method to describe 07, /S using Z-lattices. Algorithms to concretely
compute the quotient can be found in [12] and [I7]. As pointed out in Remark [6.2}f(iv)| the action of o
can be realized on the Z-order O 3. Hence, using Lemma we get a method to compute the group
O /S*A(Op, ) together with a set of generators in O 7 using only Z-lattices. This is desirable in order
to avoid precispion issues that could arise from working with Z,-lattices.

For the remainder of the article, we fix F’ of W-type (cf. Definition . Thanks to Proposition m
we understand the W5{F’, V'}-ideals with maximal endomorphism ring. We now show in Proposi-
tion that er sends Wi{F’,V'}-ideals to W5 {F’, V'}-ideals. This implies that, in order to compute
all Wi{F’, V'}-ideals, it suffices to consider the fibers of W,{F’, V'}-ideals with multiplicator ring O’,.
This fact will be used in Algorithm [2] below.

Proposition 6.10. Let I be a fractional Wy-ideal. If I is a Wr{F’',V'}-ideal, then IO4/ is also a
Wr{F',V'}-ideal.

Proof. Any element of 1O 4 can be written as a finite sum z = ), x;a; with 2; € I and a; € O /. Recall
that F’ is of the form z — «z? on each component A,. The action of ¢ is multiplicative, so we can write

= Fl(zia;) =Y F'(zi)o(a;)
Since F'(z;) € I by assumption and o(a;) € Oa (= W ® Opy ) we see that I'(z) € IO4/. Hence
() = Z V'(zia;) = Z V' (x)o " a;).

Now, V'(z;) € I by assumption and o~ '(a;) € Oa. So V'(z) € IO4. This shows that IO, is a
WER{F',V'}-ideal. O

We are now ready to combine all the results presented in this section into an algorithm to compute
A’-isomorphism classes.

Algorithm 2. . B B

Input: A set of fractional Wg-ideals I, ..., I,, representing the Wp-isomorphism classes of all fractional
Wi-ideals.

Output: A set of fractional WR—ideals representing the A’-isomorphism classes of all fractional W,-ideals
whose extension to Q4 is in T (see Definition [4.20)).

(1) For each place v of E,, of slope in (0, 1), compute the maximal ideals ‘33,,}1, e ,‘331,,% of O ;7 extending v;
see Remark For each i, compute an element ¢, ; defined as in Lemma

(2) Use Proposition to compute, up to A’-isomorphism, all W/{F’ , V'}-ideals Ji,..., J, having
maximal multiplicator ring O 4-. Each J; is stored as a tuple of vectors of the form (€;,,1,...,€j1.9,)v
(asin T).
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(3) For each I;, do the following:

(Bla) Compute the multiplicator ring S of I;.
b) Compute the extension J = EO;.
[@Blc) Compute the factorization
gv
J= T [T
v i=1
where v runs over the places of E, of slope in (0,1), and JT is the product of all the other
maximal ideals.
(Bld) For each j =1,...,m, set §; =], T

zluz

e) Use Remark to compute 71,...,7, in O3 representing the elements of Of‘,/SXA(OE;).
f) Define the set of fractional WR—ideals I, = {6;1’ykl~i 1<ji<m,1<k<r}

(4) Return J", Z;.

Theorem 6.11. Algorithm[g is correct.

Proof. Let L,L' € \J;_,Z; with L # L'. If L € Z;, and L' € Z; for indices 1 < i < i’ < n then L and
L’ are not A’-isomorphic since they are not Wp-isomorphic. If L and L’ belong to the same Z; then
they are not A’-isomorphic by Proposition Hence, all fractional Wi-ideals in |J!'_, Z; are pairwise
non-A’-isomorphic.

To conclude we need to show that Un I, contains representatives of all A’-isomorphism class of W,-
ideals whose extension to O’y is a Wp{F”',V'}-ideal. For each I; denote by JiT the part of the factorization
of I, O3 over the maximal ideals ‘131, Tyee- ,‘ﬁl, g,- Note that J; JiT is isomorphic to I; O3 locally at every

maxnnal ideal B, . By the way each t,; is constructed we get that J; and J; 1J JIT are equal locally at
every maximal ideal B, . Hence, the result follows from Propositions .19 and [6-10} O

Remark 6.12. In order to perform Step in Algorithm following Remark we need to compute
the action of & on the finite ring
Oz
P+ L P Oz
Set o, = O3 /(pO;)™, where m is defined by |o4| = |05 /(pO7)|™. By Remark the finite ring 04
is an op-algebra. If by,...,by, is the image of a Z-basis of O in 04 then we can give a o-equivariant
presentation of 04 as an oy -algebra by

o X ... X0 —» 04

29
(Cl, e ,ng) — chbl
=1

Hence, in order to compute the action of & on 04 it suffices to compute an approximation of the (p-adic)
Frobenius automorphism of L on oy. This can be done as follows. Let u be a lift in oy, of a generator of
(OZ/pOZ) . Compute u? for i > 0 until u? = u?"" and set z = u?". Then z is the image of an inertial
element of O, ~ Z,[z] in 0y,. Hence, by computing an explicit isomorphism Z,[z]/(pZ[z])™ =~ oL, we can
compute the action of ¢ on oy, by pushing forward the action of o on Z,[z] which is given by z — 2.

Note that this construction does not require L to be normal; cf Remark We stress that the
output of Step in Algorithm |2[ is independent of choice of the approximation of ¢ we computed,
which is certainly not unique.

Proposition below shows that A’-isomorphism classes are the orbits of the action of a group
G’ on the W-isomorphism classes. In particular, each Wp-isomorphism class is a disjoint union of A’-
isomorphism classes. However, the group G’ is finite only when g, = 1 for every place v of slope in (0, 1).
And only under this assumption, there is exactly one A’-isomorphism class of fractional Wp{F’, V'}-
ideals I with (I : I) = O/, cf. [33], p. 546]. That is, since there is only one fiber of the extension map to
consider, Corollary below can be viewed as a special case of the method presented above. We will
not use Proposition [6.13] and Corollary [6.14]in the rest of the paper.
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Proposition 6.13. Let I be a fractional Wp,-ideal with multiplicator ring S. Then [I]W{a is a disjoint
union of A'-isomorphism classes, which are in bijection with the orbits of the natural action of the group
G = A’X/SXA’(EI’)X) on [I]WI/%.

Proof. Recall that [I]y, splits into a disjoint union of A’-isomorphism classes. The quotient A™ /S acts
freely and transitively on [I] wr,- Since A’-linear isomorphisms are given by multiplication by elements of

A'(E]’?X), the bijection between A’X/SXA’(EI’,X) and the A’-isomorphism classes in [I]y follows. [

Corollary 6.14. If g, = 1 for every v with s(v) € (0,1) then the quotient A’X/SXA’(E;X) is finite, and
isomorphic to
0%,
S a(0F,)
If moreover S = Oy, then there is only one Wr-isomorphism class of ideals I with (I :I) =S and every
representative of this class is a Wr{F',V'}-ideal.

Proof. We consider A'(E}) = E, C A’ by slight abuse of notation. Since g, = 1, we also have that
A, = LE,, which is an unramified field extension of E,. Hence A} = (92” E¥. Since this is the case for

every v with slope in (0,1), we get A’ = OZ‘,E’;. Therefore, we have that

SXE T SXE SXEY T OXNSXE, §¥0g,]

A OB, ORS*ES O O,

which is finite.

Finally, assume that S = Oas. There is only Wy-isomorphism class of fractional O4/-ideals. To
conclude the proof, we show that every representative I of this class is a Wi{F’,V'}-ideal. Let v € A’".
We write 7/ = @, 7, with 7, as above. Then

F'(yI) =" F'(I) C~AI <= F'(I)C L 1.
/yT
Since W/’yT/ has valuation 0, it is an element of O}, = S*; equivalently, we have 7/'77/[ = I O

6.4 Step 3: Stability under the action of F' and V'

Algorithm [2| returns a list of fractional /WR—ideals representing the A’-isomorphism classes of fractional
Wg-ideals. Consider the class [I]as represented by I, which we can assume to be contained in O ;. We
want to determine whether [I]a: consists of W {F’,V'}-ideals. Since F’ and V' cannot be realized on

the Q-algebra ﬁ, we cannot compute F'I and V’I directly from I. The first step is to reduce to working
in a finite quotient.

Lemma 6.15. Fiz o W {F’',V'}-ideal J and a fractional Wy,-ideal I C J. Let J, I, V'I and F'T be
defined as in Remark . Let N be the exponent of the finite quotient j/f Let m be an integer such
that m > val,(N). Denote by p1,...,pn the mazimal ideals of Wr which lie below the mazimal ideals of
O4 above the places of E of slope in (0,1). For each i =1,...,n, let m; be a positive integer such that
|[J/p™J| < |Wg/p:|™. Then the following statements are equivalent:

(1) [Ilar consists of WR{F',V'}-ideals;
(i) =T+ FT+V'I;
(iti) =T+ FIT+V'I;
(iv) The images 0fI~ and I+ F'T+V'T in the finite quotient j/pmj are equal;

(v) The images of I and I + F'I + V'I in the finite quotient j/ (pmj—i— T, p:"j) are equal.
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Proof. The equivalence of |(i)| and follows from Corollary Consider the finite WR—module
[+FT+V'T
By Remark [6.2}i(i1)} we have a canonical isomorphism

M =

I+FI+V'I

M ~
I

Hence and are equivalent.
The assumption on m implies that we have inclusions

p"JCICTI+FI+VICJ.
Hence, conditions and [(iv)| are equivalent.
Set @ = J/pmJ The sphttmg of Wg ~ W{O} x W x W{ }induces a decomposition Q ~ Q% @

Q' Q. Observe that Q" ~ J/ ( mT 4 [T, pi J). Hencelmphes The converse follows from
Remark which states that the (0)-parts (resp. (1)-parts) of I and I + F'T + V' coincide. O

The next lemma will be used in Algorithm [3] below to construct a presentation of F, on a finite

quotient of the form
gv
11 9%LE,
H - H m_

l/ 7 i=1 pLE,,

for m a big enough positive integer.

Lemma 6.16. Fiz an integer j > 1 and a place v of E,. Let t, be a uniformizer of E,. Let v be an
element of Of p such that

Nirg, e, (0) — ﬂy/tzalu(ﬂu) c iju

Then there exists v, € pJLEU such that

NLEU/E,, ('YO + ’Yl) = ﬂy/tl‘:alu(ﬂ'y)

Proof. For ease of notation, set N = Npg /g, . Since 7rl,/tval () ig a unit in Op, we can write
Wu/tval”(ﬂ”) ¢(1 4+ z) for some root of unity ¢ and some = € pg,. Then there is an ¢y € p%y
such that N( 0) = ¢(1 + 2 + €). By [29, Proposition 3, page 82] the norm N surjectively maps
(1+ pLEU) to (1+pg, ). Hence, there is an element 0y € p7 p such that N(1+dp) = 1+ (—¢p). Then

N(v0(1+60)) = ((1+z+e€) with e; € p} " and we can ﬁnd 81 € plly such that N(1+061) =1+ (—e1).
Then N(v(1+60)(1+61)) =C(1+x+e€2) with ea € pEV . Continuing this process (since O, and Of

are complete with respect to the topology induced by 1 + p’ respectively 1 + p7 EV)7 we find § € p%y
such that N(yo(1+9)) = ¢(1 + z). Setting 1 = 700 concludes the proof. O

We are now ready to give the algorithm that achieves Step 3, allowing us to compute the isomorphism
classes of W {F’,V'}-ideals, for F’ of W-type, as described at the beginning of the section. The algorithm
determines whether a given Wiy-ideal is a W{F’, V'}-ideal by pushing it into a finite quotient @,,, which
depends on a precision parameter mg. This parameter is chosen minimally so that we can realize the
actions F,, (resp. Vin,) of F' (resp. V') on Q.,,. For further analysis it is desirable to record Fp,,
and V,,,, together with the output of the algorithm (cf. Remark .

Algorithm 3.

Input: A set 7 = {INl, . f } of fractional WR ideals reprebenting the A’-isomorphism classes of all
fractional Wi,-ideals whoso extcns10n to Q4 is in T (see Definition

Output: A set of elements in Z, possibly scaled by elements in A( ) - A so that they are contained
in .J, consisting of representatives of the A’-isomorphism classes of Wj{F’, V'}-ideals.
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(1) Pick a W{F’,V'}-ideal J with maximal multiplicator ring O4s using Proposition [4.19| and com-
pute J.

(2) If necessary, scale J by multiplying by an element in A(E) so that J C O 7 see Remark

(3) If necessary, scale each I,eT by multiplying by an element in E(E) so that I, C .J; see Remark
(4) Set mo = max{val,(Ng)}, where Ny is the exponent of the finite quotient J/I.

(5) For each v with slope s(v) € (0,1) do the following:

(bla) Let u, be an element of E representing a uniformizer for v.
(Blb) Compute w, = ™ (™

c ) Compute the maximal ideals ‘i,,}l, e ,‘I?l,,g,, of O3 above v together with their ramification
indices e, 1, ..., €yq,, see Remark

ey,i(mo+1
Bld) Set Qu =T1%, 0/ ™.
(ble) Compute the multiplicative subgroup U, = ( A/‘Be” l(m°+l)) of Q,, cf. [12].

f) Compute og, , the automorphism of @, induced by o : A— A
(Blg) Compute the group homomorphism

~ X
o (0x/ B ) U, U,
v (1,...,1,9)

B B - g7

h

1

Let wy, be the image of K(w,,) inU,.

ﬁﬁ

Let 79 be any preimage of wy, via ¢.
Let ug be the image of A(uy™™9/*) in O+ /mefgf,”(mﬁl)
Set ag, = (1,...,1,7%) - (1,...,u0) € Qu.

)
i)
i)
olk)

ﬂa
=

(6) Use the Chinese Remainder Theorem to compute an element o’ in A which maps to ag, in Q, for
each place v of E of slope in (0, 1).

(7) Compute the maximal ideals py,...,p, of WR which lie below the maximal ideals of O3 above the
places v of E of slope in (0, 1).

(8) For each i = 1,...,n, compute a positive integer m; such that |J/pmo+1J| < |WR/pZ|m

(9) Set Qo1 = J/ (meHJ—#HZ 1pm’J) and Qp,, = f/( ’"0(]4—1_[z 1p"“.]) and compute the
natural projection pr: Qmy+1 — @me-

(10) Let aypg+1 (resp. auy,) denote the multiplication-by-o/ map on Qpmg+1 (resp. Qmyg)-

(11) Compute the reduction o, 41 (resp. om,) of & on Qumo+1 (resp. Qumy)-

(12) Define Fing+1 : Qmot1 = @mo+1 88 T > Qg1 (x7m0t1) and Fryy @ Qg — Qumg 88 T > Qg (27m0).

(13) Compute the homomorphism my, : Qume+1 — Qme+1 induced by the multiplication-by-p map.

(14) For each generator as a finite group 7 of Qm,:

(14la) Pick z € Qmgy+1 such that pr(z,) = 1.
b) Pick z, € Qmy+1 such that Fp,o11(2z,) = mp(z).
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(15) Compute Ving @ Qmy — Qm, by setting Vi, (v) = pr(z,) for each v € Qp,.

(16) For each fk € T compute its image i, in Qm, under the projection map from J.
(17) Return {I; € Z such that Iy = Ikmg + Fmo Tramo) + Ving (Tkmo ) }-

Theorem 6.17. Algorithm[3 is correct.

Proof. By Proposition the extension of a Wr{F’,V'}-ideal to Q4 is a Wi{F’, V'}-ideal. Hence,
considering only such ideals (that is, whose extension is in T) in the input is not a limitation.

The algorithm is an application of Lemma for each I € 7, we want to check whether it is stable
by the action of F’ and V', by looking at its image in the finite quotient @,,, defined in Step @D In

order to do so, we need to compute representations of F' and V' in Q.
First consider F’. In Step i ), we produce an element o € OA/mle,”gi” (mot+l) o~ ~ Orp /pe”(mOJr1
Under this isomorphism we get an element that with slight abuse of notation we also call Yo € (’)L B, -
The property in (5|i) then translates to the equality Nz, /E,, (10) = m, /2" ™) in Opp /P (mot1) g0y
some uniformizer tV in E,. We can now apply Lemma to find an element v, € pﬁ%j—? such that

Nig, /e, (o +71) = m, /™) This means that if we define F/, = o, o o with

ay, = (L., 900 (0 4 1)),

then F) has the Frobenius property and is of W-type, by Lemma Putting a = (o)., € A" we get

F' = a oo, an additive map on A’ of W-type. Step (6) produces an element o’ € A, from which we
define the additive map Fi 41 @ @mo+1 — @mo+1 i Step . We see that F),, 1 is the reduction of F’
restricted to J’ under the isomorphism Q,,,+1 = J'/p™°T1J’". Note that F’ also induces Fy,,, on Q-

Now consider V’; we need to show that V,,,, as defined in Step [15]is the map induced by V' on Q.
As we now explain, in fact Vj,, is computed from the representation of F, 41 of F’ on the larger
quotient Qyu,41. Let pr,, :J — Qu, and pr,, 1 : J = Qme+1 be the natural projections. Observe
that pr,, = propr, ;. Let ,, be an element of Q,,. Denote by x a preimage of z,,, in J via
Pryyy- Set g1 =PIy 41 (2) and y = V'(x) € J. It remains to show that pr,, (y) = Viny(Tm,). By the
construction of V,,,,, we have

Vine (xmo) = pr(2m0+1)7

where 2,41 is an element of @, +1 such that
D Tme+1 = Fmo+1(2mo+1)-
Let z be a preimage of zy,,41 in J via pr,, ;. Note that F’(y) = p-z. Hence
DLy i1 (F' (1) = P Tmg+1 = Frng41(Zmot1) = L1 (F'(2)),
where the last equality follows by the definition of F},,,11. Therefore
F'(y) = F'(z) = F'(y — z) e p"ot1J.

By applying V', we then get
ply —z) € V'(pmothT) C pmoth.

Dividing by p gives
y—zepmod

By applying pr,, we obtain

Pl (4) = Py (2) = Propryy 1(2) = Przmg+1) = Ving (Zmo),

as required. |
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Remark 6.18. In Algorithm |3} we need to compute the action of og, on @, in Step for each place
v of E, and of oyyy4+1 and oy, o0 Q41 and @, in Step , all induced by the action of &.

Note that, in Step , Q. (defined in Step ) for each place v, is a factor of 04 = O 7 /p™ T O .
So, we proceed exactly as in Remark by computing a o-equivariant presentation of 04 as an
O3 /(pOz)™-module for m defined by |oa| = [OF /pOz|™.

In Step , we proceed as follows. By Step |2, we have JC Oz. Set m' =mgy + 1+ val, ([0 : j]),
so that

n
pm/OZ C pmo+1jg <pmo+1j+ Hp;m:]V) C jg OZ
i=1
Then a reduction o, of 0 on 04 = O3/ pm/ O3, computed as in the preceding paragraph, will induce

well-defined approximations o,,, on Qm, and gme+1 00 Qpy41-
We stress that this construction does not require L to be normal; c¢f Remark [6

Remark 6.19. The semilinear operators I’ and V' are p-adic in nature. Hence, we can compute them
only up to a finite precision. In Step [d] in Algorithm [3] we choose the smallest possible mq that allows
us to check whether the ideals in the input set Z represent Wj{F’, V'}-ideals. This choice of mg also
allows us to compute the a-numbers of the Dieudonné modules. Indeed, if I~k is in the output set, then
the a-number of the corresponding Dieudonné module equals

dim[p‘ ( Ik o ) .
! Fmo(Ikymo) + Vmo(lk,mo>

If one needs to know the action of F/ and V' to higher precision, it suffices to increase the value of mq
in Step [

Remark 6.20. In Step |3} we need to scale each ideal I, inside J by some element x of A(EX) that is,
z € A71(C), where C = (J : I},). Moreover, it is desirable to try to minimize w = val (exp(J/z:Ik)),

order to keep the parameter mg as low as possible, since mq determines the size of the quotients appearing
in the rest of the algorithm. One possibility is to compute v = val (exp(f;€ +J/ ) and y = [p° T +J : J],

which is coprime to p. Then z = p"y is the integer in A~ L(C) giving the smallest possible value of w.
Another possibility (dropping the restriction of z being an integer) is to use the fact that C is a fractional
O 3-ideal. Compute the uniformizers t,,,...,t,, of the places v1,...,v, of E above p using Lemma

For each v;, let M; be the maximum value of valtﬁ(C) for ‘J~3 ranging over the maximal ideals of O ; above
vi. Then set ' = A(t} ¢ y = [a/y + J : J] and finally = = 2'y. The second method might give
smaller values of w but requires more expensive computations. Similar considerations apply in Step [2] if
one is using the method described in Remark for computing F,,, and V,,,.

(]

7 Computing isomorphism classes of abelian varieties

In this section, we provide some algorithms that, building on the ones contained in the previous sections,
allow us to compute the set AS°™ of isomorphism classes of abelian varieties in the isogeny class Ay
together with their endomorphism rings. These algorithms will be used to exhibit some interesting
examples in Section

Algorithm 4.

Input: The order R = Z[r,q/7].

Output: Representatives of [], 2p Xme given as a list of vectors (I,), of fractional R-ideals indexed by
the maximal ideals [4, ..., [, of R which divide the conductor (R : O) and do not contain p.

(1) For i =1,...,n do the following:

(i) Set k; = valy, ([O : R]) where ¢; is the rational prime below [;;

(i) Compute a set of representatives R" of W(R + lfi(’)), using, for example, [23, Algorithm Com-
puteW];

(2) Return [T, R".
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Theorem 7.1. Algorithm[{] is correct.
Proof. The result follows from Theorem [3.12 O

Algorithm 5.

Input: The order R = Z[r, q/7|.

Output: Representatives of X, , given as a list of triples (1% 1’ 111}) representing all A-isomorphism
classes of Wr{F, V }-ideals; here I} and I!} are R-ideals and I’ is a Wi-ideal.

(1) Set k =val,([O : R]).

(2) For each p, € Pg, with s(v) = 0 compute a set of representatives R, of W(R + ptO), for example
using [23] Algorithm ComputeW];

(3) Initialize an empty set R10},

(4) For each sequence (Iy,)p, € [l su)—0 Ry, append to RO} a fractional R-ideal I1%} such that
Igs} = I,, for each p, with s(v) =0, built using Lemma

(5) For each p, € Pr, with s(v) =1 compute a set of representatives Ry, of W(R + pt0O), for example,
using [23] Algorithm ComputeW];

(6) Initialize an empty set R}

(7) For each sequence (Iy,)p, € [l s,)=1 Ry, append to R} a fractional R-ideal I''} such that
Igyl} = I,, for each p, with s(v) = 1, built using Lemma

(8) Use Algorithms and [3[ to compute a set R’ of representatives of of W{F’, V'}-ideals;
(9) Return RI% x R x R},

Theorem 7.2. Algorithm[3 is correct.

Proof. The chosen value of k ensures that p*© C R for each prime p, above p by Remark[3.11} Hence, R*
is a set of representatives of R;-isomorphism classes of Wi {F, V }-ideals by Propositions|3.10{ and for
«in {{0}, {1}}. Moreover, R’ is a set of representatives of A’-isomorphism classes of W,{F”", V'}-ideals by
construction. Hence, the output of Algorithm |5| represents all A-isomorphism classes of Wr{F, V }-ideals

by Equation [T5] O

Lemma 7.3. Let pq,...,p, be mazximal ideals of R, let S1,...,Sy, be overorders of R, and let ky,...,k,
be positive integers such that for each i we have pinEypi C Sip,- Define

§ 1= N1y (S + pl Op).

Then S is an overorder of R such that S,, = S;p, for every i and Sy = Og,q for every other mazimal
ideal q of R.

Proof. Omitted. O

The following algorithm computes the endomorphism rings of the abelian varieties in A, which are
uniquely determined by the isomorphism classes of their local parts.

Algorithm 6.

Input: An element (7% 1’ T11}) of the output RI% x R’ x R{M of Algorithm |5, and a vector (I'); of
fractional R-ideals belonging to the output [[; R" of Algorithm

Output: An overorder S of R which is the endomorphism ring of the element Y € Xz p X [[,., Xre

which is represented by (710}, 1/, 11} (1Y))).
(1) Set S'=(I":1Y);
(2) Set S0} = (r{0} . r{0}),
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(8) Set 8" = A1 ((T: D));
(4) Set S1} = (rt1}: 11}y,
(5) Let Pging be set of maximal ideals of R which are singular;

6) For each p € Puing, set SP to be S, S, S! or S' depending on whether p is in P12, POD Pl o
g Ry R, Ry
not above p;

(7) Use Lemma to compute the order S which is locally equal to S, for each p € Pgine and maximal
at every order maximal ideal;

(8) Return S.
Theorem 7.4. Algorithm/|[6] is correct.

Proof. The result follows since an order is determined by its localizations. O

The next and final algorithm combines all the previous ones to compute representatives of A°m.

Algorithm 7.
Input: An isogeny class A, of abelian varieties with commutative endomorphism ring,.
Output: A set of representatives of the isomorphism classes of in the category C, (see Definition [5.1)).

(1) Compute the order R = Z[r, q/7];
2

(
(3
(
(

Initialize an empty list R;
Run Algorithm |5 and let R} x R’ x R{1} be the output;

Run Algorithm {4 and let ], R' be the output;

)
)
4)
)

5) For each Y = (IO} [, 111} (1Y) in RO x R/ x R x [[, R', do the following:
(1) Use Algorithm |§| to compute the endomorphism ring Sy of Y

(2) Compute a set of representatives Ji, ..., Js of the class group Cl(Sy) of Sy;
(3) For j=1,...,s, append (Y, J;) to R.
(6) Return R.

Theorem 7.5. Algorithm[7 is correct.

Remark 7.6. Let Y = (110 T, 111} (1)) be an element as in Step [5| of Algorithm [7l Let P be the set
of maximal ideals of R that are either above p, or coprime to p and singular. For each p in P set I? to be
710}, A~Y(T), It1} or I', depending on whether p is in 731{%2}, ’Pg;’l)7 731{%7} or not above p. Use Lemma
to construct a fractional R-ideal Iy whose localization at p is IP for each p € P. Similarly, construct
a fractional Wgr-ideal My whose localization at p is A(IP) ®z Z, for p € 771{%2} U 771{{1} and I ®gz Z, for
pe Pg)p’l). Then for each representative J; of Cl(Sy) the pair (Y, J;) represents the isomorphism class
of the object (IyJj, My A(J; ®z Zy)) of Cx.

Proof of Theorem (7.5 The result follows from Theorem as well as Theorem [3.12] combined with the
fact that a fractional ideal in F is determined by its localizations together with an element of the Picard
group. O

Remark 7.7. We could theoretically, in several of the algorithms presented above, use the duality of
Subsectionto only make computations for places v of E,, with slope in [0,1/2]. This is not something
that we have extensively implemented in practice, since we do not believe it would significantly improve
the efficiency of our algorithms.

8 Examples

The examples in this section are computed using the implementations of the algorithms in this paper
which are available at |https:// github.com/stmar89/lsomC1AbVarFqummEndAlgﬂ

2The examples in this paper where computed using the code at commit c25bed73adfebldba9932d47961e54649889fa78
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Let A, be an isogeny class of abelian varieties over F, of dimension g with commutative endomorphism
algebra E = Q[r]. Put R = Z[rn,q/7], as before. Let S be the set of overorders of R and let £ be the
subset of S consisting of endomorphism rings, that is, orders T such that there exists X € A, with
End(X) =T. Consider the following three statements:

(1) Forevery Se Eand T € S, if S CT then T € £.
(2) The order S = NpeeT isin E.

(3) For every S in &, n(Og) divides n(S), where n(S) (resp. n(Og)) is the number of isomorphism
classes of abelian varieties in A, with endomorphism ring S (resp. Og).

If A, is ordinary, or almost ordinary, or if ¢ is prime, then statements |(1)| |(2)| and [(3)| hold true; see [21],
Corollary 4.4], [24, Theorem 4.5] (for odd characteristic) and Corollary together with Example

(for all characteristics).
Now assume further that A, has p-rank < g. Let p be the maximal ideal of R = Z[r, q/7] corre-
sponding to the local-local part. Consider the following statements:

(*) End(X), is maximal for every X in A,.

(a) There exists a unique maximal ideal P of O above p with slope < 1/2.

(b) All maximal ideals of O above p have slope 1/2.

(c) For each maximal ideal P8 of O above p we have that the slope equals 1/nyp or 1 —1/ng, where ng
is the dimension of Fiy over Q, that is, the product of the ramification index and the inertia degree.

Note that A, is almost ordinary if and only if all three conditions @, @ and hold true.

Let T be the set of all maximal ideals of R except the one above p of slope (0,1). In the rest of the
section, we will associate to each order S € S four nonnegative integers: n(S), the number of isomorphism
classes of abelian varieties in A, with endomorphism ring S (as defined above); w(S), the number of
elements of Wr(S); d(S), the number of Wi{F’, V'}-ideals with endomorphism ring S; and h(S), the
class number of S.

Proposition 8.1. For all S € S,
n(S) = w(S)d(S)h(S).

Proof. This follows from Theorem [5.2] combined with Propositions and O

Hence, we have S € £, that is, S is the endomorphism ring for some X € A, if and only if n(S) > 0,
which is also equivalent to d(S) > 0.

Proposition 8.2. Let A, be an isogeny class of g-dimensional abelian varieties over Fq with commutative
endomorphism algebra and p-rank < g. We have the following implications:

()] +H{ ) () =1t ={ W]+ +{B)

Proof. As pointed out above, @, @ and all hold if and only if A, is almost ordinary. The first
implication is shown in Example [5.6]

Corollary shows that @ implies and|(2)l We now show that @ also implies completing the
proof of the second implication. By Proposition the number n(S) is divisible by d(S)h(S). Observe
that [(¥)]implies that d(S) = d(Op) for each S € &, and that h(Of) divides h(S) since the extension map
C1(S) — Cl(Og) is surjective. Every fractional Og-ideal is locally principal, hence w(Og) = 1. It follows
that the number of abelian varieties with endomorphism ring Op is determined only by the class group
of O and by the local-local part. More precisely, we have n(Og) = d(Og)h(Og). Combining all these
statements we see that n(Og) divides n(S) for each S € &€, as required. O

In each of following three examples (Examples and [8.5)), we negate exactly one of the three
at |(1)

statements [(a)] [(D)] and show that [(¥)] does not hold and th or |(3)| fails.
In Example 8.6] we exhibit an isogeny class with p-rank < g for which all of |(1)| and hold true,

but [(¥)] fails. This examples also shows that [(1)] + [(2)] + [(3)] is not equivalent to the isogeny class being
almost ordinary.
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In Example [8.7] we exhibit an isogeny class with abelian varieties with the same endomorphism ring
but whose a-numbers are different.

In all the examples below we have w(S) =1 for all S € S. We would have w(S) > 1, for some S € S,
if and only if R is not Bass at some maximal ideal of 7. For an example of an R with this property, see
[21, Example 7.4].

We conclude the section with some observations and a further example, arising from the computations
we have performed. In the following graphs, each vertex represents an overorder S of R, labeled with the
pair (d(S),h(S)), and each edge represents an inclusion, labeled with its index. If S is in &, that is, S
is the endomorphism ring for some X € A, then we add in the subscript of the label, the a-numbers of
the isomorphism classes of Dieudonné modules. In all examples (except Example we write only one
value, since all the Dieudonné modules have the same a-number.

Example 8.3. Consider the polynomial
h=a%+a" 4+ 25 + 42° — 42 + 1623 + 1622 + 64z + 256.

It determines an isogeny class of geometrically simple abelian fourfolds over F4 with commutative endo-
morphism algebra E = Q[r] = Q[x]/h. The isogeny class has LMFDB label |4.4.b_b_e_ae and p-rank 2.
The algebra E has 3 places above p = 2 with slopes, ramification indices and inertia degrees equal to
(0,1,2),(1,1,2),(1/2,2,2), respectively. Hence, this isogeny class satisfies conditions and@ but not
condition

The unique maximal ideal of the order R = Z[mr, 16/7] in E above 2 is singular and in P}%l). One
computes that R has 13 overorders S and for each of these w(S) = 1. It follows from Proposition
that n(S) = d(S)h(S).

(2,32) 4 (4,8)
2/ 2/’ )
(0,192) =2 (0,96) T (@224) T (112) =2 (3.4)y

\z\’ (0, 48) ‘/22 \z\’ (0,12) ‘/22/
NS NS

(0,48) (0,24)

We see that statements and do not hold true for this isogeny class. Hence, also statement @
does not hold for this isogeny class: only the maximal order has maximal local-local part.

Example 8.4. Put hy = 22 — 2z + 4, hy = 22 + 22 + 4 and consider the polynomial
h:x4+4x2+16:h1-h2.

It determines an isogeny class A, of abelian surfaces over Fy with commutative endomorphism algebra
E = Q[n] = Q[z]/h. Put E; = Q[m] = Q[z]/hy1 and Ey = Q[m3] = Q[z]/he. Any X € A, is isogenous
to a product of supersingular elliptic curves C; x Cy with C; € A,,. Note that the supersingular curves
in A,, are quadratic twists of the ones in A,,. The LMFDB labels of A;, A, Ar, are2.4.a_¢|, 1.4.ac,
1.4.c, respectively. Therefore, conditions @ and hold, but not condition @

The unique maximal ideal of the order R = Z[mr, 16/7] in E above 2 is singular and in Pg)z’l). One
computes that R has 13 overorders S and for each of these w(S) = 1. It follows from Proposition
that n(S) = d(S)h(S).

An abelian variety X is isomorphic to a product Cy x Cy with C; € A, if and only if the order S is the
direct product of S; x Sy with S7 an order in Fy and S an order in F5. Such orders are marked with a x
in the label in the graph below. The number of isomorphism classes which are products of elliptic curves
can be derived from [28, Theorem 4.5] (which corrects parts of the statement of [33], Theorem 4.5]).
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(2’ 2)[1]

We see that statements and do not hold true for this isogeny class. Hence, also statement @
does not hold for this isogeny class: only the maximal order has maximal local-local part.

Example 8.5. Consider the polynomial
h =128 — 62" 4+ 182% — 362° + 68x* — 1444> + 28822 — 384z + 256.

It determines an isogeny class of geometrically simple abelian fourfolds over F14 with commutative endo-
morphism algebra E = Q[r] = Q[z]/h. The isogeny class has LMFDB label 4.4.ag_s_abk_cq and p-rank 0,
but it is not supersingular. The algebra E has two places above p = 2 with slopes, ramification indices and
inertia degrees equal to (1/4,2,2),(3/4,2,2), respectively. Hence, this isogeny class satisfies conditions

@ and but not condition

The order R = Z[m,4/n] has two singular maximal ideals: one above 11, and one above 2 which
is in 73](%’1). The index of R in Op is 704 = 11 - 64. The output of Algorithm M| consists of exactly 2
classes, which can be represented by the maximal order O and the unique overorder 71" of R with index
[Op : T] = 11. One then computes that R has 34 overorders S and for each of these w(S) = 1. It
follows from Proposition that n(S) = d(S)h(S). Since the graph of inclusions of all overorders is
too unwieldy, in the following graph, we draw the lattice of inclusion of the overorders S of R which are

actually endomorphism rings for some X € A, that is, for which d(S) > 0.

(2,1);) —4— (4, 1)y
~

(2,3)) <112 (2,1)

On the one hand, we see from the graph that and do not hold true for this isogeny class. Hence,
also statement m does not hold for this isogeny class: only the maximal order has maximal local-local
part. On the other hand, if one considers all overorder of R, the inclusion with index 4 does not factor
as the composition of two inclusions. It follows that this isogeny class satisfies condition

Example 8.6. Consider the polynomial
h =% — 2° — 32" + 452° — 272 — 81z + 729.

It determines an isogeny class of geometrically simple abelian threefolds over Fg with commutative endo-
morphism algebra E = Q[n] = Q[z]/h. The isogeny class has LMFDB label 3.9.ab_ad_bt| and p-rank 1.
The algebra F has three places above p = 3 with slopes, ramification indices and inertia degrees equal
to (0,1,1), (1,1,1) and (1/2,1,4), respectively. Hence, this isogeny class satisfies conditions @ and
but not condition
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The unique singular maximal ideal of the order R = Z[r,9/7] is the maximal ideal (3,7,9/7), which

is in 731(%1). One computes that R has 4 overorders S and for each of these w(S) = 1. It follows from

Proposition [8.1] that n(S) = d(S)h(S).
(0,60) —=3— (0,30) =3 (2,20)) —9—> (2,2)

Statements and hold true for this isogeny class, but statement @ does not hold, since only
the maximal order has maximal local-local part.

Example 8.7. Consider the polynomial
h = 2%+ 112° + 602" + 208z* + 4802° + 704x + 512.

It determines an isogeny class of abelian threefolds over Fg with commutative endomorphism algebra
E = Q[r] = Q[z]/h. The isogeny class has LMFDB label 3.8.1 ciia and p-rank 1. Any X € A, is
isogenous to a product of a supersingular elliptic curve and an almost ordinary abelian surface.

The unique singular maximal ideal of the order order R = Z[m, 8/7] is the maximal ideal (2,7, 8/7),
which is in 731(%1). One computes that R has 16 overorders S and for each of these w(S) = 1. It follows
from Proposition[8.1|that n(S) = d(S)h(S). If d(S) > 0 for an overorder S, then we add in the subscript of
the label, the a-numbers of the isomorphism classes of Dieudonné modules, using the exponent to denote
the number of isomorphism classes of Dieudonné modules with the indicated a-number. The unique
endomorphism ring with index 2 in the maximal order is the endomorphism ring of 7 isomorphism classes
of abelian varieties, all with pairwise non-isomorphic Dieudonné modules. Six of these isomorphism
classes of abelian varieties have a-number 1 while the last one has a-number 2. The only overorder of R
which is a direct product of two orders is the maximal order. We highlight this in the graph with a * in
its label. This means that the only abelian varieties that are isomorphic to a product of an elliptic curve
and an abelian surface are the ones with maximal endomorphism ring.

(0,2)
\2
/ \ -
(0,2) 01 =2 (01 =2 (0,2)
/2/ >2§ e §2 \2\
(0,8) —2— (0,4) —2— (0,2) —2— (0,2) 2 2 (0,1) —2— (1,1,%)y
AN N >N A
2\l /2\l 2\\ 2 /2
(0’4) (071) 2 (4a1>[14] 2= (771)[16,2]
2/
~
(0,2)

Observations 8.8. We have computed the isomorphism classes of abelian varieties for several thousands
of isogeny classes (using lists of isogeny classes found in the LMFDB [19], which was compiled following
[8]) with commutative endomorphism algebra E = Q|| of dimension g and p-rank < g—1 over non-prime
finite fields. We observed the following;:

e the order R is never an endomorphism ring;

e there is always an endomorphism ring which is not maximal at the local-local part, that is, condition
@ does not hold. Note that if this observation would always hold then the first implication in
Proposition [8.2]is actually an equivalence, and vice versa.

Remark 8.9. Over a prime field, every isogeny class contains an abelian variety with R as endomorphism
ring, see [3]. Moreover, over any finite field, any isogeny class of ordinary abelian varieties contains an
abelian variety with R as endomorphism ring, see [7].

Contrary to this, we showed in Example that no almost-ordinary abelian variety over a non-prime
finite field has R as endomorphism ring.

36


http://www.lmfdb.org/Variety/Abelian/Fq/3/8/l_ci_ia

Recall that Proposition says that if A, is an isogeny class over IF; with commutative endomor-
phism algebra which is non-ordinary and such that ¢ = p® is not a prime, then the order R = Z[r, q/7]
is not maximal at the maximal ideal p = (p, 7, ¢/m). The converse does not hold, as we show in the
following example.

Example 8.10. Let A, be an isogeny class of simple abelian surfaces over Fy with p-rank 0 determined
by the characteristic polynomial h(z) = % — 22° — 423 + 16; see the LMFDB-label |4.2.a_a_ac_a. Let
E = Q(m) be the endomorphism algebra of the isogeny class. The order R = Z[r,2/x] has a unique
maximal ideal above p = 2, which is p = (2,7,2/7). One computes that the quotient p/p? has 8
elements, while R/p ~ Fy. This shows that p is singular, that is, the order R, is not maximal.

Notation

o [, a finite field with ¢ = p® elements of characteristic p.

o A, anisogeny class of abelian varieties over Fy with commutative endomorphism algebra £ = Q[x],
where 7 is the Frobenius endomorphism.

o Al°m the set of F,-isomorphism classes in A,.

® X; = Xpp X [[s, Xrp, Where X (vesp. Xr ) is the set of isomorphism classes of Dieudonné
modules (resp. ¢-Tate modules) in A,.

e for an order S and a set 7 of maximal ideals of S: W(S)r, the set of fractional S-ideals modulo
the relation I, ~y Jw for all m € T see Definition (also for variants).

e h(x), the square-free characteristic polynomial of 7.

e Opg, the maximal order of F.

e E,=E®qQ,= HV|pEV'

e R=1Z[r, q/7|; Ry = RQzZ,.

o L =Q,(¢4—1), the unramified extension of Q, of degree a.
o W =0 =27Zy¢4-1]

e o, the Frobenius automorphism of L/Q,,.

e for a place v of E,: e,, the ramification index; f,, the inertia degree; g, = ged(a, f,); s(v) =
val, () /ae,, the slope.

e 7,, the Frobenius automorphism of LE, /FE,,.

e pp, (respectively prg, ), the maximal ideal of O, (respectively Org,).
o A= Hu|p A,, where A, = ?”:1 LE,.

o A: E, — A, induced by the diagonal embeddings E, — A,.

e F,: A, — A,, an additive map satisfying the Frobenius property, that is, F} = A, (7,) and
F A= )XF,, for every A € L.

o F'=(F,),p acting of A = HVIP A,.

e [, with the Frobenius property is of W-type if F,(z) = a,, - 29, where o, = (1,...,1,u,) € A,
with Npg, (u,) = m,; see Definition

o V=pF 1l
(] WR:W®ZPR-
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for « = {0}, (0,1) or {1}: Pf , the set of maximal ideal of R, below a place v with s(v) € .

R, =R\ URYY LR, where R = Ry 0 [1,,.00c0 Bo-

for + = {0}, (0,1) or {1}: E*, A*, W}, F*, V*, etc. denote the *-part of the corresponding object.
for the local-local part (i.e the (0,1)-part), we use also ': E', A’, Wp,, F', V', etc.

T, the set of A’-isomorphism classes of fractional W {F’, V'}-ideals with multiplicator ring Oas;
see Definition {201

Cr, a category of pairs (I, M) where I is a fractional R-ideal in E, and M is a Wr{F, V}-ideal such
that A=*(M) = i,(I)R,; morphisms are Home_ ((I, M), (J,N)) = {a € E|lal C J,A(ip(a))M C
N}; see Definition

A (resp. :4;, WR, etc.), the ‘global version’ of A (resp. A’, Wg, etc.); see Subsection
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