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Abelian varieties over finite fields with commutative

endomorphism algebra: theory and algorithms

Jonas Bergström, Valentijn Karemaker, and Stefano Marseglia

Abstract

We give a categorical description of all abelian varieties with commutative endomorphism ring over
a finite field with q = pa elements in a fixed isogeny class in terms of pairs consisting of a fractional
Z[π, q/π]-ideal and a fractionalW⊗ZpZp[π, q/π]-ideal, with π the Frobenius endomorphism andW the
ring of integers in an unramified extension of Qp of degree a. The latter ideal should be compatible at p
with the former and stable under the action of a semilinear Frobenius (and Verschiebung) operator; it
will be the Dieudonné module of the corresponding abelian variety. Using this categorical description
we create effective algorithms to compute isomorphism classes of these objects and we produce many
new examples exhibiting exotic patterns.

1 Introduction

In order to classify abelian varieties over a finite field up to isomorphism one needs a way to represent
them. However, representing abelian varieties over fields of positive characteristic is notoriously hard,
since describing them with equations becomes impractical already in dimension two. As a first step,
one can consider the classification and representation problem up to isogeny; an isogeny is a surjective
homomorphism with finite kernel. Over finite fields, this problem has been completely solved by Honda-
Tate theory in terms of the characteristic polynomial of the Frobenius endomorphism of the abelian
variety. The isogeny classes can also be computed effectively, see e.g. [8]. In this article we consider
the representation and classification problem up to isomorphism for any fixed isogeny class of abelian
varieties over finite fields with commutative endomorphism algebra.

To state our results we now introduce some notation. Fix a prime power q = pa and let π be the
Frobenius endomorphism of an abelian variety X with commutative endomorphism algebra, defined over
the finite field Fq. Note that the condition of the endomorphism algebra being commutative is equivalent
to the condition that the characteristic polynomial of the Frobenius endomorphism is square-free. Let Aπ

be the category of abelian varieties isogenous to X. Morphisms in this category will be homomorphisms
defined over Fq.

Main contribution

Put R := Z[π, q/π] ⊆ E := Q[π]. For any rational prime ℓ, including ℓ = p, set Eℓ = E ⊗Q Qℓ and
Rℓ = R ⊗Z Zℓ. Let L be an unramified extension of Qp of degree a, with W its maximal Zp-order, and
put WR = W ⊗Zp Rp ⊆ A = L ⊗Qp Ep. The algebra A comes with an action of σ, the Frobenius map
of L over Qp, and an embedding ∆ : Ep → A. For more details on these definitions see Section 4.1. Fix
an additive map F such that Fλ = λσF for all λ ∈ L and such that F a = ∆(π). Put V = pF−1. With
a WR{F, V }-ideal we will mean a fractional WR-ideal in A which is stable under the action of F and V .
Finally, for each ℓ, let iℓ be the injection E → Eℓ.

Now let Cπ be the category whose objects are pairs (I,M), where I is a fractional R-ideal in E and
M is a WR{F, V }-ideal such that ∆−1(M) = ip(I)Rp. The homomorphisms between objects (I,M) and
(J,N) in Cπ are the elements α ∈ E such that αI ⊆ J and ∆(ip(α))M ⊆ N .

Our first main result can now be stated as follows.

Theorem 5.2. There is an equivalence of categories Ψ : Cπ → Aπ.

This result is closely related to [34, Theorem 2.1] and is based on Tate’s theorem (see [31, Main
theorem]). The idea goes back (at least) to Waterhouse [33, Theorem 5.1] and can loosely be stated as
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follows (cf. [34, Theorem 2.1]): in a pair (I,M), the ideal M determines the Dieudonné module (which
is equivalent to the p-divisible group) of the abelian variety. The ideal I encodes the Tate modules
of the abelian variety for all ℓ ̸= p, partial information about the Dieudonné module, as well as “global
information” which is determined by an element of the class group of the endomorphism ring of the abelian
variety. Indeed, the endomorphism ring of the corresponding abelian variety is ∆−1({x ∈ A : xM ⊆M})
locally at p and {x ∈ E : xI ⊆ I} locally at every other prime.

Comparison with previous results

There are several equivalence of categories in the literature that are similar to ours, some of which consider
very large subcategories of the category of abelian varieties over a finite field Fq. To more easily compare
our results to these ones, in the rest of this section we will only discuss previous results on isogeny classes
with commutative endomorphism algebra.

Recall that each Dieudonné module of an abelian variety over a finite field splits into three parts: the
étale part, its ‘dual’ the multiplicative part, and the local-local part. The difficulty in realizing categorical
equivalences can be measured by the exponent a of q = pa and the complexity of the local-local part.
The p-rank of an abelian variety measures how large each of these parts is. For example, the p-rank is
maximal (that is, it equals the dimension g of the variety) if the local-local part is trivial.

In [7], Deligne uses canonical liftings to represent ordinary (meaning of p-rank g) abelian varieties
over a finite field in terms of fractional R-ideals. So in this case we have a close relation between abelian
varieties over finite fields and CM-abelian varieties over the complex numbers (the canonical liftings).

In [3], this is extended by Centeleghe and Stix, in line with the techniques of Waterhouse rather than
using canonical liftings, to represent all abelian varieties over a finite prime field (meaning of cardinality
q = p) in terms of fractional R-ideals. The change of technique is connected to the fact that canonical
liftings do not exist in general if the abelian variety is not ordinary nor almost ordinary (meaning of
p-rank g − 1).

In the case of ordinary abelian varieties as well as the case of abelian varieties over prime fields, the
Dieudonné module plays no special role and behaves in the same way as the Tate modules for ℓ ̸= p.
We show, see Proposition 4.16, that the same always holds for the étale-local and local-étale parts of the
Dieudonné module. The local-local part will behave quite differently as soon as we leave these realms.

An almost-ordinary abelian variety has a Dieudonné module with nonzero local-local part, whose
endomorphism ring is maximal, see [24, Proposition 2.1]. If the place of Ep of slope 1/2 (called the
supersingular part) in an isogeny class of almost-ordinary abelian varieties is unramified, then there
are two isomorphism classes of Dieudonné modules; in the ramified case there is one. In the ramified
case, Oswal and Shankar in [24] use a canonical lifting to give a categorical equivalence between almost-
ordinary abelian varieties and fractional S-ideals, where S is the minimal overorder of R that has maximal
endomorphism ring at the supersingular part. In the unramified case, they use canonical liftings of
different CM-types to distinguish between the two isomorphism classes of Dieudonné modules; this gives
rise to two disjoint equivalences of such abelian varieties with fractional S-ideals.

In [2], Bhatnagar and Fu use the techniques of [24] to give a similar description for abelian varieties
over finite fields with maximal real multiplication and such that p is split in the ring of integers of the
maximal real extension. As in the almost-ordinary case, the endomorphism ring of the local-local part
of the Dieudonné module of these abelian varieties is necessarily maximal, and [2, Theorem 1.3] can be
compared with [33, Theorem 5.3].

Theorem 5.2 subsumes all of the above equivalences for the isogeny classes with commutative en-
domorphism algebra. In the almost-ordinary case, Theorem 5.2 also gives a description of morphisms
between abelian varieties with non-isomorphic supersingular parts, which is not present in [24]. Moreover,
Theorem 5.2 also works for almost-ordinary abelian varieties in characteristic 2, while the results in [24]
do not.

In [4], Centeleghe and Stix give a categorical description of all abelian varieties over a finite field. Fix
any abelian variety X that is isogenous to a square-free product of simple abelian varieties. Then there
is a ring SX such that the category of abelian varieties which are isogenous to a power of X is equivalent
to the category of SX -modules that are free and finite rank over Z, cf. [4, Theorem 1.1]. The immediate
issue if one would like to make an effective algorithm based on this equivalence – which is one of the main
aims of this article – is that the ring SX will in general be non-commutative. This is shown to be the
case as soon as X is not ordinary nor defined over a prime field.
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Finally, let us mention that there are other categorical descriptions of abelian varieties in the literature,
such as [13], [14], [16] and [36].

Effectiveness of our result

The description given in Theorem 5.2 is amenable to concrete computations and the second main result of
this article is that we have created effective algorithms to compute isomorphism classes of abelian varieties
over a finite field with commutative endomorphism algebra. Our most important contribution here is
Algorithm 3, which computes isomorphism classes of Dieudonné modules even when the endomorphism
ring of the local-local part is not maximal. To our knowledge, this is the first algorithm that can compute
isomorphism classes of Dieudonne modules with non-maximal endomorphism ring. To do so, we leverage
the fact that the local-local parts of Dieudonné modules with maximal endomorphism ring have been
classified by Waterhouse, see [33, Theorem 5.1]. Interestingly, in all isogeny classes of abelian varieties
whose isomorphism classes we have computed, which are not defined over a prime field, nor ordinary,
nor almost ordinary, it turns out that there are examples of isomorphism classes of abelian varieties with
Dieudonné modules whose local-local part has a non-maximal endomorphism ring. The implementation
of the code is available at https://github.com/stmar89/IsomClAbVarFqCommEndAlg1.

The examples we compute in Section 8 show that the endomorphism rings that appear in a given
isogeny class of abelian varieties (which are not defined over a prime field, nor ordinary, nor almost
ordinary) behave quite wildly. To make this concrete, let S be the set of overorders of R = Z[π, q/π]
and let E be the subset of S consisting of orders T such that there exists an abelian variety X ∈ Aπ

with End(X) = T , and consider the following three statements which are true in the ordinary and
almost-ordinary case, as well as over a prime field:

1. For every S ∈ E and T ∈ S, if S ⊆ T then T ∈ E .

2. The order S = ∩T∈ET is in E .

3. For every S in E , n(OE) divides n(S), where n(S) (resp. n(OE)) is the number of isomorphism
classes of abelian varieties in Aπ with endomorphism ring S (resp. OE).

In Section 8, among other things, we give examples that violate all three of these statements. Our explicit
knowledge of the Dieudonné modules also allows us to compute the a-numbers of the abelian varieties
and study their distribution in the isogeny class.

Outline of the paper

In Section 2 we describe the isomorphism classes of abelian varieties over finite fields in a fixed isogeny
class in terms of isomorphism classes of Tate and Dieudonné modules together with the class groups of the
endomorphism ring they determine. From here on, we only consider abelian varieties with a commutative
endomorphism ring.

The Tate modules of our abelian varieties can then be viewed as fractional Rℓ-ideals for primes ℓ ̸= p.
Even though these are local objects, we show in Section 3 how they can be described in terms of fractional
ideals of some overorders of R (see Theorem 3.12), which are global objects. There are well-established
algorithms to compute isomorphism classes of these types of ideals (see Algorithm 4).

Inspired by Waterhouse [33, Section 5], we show in Subsections 4.1 and 4.2 how to realize the
Dieduonné modules of our abelian varieties as fractional WR{F, V }-ideals. In Subsection 4.3 we then
show a series of results about the structure of WR{F, V }-ideals corresponding to the connected-étale

sequence of Dieudonné modules. In particular, there is an étale part R
{0}
p (resp. multiplicative part R

{1}
p )

of R, and we show in Corollary 4.18 that the étale (resp. multiplicative) part of WR{F, V }-ideals can be

described as fractional R
{0}
p -ideals (respectively R

{1}
p -ideals).

The descriptions of Tate modules and Dieudonné modules in Sections 2–4 are put together in Section 5
to give a categorical equivalence between pairs of a fractional R-ideal and a fractional WR{F, V }-ideal
and abelian varieties in our fixed isogeny class, see Theorem 5.2, also stated above. In Proposition 5.7
and Corollary 5.8, we show some consequences of this equivalence for the possible endomorphism rings
of our abelian varieties.

1The examples in this paper where computed using the code at commit c25be473adfeb1dba9932d47961e54649889fa78
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In Section 6 we show how to create algorithms to compute isomorphism classes of WR{F, V }-ideals.
To avoid precision issues, we globalize our objects like in Section 3, considering fractional ideals in étale
Q-algebras rather than in étale Qp-algebras. Since Subsection 4.3.3 deals with the étale and multiplicative
parts of the Dieudonné modules, we focus our attention on the local-local part. We extend Waterhouse’s
classification of isomorphism classes of WR{F, V }-ideals with maximal endomorphism ring ([33, Theo-
rem 5.1]) by describing the fibers of the extension map from (the local-local part of) WR-ideals to ideals
of the maximal order. Finally, we show that checking whether our ideals are stable under F and V can
be done up to a power of the prime p, i.e., in a finite quotient; see Algorithm 3.

In Section 7 we use the categorical equivalence of Theorem 5.2 together with the results of the
previous sections to create Algorithm 7, which computes isomorphism classes of abelian varieties in
our fixed isogeny class. The representative we compute for each isomorphism class contains complete
information about the Tate modules of the corresponding abelian variety for each ℓ ̸= p. Moreover, we
get an approximation of F and V acting on the Dieudonné module modulo some power of p, which is
sufficiently large to detect stability. This approximation can in principle be made arbitrarily accurate.

Finally, in Section 8, we give examples of computations of isomorphism classes of abelian varieties
using our algorithms. In particular, we study the behavior of the endomorphism rings that appear for g-
dimensional abelian varieties of p-rank < g−1, which shows patterns very different from abelian varieties
with higher p-rank (that is, ordinary and almost-ordinary abelian varieties, as referred to above), see
Examples 8.3, 8.4, 8.5, 8.6, 8.7 and 8.10.

At the end of the paper we collect a list of the notation used.
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2 Tate and Dieudonné modules

Let X be an abelian variety over a finite field Fq of characteristic p. In this section we discuss a general
description of the isogeny class of X over Fq, as also contained in [34] (cf. [35]). Since we will focus on
abelian varieties with commutative endomorphism algebra in this article, we will restrict to this case at
the end of this section.

By Poincaré reducibility, the abelian variety X admits an isogeny decomposition X ∼ Xk1
1 × . . .×Xkr

r

over Fq into simple abelian varieties Xi with respective multiplicities ki. By Honda-Tate theory, the
isogeny class of X is determined by the characteristic polynomial h(x) of its Frobenius endomorphism.
The isogeny decomposition of X implies that h(x) = h1(x)k1 · . . . · hr(x)kr ∈ Z[x], where each hi(x) is
the characteristic polynomial of the Frobenius endomorphism πi of Xi. Write m(x) = m1(x) · . . . ·mr(x)
and let R = Z[π, q/π] denote the Z-order in the étale algebra E = Q[x]/(m(x)) with π := x mod m(x).

Set k = (k1, . . . , kr). We denote by Aπ,k the category whose objects are the abelian varieties Fq-
isogenous to X together with Fq-homomorphisms. We write Aisom

π,k for the set of Fq-isomorphism classes

in Aπ,k. If k = (1, . . . , 1), then the subscript k will be omitted from the notation.
All homomorphisms will be assumed to be defined over Fq. Recall that the endomorphism ring

End(X) is an order in the endomorphism algebra

End0(X) := End(X)⊗Z Q ≃ Matk1(End0
k(X1))× . . .×Matkr (End0

k(Xr)). (1)

Consider the group scheme GX over Z such that

GX(R0) = (End(X)⊗Z R0)× (2)

for any commutative ring R0 with unit.
For a rational prime ℓ ̸= p, let Tℓ(X) be the ℓ-adic Tate module of X and set Vℓ(X) = Tℓ(X)⊗Zℓ

Qℓ.
Let M(X) be the covariant Dieudonné module of X (which is categorically equivalent to its p-divisible
group). Put Rℓ := R⊗Z Zℓ for any prime ℓ, including ℓ = p.

Definition 2.1. Out of the Tate and Dieudonné modules of X, we build

X̃π,k,ℓ := {left Rℓ-lattices in Vℓ(X) of full rank} for all ℓ ̸= p;∏′

ℓ ̸=p

X̃π,k,ℓ := {(Tℓ)ℓ ̸=p ∈
∏
ℓ ̸=p

X̃π,k,ℓ : Tℓ = Tℓ(X) for all but finitely many ℓ ̸= p};

X̃π,k,p := {Dieudonné submodules in M(X)⊗Zp
Qp of full rank};

X̃π,k = X̃π,k,p ×
∏′

ℓ ̸=p

X̃π,k,ℓ.

As before, if k = (1, . . . , 1) then it will be omitted from the notation.

By Tate’s theorem, X̃π,k is in bijection with

Ãπ,k := { quasi-isogenies φ : X ′ → X, up to isomorphism } (3)

by mapping (φ : X ′ → X) 7→ (φ∗(M(X ′)), (φ∗(Tℓ(X
′)))ℓ ̸=p); a quasi-isogeny φ : X ′ → X is an element of

Hom(X ′, X)⊗ZQ such that there exists an integer N for which Nφ is an isogeny. This map Ãπ,k → X̃π,k

is GX(Af )-equivariant by construction, where Af denotes the finite adele ring of Q.

Further, we may project Ãπ,k ↠ Aisom
π,k by mapping (φ : X ′ → X) to the isomorphism class of X ′.

Since two quasi-isogenies φ1 : X ′ → X and φ2 : X ′′ → X are considered isomorphic if there is an
isomorphism α : X ′ → X ′′ such that φ2 ◦ α = φ1, this surjection can be viewed as taking the GX(Q)-

orbits of Ãπ,k.

Definition 2.2. Starting with the objects in Definition 2.1, we let

Xπ,k,ℓ := X̃π,k,ℓ up to isomorphism of Rℓ-modules;

Xπ,k,p := X̃π,k,p up to isomorphism of Dieudonné modules;

Xπ,k := Xπ,k,p ×
∏
ℓ ̸=p

Xπ,k,ℓ.
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Thus we obtain a projection map X̃π,k → Xπ,k. Consider the fiber Ãπ,k,Y in Ãπ,k ≃ X̃π,k above
an element Y = (M/ ≃, (Tℓ)ℓ ̸=p/ ≃) in Xπ,k. By definition, it consists of all isomorphism classes of
quasi-isogenies φ : X ′ → X such that the Dieudonné and Tate modules of the source abelian varieties X ′

satisfy M(X ′) ≃M and Tℓ(X
′) ≃ Tℓ for each ℓ ̸= p.

The group GX(Af ) acts transitively on the set of quasi-isogenies on each fiber Ãπ,k,Y . The stabilizer

of any given φ : X ′ → X in Ãπ,k,Y under this action is the open compact subgroup

UY := Aut(M)×
∏
ℓ ̸=p

AutRℓ
(Tℓ) (4)

of GX(Af ). Hence, the fiber can be described as

Ãπ,k,Y ≃ GX(Af )/UY . (5)

For all X ′ ∈ Aπ,k, we have that End(X) and End(X ′) are locally equal at all but finitely many
rational primes. It follows that GX′(Q) ≃ GX(Q) and GX′(Af ) ≃ GX(Af ) for all X ′ ∈ Aπ,k, where
GX′(R0) = (End(X ′)⊗Z R0)×, cf. (2). In particular, we have

GX(Q) ≃ G
X

k1
1

(Q)× . . .×GXkr
r

(Q)

and
GX(Af ) ≃ G

X
k1
1

(Af )× . . .×GXkr
r

(Af ).

By contrast, in general, the same splitting does not apply to UY , since it is an integral object.
Finally, and similarly to Ãπ,k → X̃π,k, we obtain a surjective map Φ : Aisom

π,k ↠ Xπ,k by associating to

an abelian variety the isomorphism classes of its Dieudonné and Tate modules. Recall that Ãπ,k ↠ Aisom
π,k

arises from taking GX(Q)-orbits. It then follows from (5) and the commutative diagram

Ãπ,k X̃π,k

Aisom
π,k Xπ,k

∼

Φ

that the fiber Aisom
π,k,Y above Y ∈ Xπ in Aisom

π,k satisfies

Aisom
π,k,Y ≃ GX(Q)\GX(Af )/UY . (6)

By construction, this fiber consists exactly of all isomorphism classes of abelian varieties in Aisom
π,k that

are everywhere locally isomorphic, with Dieudonné and Tate modules given by the vector Y . Ranging
over all local isomorphism types Y , we obtain the following result.

Proposition 2.3. (cf. [34, Theorem 2.1]) The set of isomorphism classes Aisom
π,k of X can be described

algebraically as

Aisom
π,k ≃

⊔
Y ∈Xπ,k

GX(Q)\GX(Af )/UY ; (7)

here, the isomorphism class of X is sent to the neutral element.

Corollary 2.4. The number of isomorphism classes of abelian varieties in Aπ,k equals

|Aisom
π,k | =

∑
M∈Xπ,k,p

∑
N∈

∏
ℓ ̸=p Xπ,k,ℓ

|GX(Q)\GX(Af )/UM×N |,

where the sums run over the local isomorphism types Y = M ×N ∈ Xπ,k,p ×
∏

ℓ ̸=p Xπ,k,ℓ = Xπ,k.

As mentioned above, in this article we will restrict our attention to abelian varieties with commutative
endomorphism algebra. By [31, Theorem 2.(c)], this is equivalent to requiring h to be square-free, i.e.
ki = 1 for all i. From now on, we will therefore omit the multiplicities from the notation and simply

6



write Aπ, Aisom
π , Xπ, Xπ,p and Xπ,ℓ. In particular, Equation (1) then reads End0(X) ≃ End0(X1)× . . .×

End0(Xr). Furthermore, the fiber above Y = M ×N , given as in (6), then equals the (usual) class group
Cl(OY ), where

OY = End0(X) ∩

End(M)×
∏
ℓ ̸=p

EndRℓ
(Tℓ)

 ; (8)

this intersection takes place in End0(X)⊗Q Af . This also implies that its cardinality is the (usual) class
number h(OY ). We summarize this discussion in the following corollary.

Corollary 2.5. The number of isomorphism classes of abelian varieties with commutative endomorphism
algebra in Aπ equals

|Aisom
π | =

∑
M∈Xπ,p

∑
N∈

∏
ℓ ̸=p Xπ,ℓ

h(OM×N ).

3 Global representatives of Tate modules

In Section 2 we realized the Tate modules of abelian varieties as Rℓ-ideals. In this section we will
find global representatives of these local fractional ideals, namely, as certain fractional R-ideals, see
Theorem 3.12. In Section 7, this will provide an effective method to compute (recalling Definition 2.2)
representatives of

∏
ℓ ̸=p Xπ,ℓ, see Algorithm 4. Even though

∏
ℓ ̸=p Xπ,ℓ is local in nature, Algorithm 4

only uses exact techniques which are not affected by precision issues. We will also use the results of this
section to compute isomorphism classes of fractional ideals of a Zp-order; see Subsection 6.2.

3.1 Isomorphism classes of fractional ideals

Let Z be either Z or Zp, and let Q be the field of fractions of Z. Let S be a Z-order in an étale Q-
algebra E with maximal order O. For a fractional S-ideal I, the multiplicator ring (I : I) is an order.
For a maximal ideal ℓ in Z, set Eℓ = E ⊗Q Qℓ, Sℓ = S ⊗Z Zℓ, and Iℓ = I ⊗Z Zℓ. Let l be a maximal
ideal of S. Denote by Sl the completion of S at l. Set Il = I ⊗S Sl.

Definition 3.1. Let S be a (possibly infinite) set of maximal ideals ℓ of Z, and T be a (possibly infinite)
set of maximal ideals l of S. We define the following objects:

Wℓ(S) =
{fractional S-ideals}
{Iℓ ≃ Jℓ as Sℓ-modules}

,

Wl(S) =
{fractional S-ideals}
{Il ≃ Jl as Sl-modules}

,

W(S) =
{fractional S-ideals}

{Iℓ ≃ Jℓ as Sℓ-modules, for every ℓ}
,

WS(S) =
{fractional S-ideals}

{Iℓ ≃ Jℓ as Sℓ-modules, for every ℓ ∈ S}
,

WT (S) =
{fractional S-ideals}

{Il ≃ Jl as Sl-modules, for every l ∈ T }
.

We denote the class of a fractional S-ideal I in Wℓ(S) (resp. Wl(S), W(S), WS(S), WT (S)) by [I]ℓ
(resp. [I]l, [I], [I]S , [I]T ).

This subsection will be devoted to studying the relations between the objects defined in Definition 3.1,
which are local in nature, and to giving a concrete description of them by means of global representatives.

Remark 3.2. If Z = Zp then W(S) coincides with the set of S-linear isomorphism classes of fractional
S-ideals.

Remark 3.3. Ideal multiplication endows each set defined in Definition 3.1 with a commutative monoid
structure, whose unit is given by the class of the order S. This structure will not be used in this article.
The class [I] of I in W(S) is often called the genus of I. There is a vast literature studying genera of
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fractional ideals and more generally of finitely generated modules. See for example [27], [26], [10], [11]
and [25]. Moreover, two fractional S-ideals I and J are in the same genus if and only if they are weakly
equivalent, that is, their localizations at every maximal ideal of S are isomorphic, see [18, Section 5].
The definition of weak equivalence was originally given in [6]. Results to compute and classify weak
equivalence classes are given in [20], [22] and [23].

Lemma 3.4. Let I and J be two fractional S-ideals and fix a maximal ideal ℓ of Z. Then the following
statements are equivalent:

(i) [I]ℓ = [J ]ℓ.

(ii) Il ≃ Jl as Sl-modules for every maximal ideal l of S above ℓ.

Proof. Denote by l1, . . . , ln the maximal ideals of S above ℓ. Since Sℓ is a complete semilocal ring, we
have a canonical isomorphism

Sℓ ≃ Sl1 × . . .× Sln .

Tensoring with I and J , we obtain the equivalence of (i) and (ii).

Lemma 3.5. Let l be a maximal ideal of S above the maximal ideal ℓ of Z.

(i) For every fractional Sℓ-ideal I there exists a fractional S-ideal Ĩ such that Ĩ ⊗Z Zℓ = I. The

class [Ĩ]ℓ in Wℓ(S) is uniquely determined by the class [I]ℓ in W(Sℓ). Hence, we have a canonical
bijection Wℓ(S)←→W(Sℓ).

(ii) Similarly, we have a canonical bijection Wl(S)←→W(Sl).

Proof. Identify E with its image in Eℓ. Then Ĩ = I ∩ E satisfies Ĩ ⊗Z Zℓ = I. Morever, we see that if J
is a second fractional Sℓ-ideal, then [I] = [J ] if and only if [Ĩ]ℓ = [J̃ ]ℓ. This completes the proof of (i).
For (ii), assume that l = l1, . . . , ln are the maximal ideals of S above ℓ and that we are given a fractional

Sl-ideal I. Consider the fractional Sℓ-ideal I ′ = I × Sl2 × . . . Sln and the fractional S-ideal Ĩ such that

Ĩ ⊗Z Zℓ = I ′. We get that (Ĩ)l = I and that the class of Ĩ in Wl(S) is uniquely determined by the class
of I in W(Sl).

Given a set S as above, denote by S0 the finite subset of S consisting of maximal ideals of Z dividing
the index [O : S]. Define WS0

(S) and [I]S0
analogously to WS(S) and [I]S . Similarly, given a set T as

above, denote by T0 the finite subset of T consisting of maximal ideals of S containing the conductor
f = (S : O) of S. Define WT0

(S) and [I]T0
analogously.

Proposition 3.6. Consider the natural surjections

W(S)
i1−→WS(S)

i2−→WS0(S)

and
W(S)

j1−→WT (S)
j2−→WT0

(S).

Then i2 and j2 are bijections. Moreover, i1 is a bijection if and only if S contains all maximal ideals above
the index [O : S], and j1 is a bijection if and only if T contains all maximal ideals above the conductor f
of S.

Proof. A maximal ideal ℓ does not divide the index [O : S] if and only if Sℓ = Oℓ. For such a prime ℓ,
every fractional S-ideal I satisfies Iℓ ≃ Oℓ, since Oℓ is a principal ideal ring. This immediately implies
the statements about i1 and i2. The statements about j1 and j2 follow analogously from the observation
that a maximal ideal l of S does not divide the conductor f of S if and only if Sl = Ol.

The construction described in the following lemma will also be used in Algorithms 1 and 5.

Lemma 3.7. Let l1, . . . , ln be maximal ideals of S. Consider a vector of fractional S-ideals (I1, . . . , In)
such that each Ii is contained in S. For each i, let ki be a nonnegative integer such that lki

i Sli ⊆ (Ii)li .
Set

J =

n∑
i=1

(Ii + lki
i )
∏
j ̸=i

l
kj

j

 .

Then Jli = (Ii)li for each i, and Jl = Sl for every other maximal ideal l of S.
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Proof. See the proof of [23, Theorem 4.4].

Proposition 3.8. The natural maps

WS0(S) −→
∏
ℓ∈S0

Wℓ(S)

and
WT0

(S) −→
∏
l∈T0

Wl(S),

are bijections.

Proof. The maps are injective by construction. Surjectivity follows from Lemma 3.7.

Proposition 3.9. Let ℓ be a maximal ideal of Z and let l1, . . . , ln be the maximal ideals of S above ℓ and
above the conductor f = (S : O). We have a natural bijection

φ :Wℓ(S) −→
n∏

i=1

Wli(S).

Proof. As pointed out above, if l is a maximal ideal of S which does not divide the conductor, then Sl = Ol,
which is a principal ideal ring. Hence, for every fractional S-ideal I, we have Il ≃ Ol, or equivalently,
Wl(S) is trivial. Therefore φ is injective by Lemma 3.4. Surjectivity follows from Lemma 3.7.

The next proposition is [23, Proposition 4.3].

Proposition 3.10. Let l be a maximal ideal of S. Let k be a nonnegative integer such that (lkO)l ⊆ Sl.
Then the natural map

W(S + lkO) −→Wl(S)

is a bijection.

Remark 3.11. In the statement of Proposition 3.10, we can take k = valℓ([O : S]) to achieve (lkO)l ⊆ Sl,
where vℓ denotes the ℓ-adic valuation. Note also that if (lkO)l ⊆ Sl and k′ > k then S + lkO = S + lk

′O.

3.2 Determining
∏

ℓ̸=pXπ,ℓ

As in Section 2, we consider an isogeny class Aπ of abelian varieties over Fq, where q = pa for some
prime p, with commutative endomorphism algebra E = Q[π]. We now use the results of the previous
subsection to give a concrete description of the set

∏
ℓ̸=p Xπ,ℓ.

Theorem 3.12. Set R = Z[π, q/π].

(i) For each ℓ ̸= p, localization at ℓ induces a bijection

Wℓ(R) −→ Xπ,ℓ.

(ii) Denote by l1, . . . , ln the maximal ideals of R which divide the conductor (R : O) and do not contain p.
For each i, let ki be a nonnegative integer such that (lki

i O)li ⊆ Rli . Then we have a bijection

n∏
i=1

W(R+ lki
i O) −→

∏
ℓ ̸=p

Xπ,ℓ.

Proof. Fix a prime ℓ ̸= p and an abelian variety X ∈ Aπ. After identifying Vℓ(X) = Tℓ(X)⊗Zℓ
Qℓ with

Eℓ = Q[π]ℓ we see that

Xπ,ℓ = {fractional Rℓ-ideals in Eℓ up to isomorphism as Rℓ-modules}.

Hence, localization at ℓ induces a natural injective map

Wℓ(R) −→ Xπ,ℓ.

Surjectivity follows from the fact that every fractional Rℓ-ideal J is of the form J = I ⊗R Rℓ for some
fractional R-ideal I, cf. Lemma 3.5.(i). This completes the proof of (i).

Combining Propositions 3.6 (applied with S consisting of all rational primes ℓ ̸= p), 3.9, and 3.10, we
see that there is a natural bijection from

∏n
i=1W(R + lki

i O) to
∏

ℓ ̸=pWℓ(R). By applying (i) for each
ℓ ̸= p, we obtain (ii).
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4 Dieudonné modules and where to find them

In Subsections 4.1 and 4.2 we will find representatives of Dieudonné modules as certain fractional WR(:=
W ⊗Zp

Rp)-ideals in A = L⊗Qp
Ep, where W is the maximal order in an unramifed extension L of Qp of

degree a. These fractional ideals should be stable under operators F : A→ A and V = pF−1, where F has
the Frobenius property, see Definition 4.1; they are called WR{F, V }-ideals. Maps between WR{F, V }-
ideals will be given by elements from Ep via the diagonal embedding ∆ : Ep → A, see Lemma 4.6.
Theorem 4.9 gives a bijection between isomorphism classes of Dieudonné modules and ∆-isomorphism
classes of WR{F, V }-ideals.

In Subsection 4.3.1, we study an analogue for WR{F, V }-ideals of the connected-étale sequence, which
gives a decomposition of any WR{F, V }-ideal into an étale part, a multiplicative part and a local-local
part. The étale and multiplicative parts are studied in Subsection 4.3.3. A classification due to Water-
house of all possible local-local parts with maximal endomorphism ring is given in Subsection 4.3.4.

Later, in Section 6 we will create an effective algorithm to find global representatives of ∆-isomorphism
classes of WR{F, V }-ideals.

4.1 The Frobenius property

Firstly, we introduce some notation, closely following that of Waterhouse [33, Section 5]. Let q = pa

again be a power of a prime p. We consider an isogeny class Aπ of abelian varieties over Fq with commu-
tative endomorphism algebra E = Q[π], or equivalently, of abelian varieties such that the characteristic
polynomial of their Frobenius endomorphism π is square-free. Let R be the order of E generated by the
Frobenius and Verschiebung endomorphisms, that is, R = Z[π, q/π].

We are interested in the completions Ep = E⊗QQp of E, and Rp = R⊗ZZp ⊆ Ep of R, at the rational
prime p. For each place ν of Ep, let eν denote the ramification index and fν the inertia degree of Eν over
Qp. Also let nν = eνfν = [Eν : Qp] and denote by πν the image of π in Eν . Note that Ep =

∏
ν|pEν .

Let L be the totally unramified extension of Qp of degree a and let W = OL be the maximal Zp-order
of L. We know that L = Qp(ζq−1) and W = Zp[ζq−1], where ζq−1 is a primitive (q − 1)-st root of unity.

Observe that L⊗Qp Ep is an etalé Qp-algebra, that is, it is isomorphic to a direct sum of finitely many
finite extensions of Qp. Indeed,

L⊗Qp Ep ≃
∏
ν|p

LEν × . . .× LEν︸ ︷︷ ︸
gν copies

 =: A, (9)

where gν = gcd(a, fν). Denote the ν-component of A by Aν . For an element b = (bν)ν|p of A =
∏

ν Aν

we denote by bν,i the i-th component of bν in Aν =
∏gν

j=1 LEν . Wee see Eν embeds diagonally into Aν

for each ν. Hence we have an induced embedding

∆ : Ep ↪→ A,

which endows A with an Ep-algebra structure.
The isomorphism in Equation (9) restricted to a component Aν is given on simple tensors ω ⊗ β ∈

L⊗Qp Ep by

ω ⊗ β 7→ (ωβν , ω
σβν , . . . , ω

σgν−1

βν), (10)

where σ is the Frobenius of L over Qp. This means that A has an L-algebra structure, and the image of
λ ∈ L in each Aν equals

(λ, λσ, . . . , λσ
gν−1

).

We also have an action of σ on Aν via

(ωβν , ω
σβν , . . . , ω

σgν−1

βν) 7→ (ωσβν , ω
σ2

βν , . . . , ω
σgν

βν). (11)

Since ωσgν
βν = (ωβν)τν , where τν is the Frobenius of LEν over Eν , we see that σ acts on each Aν as a

cyclic permutation followed by τν in the last component. By slight abuse of notation, we will denote the
maps induced by σ on Aν and A also by σ.
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Definition 4.1. A map Fν : Aν → Aν will be said to have the Frobenius property if it is additive and
satisfies Fνλ = λσFν for all λ ∈ L and F a

ν = ∆|Eν
(πν) ∈ Aν .

Given a set S of places ν of Ep, a map F :
∏

ν∈S Aν → Aν will be said to have the Frobenius property
if F |Aν has the Frobenius property for all places ν of Ep.

Lemma 4.2. For every αν = (αν,1, . . . , αν,gν ) ∈ Aν we have

αν · ασ
ν · · ·ασa−1

ν = (βν , . . . , βν) ∈ Aν ,

where
βν = NLEν/Eν

(αν,1 · · ·αν,gν ) ∈ Eν .

Proof. For ease of notation, set g = gν and N = NLEν/Eν
, and write τ = τν for the Frobenius of LEν over

Eν . As above, we see τ has order a/g and satisfies σg(α) = (τ(α1), . . . , τ(αg)). For each 0 ≤ k ≤ a/g− 1
and each 0 ≤ i ≤ g − 1, we have

σkg+i(α) = (τk(αi+1), . . . , τk(αg), τk+1(α1), . . . , τk+1(αi)).

Hence

α · σ(α) · · ·σa−1(α) =

a
g−1∏
k=0

g−1∏
i=0

σkg+i(α)

=

g−1∏
i=0

 a
g−1∏
k=0

τk(αi+1), . . . ,

a
g−1∏
k=0

τk(αg),

a
g−1∏
k=0

τk+1(α1), . . . ,

a
g−1∏
k=0

τk+1(αi)


=

g−1∏
i=0

(N(αi+1), . . . , N(αg), N(α1), . . . , N(αi))

= (N(α1 · · ·αg), . . . , N(α1 · · ·αg)) ,

as required.

Lemma 4.3. Let αν ∈ Aν be such that

αν · ασ
ν · · ·ασa−1

ν = (πν , . . . , πν) ∈ Aν . (∗)

For z ∈ Aν , define Fν(z) = αν · zσ, i.e. Fν = αν ◦ σ, and extend this component-wise to obtain a map F
on A. Then F has the Frobenius property.

Proof. It is enough to check the desired properties on each component Aν . Rather than doing so using
the isomorphism given by Equation (10), we use a different presentation of Aν . Namely, let hν(x) be the
minimal polynomial of πν over Qp and write

hν(x) = f1(x) · · · fr(x)

for its factorization into irreducible factors over L[x]. Then we have an L-algebra isomorphism

φ : Aν
∼−→

r∏
i=1

L[x]

fi(x)
.

The action of σ on Aν in this presentation is induced by the automorphism of L[x] sending s(x) =
∑

k akx
k

to s(x)σ =
∑

k a
σ
i x

k.
For z ∈ Aν , we have φ(z) = ([sz,1(x)], . . . , [sz,r(x)]) for some sz,i(x) ∈ L[x], where [sz,i(x)] denotes

the class of sz,i(x) in the quotient L[x]/fi(x). For any λ ∈ L,

φ(Fν(λz)) = ([sαν ,i(x)s(λz)σ,i(x)], . . .) = ([λσsαν ,i(x)sz,i(x)σ], . . .) = φ(λσFν(z)),

which shows that Fνλ = λσFν , as required. Finally, we have by construction that

sαν ,i(x) · sαν ,i(x)σ · · · sαν ,i(x)σ
a−1

sz,i(x)− x ∈ (fi(x)),

for i = 1, . . . , r. This shows that φ(F a
ν ) = φ(πν), completing the proof.
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In [33, p. 544] there is the following construction of an element αν ∈ Aν enjoying property (∗) of
Lemma 4.3: Since the degree a/gν of the unramified extension LEν/Eν divides the ν-adic valuation
valν(πν), it follows that πν is the norm of an element uν ∈ LEν . We can then put αν = (1, 1, . . . , 1, uν) ∈
Aν . The following definition will reappear later in Proposition 4.19 and in Algorithm 3.

Definition 4.4. If Fν : Aν → Aν is a map with the Frobenius property defined by Fν(z) = αν · zσ for
an element αν = (1, 1, . . . , 1, uν) ∈ Aν then we will say that Fν is of W -type.

Given a set S of places ν of Ep, a map F :
∏

ν∈S Aν → Aν will be said to be of W -type if F |Aν is of
W -type for all places ν of Ep.

4.2 Determining Xπ,p

In this section we describe Xπ,p in terms of isomorphism classes of WR{F, V }-ideals, see Theorem 4.9.

Definition 4.5. Put WR = W ⊗Zp
Rp which is a Zp-order inside A. Let α ∈ A be an element such

that F = α ◦ σ has the Frobenius property; this implies that F is bijective on A. Put V = pF−1. By
WR{F, V }-ideals, we will mean fractional WR-ideals inside A which are stable by the action of F and V .
Given two objects J1, J2, let:

• HomWR{F,V }(J1, J2) consist of the WR-linear morphisms from J1 to J2 that commute with the
action of F and V .

• Hom∆(J1, J2) := {x ∈ Ep : ∆(x)J1 ⊆ J2}.

Note that WR does not in general respect the splitting of A given by Equation (9), that is, it cannot
be written as a direct sum of components, each lying inside one Aν . On the other hand, the maximal
order OA of A, which is the image of W ⊗OEp

under (9), does respect the splitting.

The following lemma can be seen as a version of Tate’s isogeny theorem (see [5, Theorem A.1.1.1]) in
this setting.

Lemma 4.6. Let J1 and J2 be any two fractional WR-ideals. Then ∆ induces a bijection

HomWR{F,V }(J1, J2)←→ Hom∆(J1, J2),

which is in fact an isomorphism of Rp-modules.

Proof. The map ∆ gives an injection of Hom∆(J1, J2) into HomWR{F,V }(J1, J2). We now show that this
map is also surjective.

Since every WR-linear morphism φ determines a unique A-linear endomorphism of A, we get that φ
is actually multiplication by some element y ∈ A, that is, φ(x) = yx for every x ∈ A.

We restrict ourselves to the component Aν of A. We want to show that since yν ∈ Aν commutes
with Fν , it belongs to ∆(Eν). Put J1,ν = J1 ∩Aν . Commuting with Fν means that for every z ∈ J1,ν we
have

Fν(yνz) = yνFν(z).

Since J1,ν and OAν
are Zp-lattices of the same rank, the quotient (J1,ν + OAν

)/J1,ν is a finite abelian
group, say of exponent n. Then ∆|Eν

(n)(J1,ν + OAν
) ⊆ J1,ν , which implies that ∆|Eν

(n) ∈ J1,ν since
1 ∈ J1,ν +OAν . We have

F (yν∆|Eν
(n)) = α

(
yν,2, yν,3, . . . , yν,gν , τ(y1)

)
∆|Eν

(n)

and
yνF (∆|Eν

(n)) = α
(
yν,1, yν,2, . . . , yν,gν−1, yν,gν

)
∆|Eν

(n)

with α ̸= 0, which shows that yν,1 = . . . = yν,gν and yν,gν = τ(yν,1) so yν ∈ ∆|Eν
(Eν).

Definition 4.7. Two fractional WR-ideals will be called ∆-isomorphic if they are isomorphic as Rp-
modules via multiplication by an invertible element of ∆(Ep).

Corollary 4.8. Two fractional WR{F, V }-ideals are isomorphic precisely if they are ∆-isomorphic.
Moreover, being stable under F and V is a well-defined notion on ∆-isomorphism classes.
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Proof. The first statement is a direct application of Lemma 4.6. The second statement follows from the
fact that F and V act trivially on the elements of ∆(Ep).

From now on, we will use Lemma 4.6 to identify HomWR{F,V }(J1, J2) with the corresponding subset
of Ep.

Theorem 4.9. There is a bijection between Xπ,p and the ∆-isomorphism classes of WR{F, V }-ideals.

Proof. A Dieudonné module is a WR{F, V }-module, with F having the Frobenius property (cf. Defini-
tion 4.1 and V = pF−1, that is free over W of rank 2g, cf. [33, Chapter 1]. Morphisms between them are
WR-linear morphisms that commute with the action of F and V . Every WR-module that is free over W
of rank 2g is WR-linearly isomorphic to a fractional ideal in A (which are all free over W of rank 2g).
The result then follows from Lemma 4.6.

4.3 Isomorphism classes of WR{F, V }-ideals
4.3.1 The connected-étale sequence

For a place ν of Ep put s(ν) = valν(π)/(aeν). This will be rational number between 0 and 1 (which is
equal to iν/nν in the notation of [33, p. 527]) called the slope of ν. Let pEν

denote the maximal ideal
of OEp

corresponding to ν.
The splitting OEp =

∏
ν|pOEν does not necessarily descend to Rp. However, Rp is complete and

semilocal, so it can be identified with the direct sum of the completions at its maximal ideals. The
maximal ideals of Rp are exactly equal to pEν

∩ Rp = {x ∈ Rp : valν(x) > 0}, which might coincide for
different ν. We denote the set of maximal ideals of Rp by PRp

.

Lemma 4.10. Let ∗ denote one of {0}, {1} or the open interval (0, 1). Let ν and µ be two places of E.
Assume that s(ν) ∈ ∗. If pEν

∩Rp = pEµ
∩Rp then s(µ) ∈ ∗, as well.

Proof. We have Rp = Zp[π, q/π]. Say that s(ν) = 0 and s(µ) > 0, then π ∈ pEµ ∩Rp but π /∈ pEν ∩Rp,
contradiction. Say that s(ν) = 1 and s(µ) < 1, then q/π ∈ pEµ∩Rp but q/π /∈ pEν∩Rp, contradiction.

Notation 4.11. We partition PRp
= P{0}

Rp
⊔ P(0,1)

Rp
⊔ P{1}

Rp
according to Lemma 4.10. That is, for each

∗ ∈ {{0}, {1}, (0, 1)}, let P∗
Rp

denote the maximal ideals pEν
∩Rp of Rp for which s(ν) ∈ ∗. We decompose

Rp = R{0}
p ×R(0,1)

p ×R{1}
p ,

where
R∗

p :=
∏

p∈P∗
Rp

Rp.

In this product we put R∗
p = 0 if P∗

Rp
= ∅. For ease of notation, we will write R′

p = R
(0,1)
p from now on.

The decomposition of Rp induces a corresponding decomposition of Ep, of A, of WR, of any fractional
WR{F, V }-ideal, and of their endomorphism rings. All these decompositions will be denoted analogously
to that of Rp. In particular, we will write E′, W ′

R, A′, ∆′, F ′ and V ′. In the same vein, by a ∆∗-morphism
we will mean a morphism given by multiplication by an invertible element of ∆(E∗

p) and F ∗ will denote
the restriction of F to A∗.

The decomposition of the endomorphism rings can be deduced from the connected-étale sequence, see
[5, Example 3.1.6]. The three parts corresponding to {0}, (0, 1) and {1} will be called the étale part, the
local-local part, and the multiplicative part, respectively.

Proposition 4.12. There is a bijection between P{0}
Rp

(resp. P{1}
Rp

) and the maximal ideals of Zp[π] that

do not contain π (resp. of Zp[q/π] that do not contain q/π).

Proof. Note that P{0}
Rp

consists of the maximal ideals of Rp not containing π. Let p be a maximal ideal of

Zp[π] that does not contain π. Then q/π ∈ (Zp[π])p and hence Rp = (Zp[π])p. Since Rp is isomorphic to
the direct product of the completions of R at the maximal ideals above p, and (Zp[π])p is local, we get that

there is only one maximal ideal of R above p, proving bijectivity. The proof for P{1}
Rp

is analogous.
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Corollary 4.13. There is a bijection between the maximal ideals not containing π (resp. q/π) of Rp and
the irreducible factors f(x) ̸= x modulo p of the minimal polynomial of π.

Proof. There is a bijection between the maximal ideals of Zp[π] and the irreducible factors modulo p
of the minimal polynomial of π, see [30, Theorem 8.2]. An irreducible factor f(x) corresponds to the
maximal ideal pZp[π] + f(π)Zp[π]. The maximal ideals that do not contain π therefore correspond to the
irreducible factors different from x. The result now follows from Proposition 4.12.

Proposition 4.14. The set P ′
Rp

is non-empty if and only if the isogeny class Aπ is non-ordinary. If so,

then P ′
Rp

consists of one element, the maximal ideal p = (p, π, q/π) of Rp, which has residue field Fp. If
q = pa is not prime, that is, a > 1, then p is singular and Rp is not the maximal order of Ep.

Proof. The first statement is clear. Assume for the rest of the proof that the isogeny class is non-ordinary.
If we set p = (p, π, q/π) then

Rp

p
=

Zp[π, q/π]

(p, π, q/π)
≃ Fp. (12)

Hence p is a maximal ideal of Rp with residue field Fp. Let pEν
be any maximal ideal of OEp

associated
to a place of slope in the interval (0, 1). Since both π and q/π belong to pEν

, we have that pEν
∩Rp = p.

So p is the unique element of P ′
Rp

.
Assume that a > 1. We now show the last statement by contradiction: assume that p is regular, that

is, Rp is a DVR, with valuation valp. Let s = valp(π)/aep be the slope of the place associated with p.
If 0 < s < 1/2 then there must a place of slope 1 − s, contradicting the fact that P ′

Rp
consists of one

element. Hence s = 1/2. By Equation (12), we have

ep = epfp = [Ep : Qp] > 1,

where the inequality follows from the fact that the endomorphism ring is commutative and so

fpvalp(π)/a = s[Ep : Qp] =
1

2
[Ep : Qp] ∈ Z,

see [33, p. 527]. Hence ep ≥ 2 which implies that p ∈ p2. Since p is fixed by the automorphism of Ep

sending π to q/π, we get that

valp(π) = valp(q/π) = saep =
1

2
aep ≥ a > 1.

This implies that π, q/π ∈ p2 as well. It follows that p = p2 which is impossible. Therefore, p is a singular
maximal ideal and, hence, Rp is not the maximal order of Ep.

Conversely, it is not true that if p is singular, then q is not a prime; see Example 8.10.

4.3.2 Duality

The CM involution π 7→ π̄ = q/π induces an involution ϕ : Ep → Ep by ϕ(
∑

i,j ai,jπ
iπ̄j) =

∑
i,j ai,jπ

j π̄i

with ai,j ∈ Qp. If ν is a place of Ep then ν̄ = ν ◦ ϕ is also a place of Ep with s(ν̄) = 1 − s(ν). We also
define ϕ : A → A by ϕ(

∑
i,j ai,j,kζ

k
q−1π

iπ̄j) =
∑

i,j ai,j,kζ
k
q−1π

j π̄i. The proof of the following lemma is
omitted.

Lemma 4.15. Choose any Fν = α ◦ σ with the Frobenius property. Then Fν̄ = ϕ(α) ◦ σ will have the
Frobenius property, and ϕ induces a bijection, taking WRν

{Fν , Vν}-ideals I to WRν̄
{Fν̄ , Vν̄}-ideals ϕ(I).

4.3.3 The étale and multiplicative parts

By Theorem 4.9, Dieudonné modules in Xπ,p are in bijection with WR{F, V }-ideals. In this section,
we show that we can describe the étale and multiplicative part of the Dieudonné module, that is when
∗ = {0} or ∗ = {1}, in terms of R∗

p-ideals in E∗
p rather than W ∗

R{F ∗, V ∗}-ideals in A∗.

Proposition 4.16. If ∗ is either {0} or {1} then one can choose F ∗ with the Frobenius property such
that the following hold.
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(i) If I is an R∗
p-ideal then W ⊗Zp

I is a W ∗
R{F ∗, V ∗}-ideal.

(ii) If J is a W ∗
R{F ∗, V ∗}-ideal then J = W ⊗Zp

(∆∗)−1(J ∩∆∗(E∗
p)).

(iii) For any W ∗
R{F ∗, V ∗}-ideals J1, J2 there is a bijection

Hom∆∗(J1 ∩∆∗(E∗
p), J2 ∩∆∗(E∗

p))←→ HomW∗
R{F∗,V ∗}(J1, J2).

Remark 4.17. Note that F ∗ chosen in Proposition 4.16, and in Corollary 4.18 below, is not necessarily
of W -type.

Proof.

(i) We first prove the case ∗ = {0}. Arguing as in the proof of [33, Theorem 7.4], we can find an

invertible element α of W
{0}
R such that F {0} = α ◦σ has the Frobenius property. Since σ(W ⊗ I) ⊆

W ⊗ I it follows that F {0}(W ⊗ I) ⊆ W ⊗ I. Furthermore, pα−1 is in W
{0}
R since α is a unit, and

hence V {0}(W ⊗ I) ⊆W ⊗ I, as well.

Now consider ∗ = {1}. Since π/q is a unit in R
{1}
p , [33, Theorem 7.4] can be used in the same way

to find an invertible element u of W
{1}
R such that F {1} = (pu) ◦ σ has the Frobenius property. It

then follows in the same way as above that W ⊗ I will be stable under F {1} and V {1}.

In the rest of this proof we use terminology and results of [9, Chapter 0] to carry out a descent
argument.

(ii) Let G be the Galois group of L = Qp(ζq−1) over Qp. We have that G = {σj}j=1,...,a with σj(ζq−1) =

ζp
j

q−1. The group G acts on W = Zp[ζq−1] and therefore has an induced action on W ⊗Zp R
∗
p.

Moreover, R∗
p = (W ⊗Zp

R∗
p)G because WG = Zp.

For any i = 1, . . . , pa − 1, let xi = (pa − 1)−1ζ−i
q−1 ∈ W and yi = ζiq−1 ∈ W . Any (not necessarily

primitive) (pa − 1)-st root of unity except 1 is a root of xp
a−2 + xp

a−3 + . . .+ 1 and hence,

pa−1∑
i=1

xiσj(yi) =
1

pa − 1

pa−1∑
i=1

(ζp
j−1

q−1 )i =

{
1 if j = a,

0 if j = 1, . . . , a− 1.

Let J be any W ∗
R{F ∗, V ∗}-ideal. It follows from [9, Theorem 1.6.(ii’)] that W ⊗Zp

R∗
p over R∗

p is a

G-Galois-extension of commutative rings. Moreover, J is stable under G, in fact JG = J ∩∆(E∗
p).

Consider the descent datum on J defined by Φσj
= σj for all j = 1, . . . , a. From [9, Theorem 7.1]

it follows that J = W ⊗ (∆∗)−1(J ∩∆∗(E∗
p)).

(iii) The set Hom∆∗(J1 ∩ ∆∗(E∗
p), J2 ∩ ∆∗(E∗

p)) can be identified with the set of x ∈ E∗
p such that

x(J1 ∩ ∆∗(E∗
p)) ⊆ J2 ∩ ∆∗(E∗

p). By Lemma 4.6 we may identify HomW∗
R{F∗,V ∗}(J1, J2) with the

set of x ∈ E∗
p such that ∆∗(x)J1 ⊆ J2. Since Φσj

∆∗(x) = ∆∗(x)Φσj
for any j, we conclude from

[9, Theorem 7.2] that the map x 7→ ∆∗(x) induces a bijection.

Corollary 4.18. If ∗ is either {0} or {1} then one can choose F ∗ with the Frobenius property such that
the map ψ : [I]R∗

p
7→ [I ⊗W ]∆∗ is a bijection from isomorphism classes of R∗

p-ideals to ∆∗-isomorphism
classes of W ∗

R{F ∗, V ∗}-ideals.

Proof. It follows from Proposition 4.16.(i) and (iii) that the map ψ is well defined and injective, since the
bijection in Proposition 4.16.(iii) restricts to a bijection on the subsets of Hom∆∗ resp. HomW∗

R
consisting

of isomorphisms. Surjectivity follows from Proposition 4.16.(ii).
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4.3.4 The local-local part in the maximal endomorphism ring case

In [33, proof of Theorem 5.1], Waterhouse gave an explicit description of isomorphism classes of fractional
OA′ -ideals which are stable by the action of F ′ and V ′. We paraphrase it in (i) of Proposition 4.19 below,
adding a formula for their number in (ii).

Each fractional OA′ -ideal is a direct sum of fractional OAν
-ideals. Moreover, the action of F ′ and V ′

preserves ν-components. Hence it is enough to focus our attention on a single ν-component Aν of A′.
Let tν be a uniformizer of Eν . Then tν is also a uniformizer of LEν and every fractional OAν

-ideal is
uniquely determined by its generator, which has the form (tε1ν , . . . , t

εgν
ν ) for some nonnegative integers

ϵ1, . . . , ϵgν .

Proposition 4.19. For each place ν of E with s(ν) ∈ (0, 1) consider the set χν all ordered gν-tuples

0 ≤ n1, . . . , ngν ≤ eν

such that
gν∑
i=1

ni =
gνvalν(πν)

a
.

For each such tuple, set ε1 = 0 and εi = εi−1 + ni−1, for i = 2, . . . , gν .
Fix any F ′ of W -type (see Definition 4.4). Then:

(i) The map υν given by (ε1, . . . , εgν ) 7→ (tε1ν , . . . , t
εgν
ν ) induces a bijection between χ′ =

∏
s(ν)∈(0,1) χν

and the set of ∆′-isomorphism classes of fractional W ′
R{F ′, V ′}-ideals with multiplicator ring OA′ ;

(ii) We have

|χν | =
d∑

i=0

(−1)i
(
gν
i

)(
gνvalν(πν)/a− i(eν + 1) + gν − 1

gν − 1

)
, (13)

with d = min(gν , ⌊gνvalν(πν)/(a(gν + 1))⌋).

Proof. The set χν is defined as in [33, Theorem 5.1]. In the proof of loc. cit., it is shown that υν can
be found in the wanted form, and that an ideal determined by gν-tuples of the form (tε1ν , . . . , t

εgν
ν ) is a

W ′
R{F ′, V ′}-ideal if and only if, for all ν, the number ε1 is any integer and εi for i = 2, . . . , gν are as in

the statement. Since we are working up to ∆′-isomorphism, we can scale and hence assume that ε1 = 0.
The cardinality |χν | is equal to the number of ways of writing m = gνvalν(πν)/a as a sum of positive

integers (i.e., weak compositions) with each positive integer bounded by eν . The formula (13) can be
found by noticing that it is also equal to the coefficient of xm in the polynomial

(1 + x+ . . .+ xeν )gν =
(1− xeν+1)gν

(x− 1)gν
;

the coefficient of xi(eν+1) in the numerator of the rational expression equals (−1)i
(
gν
i

)
, and the coefficient

xj for j ≥ 0 in the expansion of the denominator equals
(
j+gν−1
gν−1

)
. One then considers all choices of i, j

such that i(eν + 1) + j = m. For a reference, see for instance [1, Equation (4.0)].

Definition 4.20. Using the notation from Proposition 4.19, put

Υ := {
∏

s(ν)∈(0,1)

υν(ϵ1, . . . , ϵgν ) : (ϵ1, . . . , ϵgν ) ∈ χν for all s(ν) ∈ (0, 1)}.

5 Equivalences of categories

In this section we will extend the results of Section 2 to give a categorical equivalence in Theorem 5.2
between the isogeny class Aπ and a category Cπ of pairs of ideals, see Definition 5.1. The pairs of ideals
will respectively give representatives of the Tate modules and the Dieudonné module of the corresponding
abelian variety.
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Definition 5.1. For each ℓ, let iℓ be the injection E → Eℓ. Let Cπ be the category whose objects are pairs
(I,M), where I is a fractional R-ideal in E, and M is a WR{F, V }-ideal such that ∆−1(M) = ip(I)Rp.
The homomorphisms between objects (I,M) and (J,N) in Cπ are the elements α ∈ E such that αI ⊆ J
and ∆(ip(α))M ⊆ N .

Theorem 5.2. There is an equivalence of categories Ψ : Cπ → Aπ.

Proof. Recall that we have fixed an abelian variety X in Aπ. For each object (I,M) in Cπ, we fix positive
integers k, np, and nℓ for all ℓ ̸= p, such that

ℓnℓTℓ(X) ⊆ k · iℓ(I) ⊆ Tℓ(X) and pnpM(X) ⊆ k ·M ⊆M(X).

For all ℓ ̸= p, let Kℓ(I) be the subgroup of X(Fp)[ℓnℓ ] = Tℓ(X)/ℓnℓTℓ(X) equal to k · iℓ(I)/ℓnℓTℓ(X).
Define Kp(I) analogously. This is possible by the results of Section 2 together with Theorem 3.12(i) and
Theorem 4.9. Let K be the subgroup of X generated by all Kℓ(I) together with Kp(I).

Define the abelian variety X(I,M) = X/K in Aπ. By Tate’s theorem, there exists an isogeny φ :
X(I,M) → X such that φ∗(Tℓ(X(I,M))) = k · iℓ(I) ⊆ Tℓ(X) and φ∗(M(X(I,M))) = k ·M ⊆M(X). Finally,
define the quasi-isogeny φ(I,M) = φ/k : X(I,M) → X and put Ψ((I,M)) = X(I,M).

Let α : (I,M) → (J,N) be a homomorphism between objects of Cπ. We will first only consider
α ∈ E×, which will correspond via Ψ to isogenies in Aπ. The pair (αI, ip(α)M), which belongs to Cπ
since α ∈ E×, gives rise (by Tate’s theorem, as above) to a quasi-isogeny φα : X(αI,ip(α)M) → X.
Multiplication with α ∈ E× is then the same as an isomorphism ϵα : X(I,M) → X(αI,ip(α)M) such that
φ(I,M) = φα ◦ ϵα. Again by Tate’s theorem, the inclusion (αI, ip(α)M) ⊆ (J,N) gives rise to an isogeny
ϵ : X(αI,ip(α)M) → X(J,N) such that φ(I,M) = φ(J,N) ◦ ϵ ◦ ϵα. We put Ψ(α : (I,M)→ (J,N)) = ϵ ◦ ϵα.

Since Ψ respects composition and the identity, it is a functor. It also follows directly that the functor Ψ
is essentially surjective.

Each isogeny X(I,M) → X(J,N) is equal to φ−1
(J,N) ◦ α ◦ φ(I,M) for some α ∈ E×, viewed as a quasi-

isogeny of X, and necessarily αI ⊆ J and ∆(ip(α))M ⊆ N . Moreover, if α ̸= β ∈ E we see directly that
Ψ(α : (I,M) → (J,N)) ̸= Ψ(β : (I,M) → (J,N)). This shows that Ψ is both full and faithful when
restricted to homomorphisms of Cπ in E× and isogenies in Aπ.

Let us now consider any α ∈ E. The isogeny decomposition X ∼ X1× . . .×Xr gives a corresponding
decomposition E = E1 × . . . × Er. An element α = (α1, . . . , αr) ∈ E is in E× precisely if αi ̸= 0 for all
i = 1, . . . , r. Moreover any morphism between simple factors Xi and Xj is either an isogeny (and then
necessarily i = j), or the zero morphism. It is now immediate that Ψ is both full and faithful on all
homomorphisms.

Definition 5.3. For any overorder S ⊇ R in E, let Dπ(S) denote the category of fractional S-ideals with
homomorphisms between two S-ideals I, J being α ∈ E such that αI ⊆ J .

The following corollary reproves the second part of [21, Corollary 4.4], which builds upon [3] and [7].

Corollary 5.4. Assume that (at least) one of the following conditions holds:

(i) The number q = p is a prime;

(ii) The category Aπ consists of ordinary abelian varieties,

then there is an equivalence of categories between Dπ(R) and Aπ, inducing a bijection between ICM(R)
and Aisom

π .

Proof. If either of the conditions holds, define a functor Ξ : Dπ(R)→ Aπ by letting Ξ(I) = Ψ(I,W ⊗ I)
and Ξ(α : I → J) = Ψ(α : I → J).

If q = p is a prime, then W = Zp and WR{F, V }-ideals are nothing but Rp-ideals. Theorem 5.2 then
shows that Ξ is an equivalence.

Say now that Aπ consists of ordinary abelian varieties. Proposition 4.16 shows that all WR{F, V }-
ideals are of the form W ⊗ I, with I a fractional R-ideal. Theorem 5.2 then shows that also in this case
Ξ is an equivalence.

In the next result we restrict ourselves to abelian varieties such that the local-local part of their
Dieudonné module has maximal endomorphism ring. This gives an equivalence that is similar in spirit
to, for instance, [33, Theorems 5.1 and 5.3], [24, Theorems 1.1 and 4.5] (see further in Example 5.6) and
[2, Theorem 1.3].
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Corollary 5.5. Let S denote the smallest order in OE containing R and such that Sp contains OE′
p
.

Let r be the number of ∆′-isomorphism classes of W ′
R{F ′, V ′}-ideals whose endomorphism ring contains

OE′
p
. Then there are full and faithful functors Ψi : Dπ(S) → Aπ for i = 1, .., r that induce a bijection

between the isomorphism classes of abelian varieties Z in Aπ with OE′
p
⊆ End(Z)p and the disjoint union

of r copies of ICM(S).

Proof. Let M ′
1, . . . ,M

′
r be representatives of each ∆′-isomorphism class of W ′

R{F ′, V ′}-ideals whose endo-
morphism ring contains OE′

p
. Choose F {0} and F {1} as in Proposition 4.16 so that, for each i = 1, . . . , r,

Mi = W
{0}
R ⊕M ′

i ⊕W
{1}
R ,

is a WR{F, V } = W
{0}
R {F {0}, V {0}} ×W ′

R{F ′, V ′} ×W {1}
R {F {1}, V {1}}-ideal. Since ∆−1(Mi) = R

{0}
p ×

OE′
p
×R{0}

p , for any fractional S-ideal I it follows that ∆−1(∆(ip(I))Mi) = ip(I) ∆−1(Mi) = ip(I)(R
{0}
p ×

OE′
p
×R{0}

p ) and hence (I,∆(ip(I))Mi) will be an object in Cπ.
For each i = 1, . . . , r, define a functor Ψi : Dπ(S) → Aπ by putting Ψi(I) = Ψ((I,∆(ip(I))Mi)) and

Ψi(α : I → J) = Ψ(α : (I,∆(ip(I))Mi) → (J,∆(ip(J))Mi)). That these functors are full and faithful
follows from the corresponding facts for Ψ.

Finally, take any abelian variety Z in Aπ with OE′
p
⊆ End(Z)p. Then there is an object (I,M) in Cπ

such that Ψ((I,M)) is isomorphic to Z. Write I ′p = ip|E′
p
(I)R′

p. Since I ′p is a principal OE′
p
-ideal, there

is a β ∈ E such that ∆′(β)M ′ = ∆′(I ′p)M ′
j for some j ∈ {1, . . . , r}. Then

βI ′p = β∆′−1(M ′) = I ′p∆′−1(M ′
j) = I ′pOE′

p
= I ′p. (14)

By the strong approximation theorem we can find a new element β ∈ E such that (14) still holds, and
moreover βℓ ∈ R×

ℓ , for any ℓ ̸= p, and β∗
p ∈ (R∗

p)× for ∗ ∈ {{0}, {1}}. Then put γ = βγ′ for any
γ′ ∈ (I : I)×. It follows that ∆′(γ)M ′ = I ′pM

′
j and that γI = I. By Proposition 4.16 we get that if

N1 and N2 are any W
{0}
R {F {0}, V {0}}-ideals such that (∆{0})−1(N1) = (∆{0})−1(N2) then N1 = N2.

The corresponding statement also holds for W
{1}
R {F {1}, V {1}}-ideals. It follows that γM = ∆(ip(I))Mj .

Hence, Ψj(I) is isomorphic to Ψ((I,M)) ≃ Z in Aπ, via γ ∈ E.

Example 5.6. If Aπ consists of almost-ordinary abelian varieties, then there is a unique place ν above p
with slope s(ν) ∈ (0, 1) and it will have slope 1/2. It follows from [24, Proposition 2.1] that the en-
domorphism ring of all W ′

R{F ′, V ′}-ideals contains OE′
p
. Corollary 5.5 can then be compared with [24,

Theorem 4.5.(3)]. Equation (13) shows that if ν is the place above p with s(ν) = 1/2, then the number r
of ∆′-isomorphism classes of W ′

R{F ′, V ′}-ideals whose endomorphism ring contains OE′
p

equals r = 2 if
eν = 1, and equals r = 1 if eν = 2. Note that Corollary 5.5 holds also for even q, while [24, Theorem
4.5.(3)] does not.

In the case when eν = 1, we can use Theorem 5.2 to describe isogenies between two abelian varieties
X1 = Ψ1(I) and X2 = Ψ2(J). Say that M ′

1 is generated as a OAν -ideal by (1, 1) ∈ Aν = LEν ⊕ LEν ,
and M ′

2 by (1, tν) ∈ Aν , where tν is a uniformizer of Eν ⊆ LEν (compare with Proposition 4.19). We
see that every α ∈ (J : I) ∩ E× induces an isogeny X1 → X2, but β ∈ (I : J) ∩ E× induces an isogeny
X2 → X1 if and only if valν(β) > 0. These types of isogenies are not described in [24].

Note finally that if q is not prime, then R′
p is singular by Proposition 4.14. So, in this case R cannot

be an endomorphism ring of an almost-ordinary abelian variety.

In the following two results we will draw some consequences from Theorem 5.2 on the endomorphism
rings of abelian varieties in Aπ.

Proposition 5.7. Say that there is a W ′
R{F ′, V ′}-ideal M ′ with endomorphism ring T ′ ⊆ E′

p such that
∆′−1(M ′) is invertible in T ′. Let S be any overorder of R such that S′

p contains T ′. Then there is an
abelian variety in Aπ with endomorphism ring S.

Proof. Choose F {0} and F {1} as in Proposition 4.16 and let M be the WR{F, V } = W
{0}
R {F {0}, V {0}}×

W ′
R{F ′, V ′} × W

{1}
R {F {1}, V {1}}-ideal (W

{0}
R ⊗ R

{0}
p ) ⊕ M ′ ⊕ (W

{1}
R ⊗ R

{1}
p ). Fix the fractional R-

ideal I such that iℓ(I)Rℓ = Rℓ and such that ip(I)Rp = ∆−1(M), whose existence is guaranteed by
[32, Theorem 9.4.9, Lemma 9.5.3]. Since ∆−1(∆(ip(S))M) = ip(S)∆−1(M) = ip(SI)Rp we have that
(SI,∆(ip(S))M) ∈ Cπ, and since I is locally principal for all ℓ (including p), we have that (SI : SI) =
(S : S) = S. The abelian variety Ψ((SI,∆(ip(S))M)) then has endomorphism ring S.
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Corollary 5.8. Let S be any overorder of R. There exists an abelian variety in the isogeny class whose
endomorphism ring T satisfies Sℓ ≃ Tℓ for every ℓ ̸= p and S∗

p ≃ T ∗
p for ∗ equal to {0} or {1}.

Proof. It follows from [33, Theorem 5.1] that there is a W ′
R{F ′, V ′}-ideal M ′ with maximal endomorphism

ring. The abelian variety Ψ((SI,∆(ip(S))M)) constructed as in the proof of Proposition 5.7 then has an
endomorphism ring with the wanted properties.

6 Computing fractional WR{F, V }-ideals
The goal of this section is to provide an effective method to compute representatives of the ∆-isomorphism
classes of WR{F, V }-ideals.

By the discussion after Notation 4.11, the decomposition Rp = R
{0}
p ×R′

p×R
{1}
p induces a decompo-

sition of ∆-isomorphism classes of W{F, V }-ideals, which yields a natural bijection

{∆-isom. classes of WR{F, V }-ideals} ←→∏
∗∈{{0},(0,1),{1}}

{∆∗-isom. classes of W ∗
R{F ∗, V ∗}-ideals}. (15)

The next proposition states that for ∗ ∈ {{0}, {1}} the computation of the terms on the right hand
side of (15) reduces to computations of known objects discussed in Section 3.

Proposition 6.1. For ∗ ∈ {{0}, {1}} we have a natural bijection

{∆∗-isom. classes of W ∗
R{F ∗, V ∗}-ideals} ←→

∏
pν∈PRp ,s(ν)∈∗

Wpν (R), (16)

where denotes pν the intersection with Rp of the maximal ideal inducing ν.

Proof. By Corollary 4.18, the left-hand side of (16) is in bijection with {∆∗-isom. classes of R∗
p-ideals},

which is just W(R∗
p) by Remark 3.2. Since R∗

p is the direct product of the rings Rpν for pν ∈ PR such
that s(ν) ∈ ∗, the latter set is in bijection with the right hand side of (16) by Proposition 3.9.

In view of Proposition 6.1, we restrict our attention to computing the ∆′-isomorphism classes of
W ′

R{F ′, V ′}-ideals. We can view E′
p as a subset of Ep and A′ as a subset of A, so that ∆ : Ep → A

restricted to E′
p is precisely ∆′. We say that two fractional W ′

R-ideals I and J are ∆′-isomorphic if there
exists a non-zero divisor γ ∈ R′

p such that ∆′(γ)I = J . Note that ∆′-isomorphism implies isomorphism
as R′

p-modules, but that conversely two fractional W ′
R-ideals can be isomorphic as R′

p-modules while not
being ∆′-isomorphic.

The computation of ∆′-isomorphism classes is divided into three steps:

1. Compute W ′
R-isomorphism classes of fractional W ′

R-ideals.

2. Compute the partition of each W ′
R-isomorphism class into ∆′-isomorphism classes of fractional

W ′
R-ideals.

3. Determine which ∆′-isomorphism classes of fractional W ′
R-ideals are stable under the action of F

and V , that is, which are W ′
R{F ′, V ′}-ideals.

The three steps will be discussed in Subsections 6.2, 6.3 and 6.4, respectively. In Section 7, we will
summarize all steps in one algorithm.

Even though the rings R′
p and W ′

R are Zp-orders, the method we describe will be exact, in the sense
that every computation will be performed globally with fractional ideals of Z-orders. To do so, we now
introduce some further notation.
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6.1 Global setting

Recall that L is an unramified extension of degree a of Qp. Let c(x) be a lift to Z[x] of any irreducible

factor of degree a of xq−1 − 1 over Fp[x]. We have L ≃ Qp[x]/c(x). Set L̃ = Q[x]/c(x) and denote by ζ

the class of x in L̃. Note that L̃⊗QQp ≃ L. Moreover L̃ has a unique place above p, which is unramified.

Let g1(x), . . . , gr(x) be the irreducible factors over L̃[x] of the characteristic polynomial h(x) of π.
Define

Ã =

r∏
i=1

L̃[x]

gi(x)
and W̃R =

r∏
i=1

OL̃[x]

gi(x)
. (17)

The association π 7→ (x+ (gi(x)))i=1,...,r induces an embedding ∆̃ : E → Ã.

Remark 6.2.

(i) We have isomorphisms Ã⊗Q Qp ≃ A and W̃R ⊗Z Zp ≃WR giving inclusions W̃R ⊆ Ã ⊆ A.

(ii) For every fractional WR-ideal I ⊆ A, there is a unique fractional W̃R-ideal Ĩ such that Ĩ ⊗Z Zp = I

and Ĩ ⊗Z Zℓ = OÃ ⊗Z Zℓ for every prime ℓ ̸= p; see for example [32, Theorem 9.4.9, Lemma 9.5.3],

as in Proposition 5.7. Note that the maximal order OÃ of Ã satisfies OÃ = ÕA. Also, if I ⊆ J are
fractional WR-ideals then

J̃

Ĩ
≃ J

I

is a finite WR-module annihilated by a power of p.

(iii) Let p be a maximal ideal of WR and p̃ be as in (ii). Then W̃R,P̃ ≃WR,P.

(iv) Assume for a moment that L̃ is a normal extension of Q. Let σ̃L be any generator of the decom-
position group of the maximal ideal pOL̃ of OL̃. Then σ̃L extends to the Frobenius σ of L. Let πA

denote the element ∆̃(π). Since h(x) is square-free, the elements 1A, πA, . . . , π
deg(h)
A form a L̃-basis

of Ã. In other words, Ã can be described as

Ã = 1A · L̃⊕ πA · L̃⊕ . . .⊕ πdeg(h)
A · L̃. (18)

Using the presentation given in Equation 18, define σ̃ : Ã → Ã by fixing πA and acting on the
L̃-coefficients as σ̃L. Observe that σ̃ extends to the automorphism σ of A.

To simplify the exposition, we will assume that L̃ is normal in the following algorithms. Nevertheless,
we will always need only to compute the action of σ̃ on finite quotients of OÃ. We detail in Remarks
6.12 and 6.18 how to do this efficiently. Computing such finite approximations does not require us
to compute the decomposition group of pOL̃, and, in fact, it does not even require L̃ to be normal.

(v) Let ν be a place of Ep. Then we have

OAν
= OLEν

× . . .×OLEν︸ ︷︷ ︸
gν−times

,

cf. Equation 9. The unique maximal ideal of OEν
is denoted pEν

. A maximal ideal of OAν
is equal

to the unique maximal ideal pLEν
= pEν

OLEν
in exactly one of the gν factors, and to the ideal

generated by 1 in all other factors. In particular, there are exactly gν maximal ideals Pν,1, . . . ,Pν,gν

of OAν extending ν. Let t1, . . . , tgν be some corresponding uniformizers. If tν ∈ Ep is a uniformizer
for ν then its image in Aν via the embedding induced by ∆ is (tν , . . . , tν) = (v1t1, . . . , vgν tgν ) for

units vi ∈ O×
LEν

. For each i, consider the maximal ideal P̃ν,i of OÃ built using (ii). Any lift of a

basis element of the OÃ/P̃ν,i-vector space P̃ν,i/P̃
2
ν,i will map to a uniformizer of OÃ,P̃ν,i

≃ OA,Pν,i
.

However, since OA is generally not an integral domain, such a lift might not be a unit in the
completions at the other maximal ideals above ν. For example, such a lift might be a zero-divisor.
We address this issue in Lemma 6.3 below.
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(vi) Let S′ be an order in A′, let I ′ be a fractional S′-ideal, and let p′ be a maximal ideal of S′.
Consider the order in A = A{0} × A′ × A{1} given by S = OA{0} × S′ × OA{1} and its maximal

ideal p = OA{0} × p′ × OA{1} . Set I = OA{0} × I ′ × OA{1} . Define S̃ as the order in Ã satisfying

S̃ ⊗Z Zp ≃ S, and p̃ as the prime of S̃ such that p̃⊗Z Zp ≃ p, and Ĩ as the fractional S̃-ideal such

that Ĩ ⊗Z Zp ≃ I, all using (ii). Then we have canonical isomorphisms

S̃p̃ ≃ Sp ≃ S′
p′ and Ĩp̃ ≃ Ip ≃ I ′p′ .

With this convention we have ÕA′ = OÃ.

Lemma 6.3. Let P̃ν,1, . . . , P̃ν,gν be the maximal ideals of OÃ extending a place ν of Ep. Fix an index i
and consider the natural surjective ring homomorphism

φ : OÃ ↠
OÃ

P̃2
ν,i ·

∏
j ̸=i P̃ν,j

≃
OÃ

P̃2
ν,i

×
∏
i̸=j

OÃ

P̃ν,j

Pick bi ∈ P̃ν,i \ P̃2
ν,i and let tν,i be an element of OÃ such that φ(tν,i) equals the class of bi in the i-th

component and the class of 1 in every other component. Then the image of tν,i via the natural ring
homomorphism OÃ → OÃ,P̃ν,j

≃ OA,Pν,j is a uniformizer if j = i and a unit otherwise.

Proof. Omitted.

6.2 Step 1: W ′
R-isomorphism classes

Lemma 6.4. Let S be the set of primes P of W ′
R. Then we have a natural bijection

W(W ′
R)←→

∏
P∈S

WP̃(W̃R).

Proof. Note that W ′
R is canonically isomorphic to the direct product of the completions WR,P where P

ranges over the set S. The statement follows from the canonical isomorphism W̃R,P̃ ≃ WR,P, see

Remark 6.2.(ii), and from Remark 3.5.

Building on the previous lemma, in the following algorithm we will compute the isomorphism classes of
fractional W ′

R-ideals, concluding the first step of the computation of isomorphism classes of W ′
R{F ′, V ′}-

ideals.

Algorithm 1.
Input: The order R.
Output: A set of fractional W̃R-ideals representing W(W ′

R).

(1) Compute the orders OÃ and W̃R;

(2) Compute the set p̃1, . . . , p̃n of maximal ideals of W̃R that lie below the maximal ideals of OÃ extending
the places of Ep with slope in (0, 1);

(3) Set k = valp([OÃ : W̃R]);

(4) For each p̃i compute a set of representativesWi ofW(W̃R+ p̃kiOÃ), for example, using [23, Algorithm
ComputeW];

(5) Construct a set of representatives of W(W ′
R) by combining the sets W1, . . . ,Wn, using Lemma 3.7.

Theorem 6.5. Algorithm 1 is correct.

Proof. This is an immediate consequence of Lemma 6.4 and Proposition 3.10.
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6.3 Step 2: ∆′-isomorphism classes

In this section, given a fractional W ′
R-ideal I, we will denote by [I]W ′

R
its class in W(W ′

R) and by
[I]∆′ its ∆′-isomorphism class. Since every ∆′-isomorphism is also a W ′

R-linear isomorphism, we see
that [I]W ′

R
splits into a disjoint union of ∆′-isomorphism classes. We denote by eI the extension map

[I ′]∆′ 7→ [I ′O′
A]∆′ from the set of ∆′-isomorphism classes of fractional W ′

R-ideals that are W ′
R-isomorphic

to I, to the set of ∆′-isomorphism classes of fractional OA-ideals.
In the next proposition, we describe the fibers of the extension map eI : [I ′]∆′ 7→ [I ′O′

A]∆′ . Then we
include a series of results dedicated to explicitly computing these fibers using global elements. The whole
procedure to obtain ∆′-isomorphism classes of W ′

R-ideals is wrapped up in Algorithm 2 below.

Proposition 6.6. Let I be a fractional W ′
R-ideal. Set S = (I : I) and J = IOA′ . The association γ 7→ γI

for γ ∈ O×
A′ induces a free and transitive group action of O×

A′/S×∆′(O×
E′

p
) on the fiber e−1

I ([J ]∆′).

Proof. If γ ∈ O×
A′ then γIOA′ = J . Now γI = I if and only if γ ∈ S×, and γI is ∆′-isomorphic to I if

and only if γ ∈ ∆′(E′
p
×

). We claim that

O×
A′ ∩ S×∆′(E′

p
×

) = S×∆′(O×
E′

p
).

Recall that A′ =
∏

ν Aν where ν runs over the places of E′
p and that Aν is a direct product of gν-

copies of LEν . We denote here by valν both the valuation on Eν and its (unramified) extension to LEν .
Indeed, for any y ∈ O×

A′ ∩ S×∆′(E′
p
×

) there exist s ∈ S× and x ∈ ∆′(E′
p
×

) such that y = sx ∈ O×
A′ .

Then 0 = valν(sν,ixν,i) = valν(xν,i) for each ν and each 0 ≤ i ≤ gν , and hence xν,i ∈ O×
E′

ν
. Note that

xν,i = xν,j for all i, j by assumption, so x ∈ ∆′(O×
E′

p
). This shows that the group action is well-defined

and free.
Pick [I0]∆′ in e−1

I ([J ]∆′). By assumption there are δ ∈ A′× and β ∈ ∆(E′
p
×

) such that I0 = δI and
I0OA′ = βJ . Put γ = δ/β. By construction, we have γI = β−1I0 which shows that [γI]∆′ = [I0]∆′ . So,
to conclude that the group action is also transitive, it suffices to show that γ ∈ O×

A′ , as we now do. Recall
that by hypothesis we have J = IOA′ . Hence

γIOA′ =
δ

β
IOA′ =

1

β
I0OA′ = J = IOA′ ,

which implies that γ ∈ O×
A′ .

In Algorithm 2 below, we will use that, given an overorder S of W ′
R the quotient O×

A′/S×∆(O×
E′

p
) is

the cokernel of the inclusion
S×∆′(O×

E′
p
)

S× −→
O×

A′

S× ,

as we now show.

Lemma 6.7. The subgroup H = W×
R ∆′(O×

E′
p
)/W×

R is generated by the elements of O×
A′/W

×
R fixed by the

action induced by the automorphisms σ : Aν → Aν for ν ranging over the places of Ep with s(ν) ∈ (0, 1).
Let S be any overorder of WR. The subgroup S×∆′(O×

E′
p
)/S× is generated by the image of H via the

natural projection O×
A′/W

×
R ↠ O×

A′/S×.

Proof. Recall from Equation (11) that σ acts on Aν = ⊕LEν as a cyclic permutation on the gν copies of
LEν followed by τν on the last component. Therefore, the elements of O×

Aν
fixed by σ are those whose

components are all the same, hence in the image of ∆′, and are fixed by τν . This is precisely ∆′(O×
E′

ν
).

The first statement then follows since σ acts also on WR,ν . The second statement is a consequence of the
fact that we have S×W×

R ∆′(O×
E′

p
) = S×∆′(O×

E′
p
).

In what follows, we will describe how to compute O×
A′/S×, and consequently also O×

A′/S×∆(O×
E′

p
),

using global representatives; see Remark 6.9 for a summary.
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Lemma 6.8. Let f̃ be the conductor of S̃ in OÃ and p̃1, . . . , p̃r the maximal ideals of S̃ corresponding

to the finitely many maximal ideals of S. For i = 1 . . . , r, set ki = valp(|S̃/̃f|)/valp(|S̃/p̃i|). Then the
natural ring homomorphism

S̃ −→
OÃ

f̃ +
∏r

i=1 p̃
ki
i OÃ

has kernel f̃ +
∏r

i=1 p̃
ki
i and it induces a group isomorphism

O×
A′

S× ≃

(
OÃ

f̃ +
∏r

i=1 p̃
ki
i OÃ

)×

(
S̃

f̃ +
∏r

i=1 p̃
ki
i

)× .

Proof. By [15, Lemma 2.3], for i = 1, . . . , r, we have p̃ki
i S̃p̃i

⊆ f̃p̃i
and hence also p̃ki

i OÃ,p̃i
⊆ f̃p̃i

OA,p̃i
= f̃p̃i

.
The kernel of the homomorphism in the statement is

S̃ ∩ (̃f +

r∏
i=1

p̃ki
i OÃ);

we now show that it equals f̃ +
∏r

i=1 p̃
ki
i . It suffices to check the equality locally at every maximal ideal

of S̃. Let p be a maximal ideal not in the set {p̃1, . . . , pr}. Then(
f̃ +

r∏
i=1

p̃ki
i

)
p

= S̃p =

(
S̃ ∩ (̃f +

r∏
i=1

p̃ki
i OÃ)

)
p

,

while (
f̃ +

r∏
i=1

p̃ki
i

)
p̃i

= f̃p̃i
=

(
S̃ ∩ (̃f +

r∏
i=1

p̃ki
i OÃ)

)
p̃i

for i = 1, . . . , r.
The argument used above shows that, for each i, we have isomorphisms

Spi

fpi

≃
S̃p̃i

f̃p̃i

≃
S̃p̃i(̃

f +
∏r

i=1 p̃
ki
i

)
p̃i

, (19)

inducing
OA′,pi

fpi

≃
OÃ,p̃i

f̃p̃i

≃
OÃ,p̃i(̃

f +
∏r

i=1 p̃
ki
i OÃ

)
p̃i

. (20)

For the second part of the statement, we observe that the decomposition S ≃ ⊕pSp, where the direct
sum is over the finitely many maximal ideals p of S, induces a decomposition OA′ ≃ ⊕pOA′,p. If p does
not lie above the conductor f of S in OA′ then Sp = OA′,p. Hence we have the following isomorphism:

O×
A′

S× ≃
⊕
f⊆p

O×
A′,p

S×
p

. (21)

For p lying above the conductor f, there is a natural bijection between the finite set of primes of OA′,p

and the set of maximal ideals of OA′,p/fp, where fp is the completion of f at p. Hence the map

O×
A′,p →

(
OA′,p

fp

)×

induced by taking quotients is surjective. The composition

O×
A′,p →

(
OA′,p

fp

)×

→ (OA′,p/fp)
×

(Sp/fp)
×
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has kernel S×
p . Therefore, by Equation (21), we get

O×
A′

S× ≃
⊕
f⊆p

(OA′,p/fp)
×

(Sp/fp)
× . (22)

We conclude by combining Equations (19), (20) and (22) and the fact that we have canonical ring
isomorphisms

S̃

f̃ +
∏r

i=1 p̃
ki
i

≃
r∏

i=1

S̃p̃i(̃
f +
∏r

i=1 p̃
ki
i

)
p̃i

and
OÃ

f̃ +
∏r

i=1 p̃
ki
i OÃ

≃
r∏

i=1

OÃ,p̃i(̃
f +
∏r

i=1 p̃
ki
i OÃ

)
p̃i

.

Remark 6.9. Lemma 6.8 gives a method to describe O×
A′/S× using Z-lattices. Algorithms to concretely

compute the quotient can be found in [12] and [17]. As pointed out in Remark 6.2.(iv), the action of σ
can be realized on the Z-order OÃ. Hence, using Lemma 6.7, we get a method to compute the group
O×

A′/S×∆(O×
E′

p
) together with a set of generators in OÃ using only Z-lattices. This is desirable in order

to avoid precision issues that could arise from working with Zp-lattices.

For the remainder of the article, we fix F ′ of W -type (cf. Definition 4.4). Thanks to Proposition 4.19,
we understand the W ′

R{F ′, V ′}-ideals with maximal endomorphism ring. We now show in Proposi-
tion 6.10 that eI sends W ′

R{F ′, V ′}-ideals to W ′
R{F ′, V ′}-ideals. This implies that, in order to compute

all W ′
R{F ′, V ′}-ideals, it suffices to consider the fibers of W ′

R{F ′, V ′}-ideals with multiplicator ring O′
A.

This fact will be used in Algorithm 2 below.

Proposition 6.10. Let I be a fractional W ′
R-ideal. If I is a W ′

R{F ′, V ′}-ideal, then IOA′ is also a
W ′

R{F ′, V ′}-ideal.

Proof. Any element of IOA′ can be written as a finite sum z =
∑

i xiai with xi ∈ I and ai ∈ OA′ . Recall
that F ′ is of the form z 7→ αzσ on each component Aν . The action of σ is multiplicative, so we can write

F ′(z) =
∑
i

F ′(xiai) =
∑
i

F ′(xi)σ(ai).

Since F ′(xi) ∈ I by assumption and σ(ai) ∈ OA′(≃W ⊗OE′
p
) we see that F ′(z) ∈ IOA′ . Hence

V ′(z) =
∑
i

V ′(xiai) =
∑
i

V ′(xi)σ
−1(ai).

Now, V ′(xi) ∈ I by assumption and σ−1(ai) ∈ OA′ . So V ′(z) ∈ IOA′ . This shows that IOA′ is a
W ′

R{F ′, V ′}-ideal.

We are now ready to combine all the results presented in this section into an algorithm to compute
∆′-isomorphism classes.

Algorithm 2.
Input: A set of fractional W̃R-ideals Ĩ1, . . . , Ĩn representing the W ′

R-isomorphism classes of all fractional
W ′

R-ideals.

Output: A set of fractional W̃R-ideals representing the ∆′-isomorphism classes of all fractional W ′
R-ideals

whose extension to OA′ is in Υ (see Definition 4.20).

(1) For each place ν of Ep of slope in (0, 1), compute the maximal ideals P̃ν,1, . . . , P̃ν,gν ofOÃ extending ν;
see Remark 6.2.(v). For each i, compute an element tν,i defined as in Lemma 6.3.

(2) Use Proposition 4.19 to compute, up to ∆′-isomorphism, all W ′{F ′, V ′}-ideals J1, . . . , Jm having
maximal multiplicator ring OA′ . Each Jj is stored as a tuple of vectors of the form (εj,ν,1, . . . , εj,ν,gν )ν
(as in Υ).
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(3) For each Ĩi, do the following:

(3.a) Compute the multiplicator ring S̃ of Ĩi.

(3.b) Compute the extension J̃ = ĨiOÃ.

(3.c) Compute the factorization

J̃ = J̃† ×
∏
ν

gν∏
i=1

P̃
ην,i

ν,i ,

where ν runs over the places of Ep of slope in (0, 1), and J̃† is the product of all the other
maximal ideals.

(3.d) For each j = 1, . . . ,m, set δj =
∏

ν

∏gν
i=1 t

ην,i−εj,ν,i
ν,i .

(3.e) Use Remark 6.9 to compute γ1, . . . , γr in OÃ representing the elements of O×
A′/S×∆(O×

E′
p
).

(3.f) Define the set of fractional W̃R-ideals Ii = {δ−1
j γk Ĩi : 1 ≤ j ≤ m, 1 ≤ k ≤ r}.

(4) Return
⋃n

i=1 Ii.

Theorem 6.11. Algorithm 2 is correct.

Proof. Let L,L′ ∈
⋃n

i=1 Ii with L ̸= L′. If L ∈ Ii and L′ ∈ Ii′ for indices 1 ≤ i < i′ ≤ n then L and
L′ are not ∆′-isomorphic since they are not W ′

R-isomorphic. If L and L′ belong to the same Ii then
they are not ∆′-isomorphic by Proposition 6.6. Hence, all fractional W ′

R-ideals in
⋃n

i=1 Ii are pairwise
non-∆′-isomorphic.

To conclude we need to show that
⋃n

i=1 Ii contains representatives of all ∆′-isomorphism class of W ′
R-

ideals whose extension to O′
A is a W ′

R{F ′, V ′}-ideal. For each Ĩi denote by J̃††
i the part of the factorization

of ĨiOÃ over the maximal ideals P̃ν,1, . . . , P̃ν,gν . Note that J̃††
i is isomorphic to ĨiOÃ locally at every

maximal ideal Pν,k. By the way each tν,i is constructed, we get that Ji and δ−1
j J̃††

i are equal locally at
every maximal ideal Pν,k. Hence, the result follows from Propositions 4.19, 6.6 and 6.10.

Remark 6.12. In order to perform Step (3.e) in Algorithm 2, following Remark 6.9, we need to compute
the action of σ̃ on the finite ring

oA :=
OÃ

f̃ +
∏r

i=1 p̃
ki
i OÃ

.

Set oL = OL̃/(pOL̃)m, where m is defined by |oA| = |OL̃/(pOL̃)|m. By Remark 6.2.(iv), the finite ring oA
is an oL-algebra. If b1, . . . , b2g is the image of a Z-basis of OE in oA then we can give a σ-equivariant
presentation of oA as an oL-algebra by

oL × . . .× oL −→ oA

(c1, . . . , c2g) 7−→
2g∑
i=1

cibi.

Hence, in order to compute the action of σ̃ on oA it suffices to compute an approximation of the (p-adic)
Frobenius automorphism of L on oL. This can be done as follows. Let u be a lift in oL of a generator of(
OL̃/pOL̃

)×
. Compute uq

i

for i > 0 until uq
i

= uq
i+1

and set z = uq
i

. Then z is the image of an inertial
element of OL ≃ Zp[z] in oL. Hence, by computing an explicit isomorphism Zp[z]/(pZ[z])m ≃ oL, we can
compute the action of σ on oL by pushing forward the action of σ on Zp[z] which is given by z 7→ zp.

Note that this construction does not require L̃ to be normal; cf Remark 6.2.(iv). We stress that the
output of Step (3.e) in Algorithm 2 is independent of choice of the approximation of σ̃ we computed,
which is certainly not unique.

Proposition 6.13 below shows that ∆′-isomorphism classes are the orbits of the action of a group
G′ on the W ′

R-isomorphism classes. In particular, each W ′
R-isomorphism class is a disjoint union of ∆′-

isomorphism classes. However, the group G′ is finite only when gν = 1 for every place ν of slope in (0, 1).
And only under this assumption, there is exactly one ∆′-isomorphism class of fractional W ′

R{F ′, V ′}-
ideals I with (I : I) = OA′ , cf. [33, p. 546]. That is, since there is only one fiber of the extension map to
consider, Corollary 6.14 below can be viewed as a special case of the method presented above. We will
not use Proposition 6.13 and Corollary 6.14 in the rest of the paper.
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Proposition 6.13. Let I be a fractional W ′
R-ideal with multiplicator ring S. Then [I]W ′

R
is a disjoint

union of ∆′-isomorphism classes, which are in bijection with the orbits of the natural action of the group
G′ := A′×/S×∆′(E′

p
×

) on [I]W ′
R
.

Proof. Recall that [I]W ′
R

splits into a disjoint union of ∆′-isomorphism classes. The quotient A′×/S× acts
freely and transitively on [I]W ′

R
. Since ∆′-linear isomorphisms are given by multiplication by elements of

∆′(E′
p
×

), the bijection between A′×/S×∆′(E′
p
×

) and the ∆′-isomorphism classes in [I]W ′
R

follows.

Corollary 6.14. If gν = 1 for every ν with s(ν) ∈ (0, 1) then the quotient A′×/S×∆′(E′
p
×

) is finite, and
isomorphic to

O×
A′

S×∆′(O×
E′

p
)
.

If moreover S = OA′ , then there is only one W ′
R-isomorphism class of ideals I with (I : I) = S and every

representative of this class is a W ′
R{F ′, V ′}-ideal.

Proof. We consider ∆′(E′
p) = E′

p ⊆ A′ by slight abuse of notation. Since gν = 1, we also have that

Aν = LEν , which is an unramified field extension of Eν . Hence A×
ν = O×

Aν
E×

ν . Since this is the case for

every ν with slope in (0, 1), we get A′× = O×
A′E′×

p . Therefore, we have that

A′×

S×E′×
p

=
O×

A′E′×
p

S×E′×
p

=
O×

A′S×E′×
p

S×E′×
p

≃
O×

A′

O×
A′ ∩ S×E′×

p

=
O×

A′

S×O×
E′

p

,

which is finite.
Finally, assume that S = OA′ . There is only W ′

R-isomorphism class of fractional OA′ -ideals. To

conclude the proof, we show that every representative I of this class is a W ′
R{F ′, V ′}-ideal. Let γ ∈ A′×.

We write τ ′ = ⊕ντν with τν as above. Then

F ′(γI) = γτ
′
F ′(I) ⊆ γI ⇐⇒ F ′(I) ⊆ γ

γτ ′ I.

Since γ/γτ
′

has valuation 0, it is an element of O×
A′ = S×; equivalently, we have γ/γτ

′
I = I.

6.4 Step 3: Stability under the action of F and V

Algorithm 2 returns a list of fractional W̃R-ideals representing the ∆′-isomorphism classes of fractional
W ′

R-ideals. Consider the class [I]∆′ represented by Ĩ, which we can assume to be contained in OÃ. We
want to determine whether [I]∆′ consists of W ′

R{F ′, V ′}-ideals. Since F ′ and V ′ cannot be realized on

the Q-algebra Ã, we cannot compute F̃ ′I and Ṽ ′I directly from Ĩ. The first step is to reduce to working
in a finite quotient.

Lemma 6.15. Fix a W ′
R{F ′, V ′}-ideal J and a fractional W ′

R-ideal I ⊆ J . Let J̃ , Ĩ, Ṽ ′I and F̃ ′I be

defined as in Remark 6.2.(vi). Let N be the exponent of the finite quotient J̃/Ĩ. Let m be an integer such
that m ≥ valp(N). Denote by p1, . . . , pn the maximal ideals of WR which lie below the maximal ideals of
OA above the places of E of slope in (0, 1). For each i = 1, . . . , n, let mi be a positive integer such that
|J/pmJ | ≤ |WR/pi|mi . Then the following statements are equivalent:

(i) [I]∆′ consists of W ′
R{F ′, V ′}-ideals;

(ii) I = I + F ′I + V ′I;

(iii) Ĩ = Ĩ + F̃ ′I + Ṽ ′I;

(iv) The images of Ĩ and Ĩ + F̃ ′I + Ṽ ′I in the finite quotient J̃/pmJ̃ are equal;

(v) The images of Ĩ and Ĩ + F̃ ′I + Ṽ ′I in the finite quotient J̃/
(
pmJ̃ +

∏n
i=1 p

mi
i J̃

)
are equal.
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Proof. The equivalence of (i) and (ii) follows from Corollary 4.8. Consider the finite W̃R-module

M =
Ĩ + F̃ ′I + Ṽ ′I

Ĩ
.

By Remark 6.2.(ii), we have a canonical isomorphism

M ≃ I + F ′I + V ′I

I
.

Hence (iii) and (ii) are equivalent.
The assumption on m implies that we have inclusions

pmJ̃ ⊆ Ĩ ⊆ Ĩ + F̃ ′I + Ṽ ′I ⊆ J̃ .

Hence, conditions (iii) and (iv) are equivalent.

Set Q = J̃/pmJ̃ . The splitting of WR ≃ W
{0}
R ×W ′

R ×W
{1}
R induces a decomposition Q ≃ Q{0} ⊕

Q′⊕Q{1}. Observe that Q′ ≃ J̃/
(
pmJ̃ +

∏n
i=1 p

mi
i J̃

)
. Hence (iv) implies (v). The converse follows from

Remark 6.2.(vi), which states that the (0)-parts (resp. (1)-parts) of Ĩ and Ĩ + F̃ ′I + Ṽ ′I coincide.

The next lemma will be used in Algorithm 3 below to construct a presentation of Fν on a finite
quotient of the form

gν∏
i=1

OAν

Pm
ν,i

≃
gν∏
i=1

OLEν

pmLEν

,

for m a big enough positive integer.

Lemma 6.16. Fix an integer j ≥ 1 and a place ν of Ep. Let tν be a uniformizer of Eν . Let γ0 be an
element of O×

LEν
such that

NLEν/Eν
(γ0)− πν/tvalν(πν)

ν ∈ pjEν
.

Then there exists γ1 ∈ pjLEν
such that

NLEν/Eν
(γ0 + γ1) = πν/t

valν(πν)
ν

Proof. For ease of notation, set N = NLEν/Eν
. Since πν/t

valν(πν)
ν is a unit in OEν

we can write

πν/t
valν(πν)
ν = ζ(1 + x) for some root of unity ζ and some x ∈ pEν

. Then there is an ϵ0 ∈ pjEν

such that N(γ0) = ζ(1 + x + ϵ0). By [29, Proposition 3, page 82] the norm N surjectively maps
(1 + pjLEν

) onto (1 + pjEν
). Hence, there is an element δ0 ∈ pjLEν

such that N(1 + δ0) = 1 + (−ϵ0). Then

N(γ0(1 + δ0)) = ζ(1 +x+ ϵ1) with ϵ1 ∈ pj+1
Eν

and we can find δ1 ∈ pj+1
LEν

such that N(1 + δ1) = 1 + (−ϵ1).

Then N(γ0(1 + δ0)(1 + δ1)) = ζ(1 +x+ ϵ2) with ϵ2 ∈ pj+2
Eν

. Continuing this process (since O×
Eν

and O×
LEν

are complete with respect to the topology induced by 1 + pnEν
respectively 1 + pnLEν

), we find δ ∈ pjEν

such that N(γ0(1 + δ)) = ζ(1 + x). Setting γ1 = γ0δ concludes the proof.

We are now ready to give the algorithm that achieves Step 3, allowing us to compute the isomorphism
classes of W ′

R{F ′, V ′}-ideals, for F ′ of W -type, as described at the beginning of the section. The algorithm
determines whether a given W ′

R-ideal is a W ′
R{F ′, V ′}-ideal by pushing it into a finite quotient Qm0 which

depends on a precision parameter m0. This parameter is chosen minimally so that we can realize the
actions Fm0

(resp. Vm0
) of F ′ (resp. V ′) on Qm0

. For further analysis it is desirable to record Fm0

and Vm0
together with the output of the algorithm (cf. Remark 6.19).

Algorithm 3.
Input: A set I = {Ĩ1, . . . , Ĩr} of fractional W̃R-ideals representing the ∆′-isomorphism classes of all
fractional W ′

R-ideals whose extension to OA′ is in Υ (see Definition 4.20).

Output: A set of elements in I, possibly scaled by elements in ∆̃(E) ⊆ Ã so that they are contained

in J̃ , consisting of representatives of the ∆′-isomorphism classes of W ′
R{F ′, V ′}-ideals.
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(1) Pick a W ′
R{F ′, V ′}-ideal J with maximal multiplicator ring OA′ using Proposition 4.19, and com-

pute J̃ .

(2) If necessary, scale J̃ by multiplying by an element in ∆̃(E) so that J̃ ⊆ OÃ; see Remark 6.20.

(3) If necessary, scale each Ĩk ∈ I by multiplying by an element in ∆̃(E) so that Ĩk ⊆ J̃ ; see Remark 6.20.

(4) Set m0 = max{valp(Nk)}, where Nk is the exponent of the finite quotient J̃/Ĩk.

(5) For each ν with slope s(ν) ∈ (0, 1) do the following:

(5.a) Let uν be an element of E representing a uniformizer for ν.

(5.b) Compute wν = π/u
valν(π)
ν .

(5.c) Compute the maximal ideals P̃ν,1, . . . , P̃ν,gν of OÃ above ν together with their ramification
indices eν,1, . . . , eν,gν , see Remark 6.2.(v).

(5.d) Set Qν =
∏gν

i=1OÃ/P̃
eν,i(m0+1)
ν,i .

(5.e) Compute the multiplicative subgroup Uν =
∏gν

i=1

(
OÃ/P̃

eν,i(m0+1)
ν,i

)×
of Qν , cf. [12].

(5.f) Compute σQν , the automorphism of Qν induced by σ̃ : Ã→ Ã.

(5.g) Compute the group homomorphism

φ :
(
OÃ/P̃

eν,gν (m0+1)
ν,gν

)×
Uν Uν

γ (1, . . . , 1, γ)

β ββσQν · · ·βσa−1
Qν .

(5.h) Let wUν
be the image of ∆̃(wν) in Uν .

(5.i) Let γ0 be any preimage of wUν
via φ.

(5.j) Let u0 be the image of ∆(u
valν(π)gν/a
ν ) in OÃ/P̃

eν,gν (m0+1)
ν,gν .

(5.k) Set αQν
= (1, . . . , 1, γ0) · (1, . . . , u0) ∈ Qν .

(6) Use the Chinese Remainder Theorem to compute an element α′ in Ã which maps to αQν
in Qν for

each place ν of E of slope in (0, 1).

(7) Compute the maximal ideals p1, . . . , pn of W̃R which lie below the maximal ideals of OÃ above the
places ν of E of slope in (0, 1).

(8) For each i = 1, . . . , n, compute a positive integer mi such that |J̃/pm0+1J̃ | ≤ |W̃R/pi|mi .

(9) Set Qm0+1 = J̃/
(
pm0+1J̃ +

∏n
i=1 p

mi
i J̃

)
and Qm0 = J̃/

(
pm0 J̃ +

∏n
i=1 p

mi
i J̃

)
and compute the

natural projection pr : Qm0+1 → Qm0
.

(10) Let αm0+1 (resp. αm0) denote the multiplication-by-α′ map on Qm0+1 (resp. Qm0).

(11) Compute the reduction σm0+1 (resp. σm0
) of σ̃ on Qm0+1 (resp. Qm0

).

(12) Define Fm0+1 : Qm0+1 → Qm0+1 as x 7→ αm0+1(xσm0+1), and Fm0
: Qm0

→ Qm0
as x 7→ αm0

(xσm0 ).

(13) Compute the homomorphism mp : Qm0+1 → Qm0+1 induced by the multiplication-by-p map.

(14) For each generator as a finite group γ of Qm0
:

(14.a) Pick xγ ∈ Qm0+1 such that pr(xγ) = γ.

(14.b) Pick zγ ∈ Qm0+1 such that Fm0+1(zγ) = mp(xγ).
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(15) Compute Vm0
: Qm0

→ Qm0
by setting Vm0

(γ) = pr(zγ) for each γ ∈ Qm0
.

(16) For each Ĩk ∈ I compute its image Ik,m0
in Qm0

under the projection map from J̃ .

(17) Return {Ĩk ∈ I such that Ik,m0 = Ik,m0 + Fm0(Ik,m0) + Vm0(Ik,m0)}.

Theorem 6.17. Algorithm 3 is correct.

Proof. By Proposition 6.10, the extension of a W ′
R{F ′, V ′}-ideal to OA′ is a W ′

R{F ′, V ′}-ideal. Hence,
considering only such ideals (that is, whose extension is in Υ) in the input is not a limitation.

The algorithm is an application of Lemma 6.15: for each I ∈ I, we want to check whether it is stable
by the action of F ′ and V ′, by looking at its image in the finite quotient Qm0 defined in Step (9). In
order to do so, we need to compute representations of F ′ and V ′ in Qm0

.

First consider F ′. In Step (5.i), we produce an element γ0 ∈ OÃ/P̃
eν,gν (m0+1)
ν,gν

∼= OLEν
/p

eν(m0+1)
LEν

.
Under this isomorphism we get an element that with slight abuse of notation we also call γ0 ∈ OLEν

.

The property in (5.i) then translates to the equality NLEν/Eν
(γ0) = πν/t

valν(πν)
ν in OLEν

/p
eν(m0+1)
LEν

, for

some uniformizer tν in Eν . We can now apply Lemma 6.16 to find an element γ1 ∈ pm0+2
LEν

such that

NLEν/Eν
(γ0 + γ1) = πν/t

valν(πν)
ν . This means that if we define F ′

ν = αν ◦ σ with

αν = (1, . . . , tvalν(πν)gν/a
ν (γ0 + γ1)),

then F ′
ν has the Frobenius property and is of W -type, by Lemma 4.3. Putting α = (αν)ν|p ∈ A′ we get

F ′ = α ◦ σ, an additive map on A′ of W -type. Step (6) produces an element α′ ∈ Ã, from which we
define the additive map Fm0+1 : Qm0+1 → Qm0+1 in Step (12). We see that Fm0+1 is the reduction of F ′

restricted to J ′ under the isomorphism Qm0+1
∼= J ′/pm0+1J ′. Note that F ′ also induces Fm0

on Qm0
.

Now consider V ′; we need to show that Vm0 as defined in Step 15 is the map induced by V ′ on Qm0 .
As we now explain, in fact Vm0 is computed from the representation of Fm0+1 of F ′ on the larger
quotient Qm0+1. Let prm0

: J → Qm0
and prm0+1 : J → Qm0+1 be the natural projections. Observe

that prm0
= pr ◦ prm0+1. Let xm0

be an element of Qm0
. Denote by x a preimage of xm0

in J via
prm0

. Set xm0+1 = prm0+1(x) and y = V ′(x) ∈ J . It remains to show that prm0
(y) = Vm0

(xm0
). By the

construction of Vm0 , we have
Vm0(xm0) = pr(zm0+1),

where zm0+1 is an element of Qm0+1 such that

p · xm0+1 = Fm0+1(zm0+1).

Let z be a preimage of zm0+1 in J via prm0+1. Note that F ′(y) = p · x. Hence

prm0+1(F ′(y)) = p · xm0+1 = Fm0+1(zm0+1) = prm0+1(F ′(z)),

where the last equality follows by the definition of Fm0+1. Therefore

F ′(y)− F ′(z) = F ′(y − z) ∈ pm0+1J.

By applying V ′, we then get
p(y − z) ∈ V ′(pm0+1J) ⊆ pm0+1J.

Dividing by p gives
y − z ∈ pm0J.

By applying prm0
we obtain

prm0
(y) = prm0

(z) = pr ◦ prm0+1(z) = pr(zm0+1) = Vm0
(xm0

),

as required.
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Remark 6.18. In Algorithm 3, we need to compute the action of σQν
on Qν in Step (5.g) for each place

ν of E, and of σm0+1 and σm0
on Qm0+1 and Qm0

in Step (11), all induced by the action of σ̃.
Note that, in Step (5.g), Qν (defined in Step (5.d)) for each place ν, is a factor of oA = OÃ/p

m0+1OÃ.
So, we proceed exactly as in Remark 6.12, by computing a σ-equivariant presentation of oA as an
OL̃/(pOL̃)m-module for m defined by |oA| = |OL̃/pOL̃|

m.

In Step (11), we proceed as follows. By Step 2, we have J̃ ⊆ OÃ. Set m′ = m0 + 1 + valp([OÃ : J̃ ]),
so that

pm
′
OÃ ⊆ p

m0+1J̃ ⊆

(
pm0+1J̃ +

n∏
i=1

pmi
i J̃

)
⊆ J̃ ⊆ OÃ.

Then a reduction σm′ of σ on oA = OÃ/p
m′OÃ, computed as in the preceding paragraph, will induce

well-defined approximations σm0 on Qm0 and σm0+1 on Qm0+1.

We stress that this construction does not require L̃ to be normal; cf Remark 6.2.(iv).

Remark 6.19. The semilinear operators F ′ and V ′ are p-adic in nature. Hence, we can compute them
only up to a finite precision. In Step 4 in Algorithm 3, we choose the smallest possible m0 that allows
us to check whether the ideals in the input set I represent W ′

R{F ′, V ′}-ideals. This choice of m0 also

allows us to compute the a-numbers of the Dieudonné modules. Indeed, if Ĩk is in the output set, then
the a-number of the corresponding Dieudonné module equals

dimFq

(
Ik,m0

Fm0(Ik,m0) + Vm0(Ik,m0)

)
.

If one needs to know the action of F ′ and V ′ to higher precision, it suffices to increase the value of m0

in Step 4.

Remark 6.20. In Step 3, we need to scale each ideal Ĩk inside J̃ by some element x of ∆̃(E×), that is,

x ∈ ∆̃−1(C), where C = (J̃ : Ĩk). Moreover, it is desirable to try to minimize w = valp(exp(J̃/xĨk)), in
order to keep the parameter m0 as low as possible, since m0 determines the size of the quotients appearing
in the rest of the algorithm. One possibility is to compute v = valp(exp(Ĩk + J̃/J̃)) and y = [pv Ĩk + J̃ : J̃ ],

which is coprime to p. Then x = pvy is the integer in ∆̃−1(C) giving the smallest possible value of w.
Another possibility (dropping the restriction of x being an integer) is to use the fact that C is a fractional
OÃ-ideal. Compute the uniformizers tν1 , . . . , tνn of the places ν1, . . . , νn of E above p using Lemma 6.3.

For each νi, let Mi be the maximum value of valP̃(C) for P̃ ranging over the maximal ideals of OÃ above

νi. Then set x′ = ∆̃(tM1
ν1
· · · tMn

νn
), y = [x′Ĩk + J̃ : J̃ ] and finally x = x′y. The second method might give

smaller values of w but requires more expensive computations. Similar considerations apply in Step 2 if
one is using the method described in Remark 6.18 for computing Fm0 and Vm0 .

7 Computing isomorphism classes of abelian varieties

In this section, we provide some algorithms that, building on the ones contained in the previous sections,
allow us to compute the set Aisom

π of isomorphism classes of abelian varieties in the isogeny class Aπ

together with their endomorphism rings. These algorithms will be used to exhibit some interesting
examples in Section 8.

Algorithm 4.
Input: The order R = Z[π, q/π].
Output: Representatives of

∏
ℓ ̸=p Xπ,ℓ given as a list of vectors (Ili)li of fractional R-ideals indexed by

the maximal ideals l1, . . . , ln of R which divide the conductor (R : O) and do not contain p.

(1) For i = 1, . . . , n do the following:

(i) Set ki = valℓi([O : R]) where ℓi is the rational prime below li;

(ii) Compute a set of representatives Rli of W(R + lki
i O), using, for example, [23, Algorithm Com-

puteW];

(2) Return
∏n

i=1Rli .
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Theorem 7.1. Algorithm 4 is correct.

Proof. The result follows from Theorem 3.12.

Algorithm 5.
Input: The order R = Z[π, q/π].
Output: Representatives of Xπ,p given as a list of triples (I{0}, I ′, I{1}) representing all ∆-isomorphism

classes of WR{F, V }-ideals; here I{0} and I{1} are R-ideals and I ′ is a W̃ ′
R-ideal.

(1) Set k = valp([O : R]).

(2) For each pν ∈ PRp
with s(ν) = 0 compute a set of representatives Rpν

of W(R + pkνO), for example
using [23, Algorithm ComputeW];

(3) Initialize an empty set R{0};

(4) For each sequence (Ipν )pν ∈
∏

pν ,s(ν)=0Rpν append to R{0} a fractional R-ideal I{0} such that

I
{0}
pν

= Ipν for each pν with s(ν) = 0, built using Lemma 3.7;

(5) For each pν ∈ PRp
with s(ν) = 1 compute a set of representatives Rpν

of W(R+ pkνO), for example,
using [23, Algorithm ComputeW];

(6) Initialize an empty set R{1};

(7) For each sequence (Ipν )pν ∈
∏

pν ,s(ν)=1Rpν
append to R{1} a fractional R-ideal I{1} such that

I
{1}
pν

= Ipν
for each pν with s(ν) = 1, built using Lemma 3.7;

(8) Use Algorithms 1, 2 and 3 to compute a set R′ of representatives of of W ′
R{F ′, V ′}-ideals;

(9) Return R{0} ×R′ ×R{1}.

Theorem 7.2. Algorithm 5 is correct.

Proof. The chosen value of k ensures that pkνO ⊆ R for each prime pν above p by Remark 3.11. Hence, R∗

is a set of representatives of R∗
p-isomorphism classes of W ∗

R{F, V }-ideals by Propositions 3.10 and 6.1, for
∗ in {{0}, {1}}. Moreover, R′ is a set of representatives of ∆′-isomorphism classes of W ′

R{F ′, V ′}-ideals by
construction. Hence, the output of Algorithm 5 represents all ∆-isomorphism classes of WR{F, V }-ideals
by Equation 15.

Lemma 7.3. Let p1, . . . , pn be maximal ideals of R, let S1, . . . , Sn be overorders of R, and let k1, . . . , kn
be positive integers such that for each i we have pki

i OE,pi
⊆ Si,pi

. Define

S := ∩ni=1(Si + pki
i OE).

Then S is an overorder of R such that Spi = Si,pi for every i and Sq = OE,q for every other maximal
ideal q of R.

Proof. Omitted.

The following algorithm computes the endomorphism rings of the abelian varieties in Aπ, which are
uniquely determined by the isomorphism classes of their local parts.

Algorithm 6.
Input: An element (I{0}, I ′, I{1}) of the output R{0} ×R′ ×R{1} of Algorithm 5, and a vector (I l)l of
fractional R-ideals belonging to the output

∏
lRl of Algorithm 4.

Output: An overorder S of R which is the endomorphism ring of the element Y ∈ Xπ,p ×
∏

ℓ̸=p Xπ,ℓ

which is represented by (I{0}, I ′, I{1}, (I l)l).

(1) Set Sl = (I l : I l);

(2) Set S{0} = (I{0} : I{0});
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(3) Set S′′ = ∆̃−1
(

(Ĩ : Ĩ)
)

;

(4) Set S{1} = (I{1} : I{1});

(5) Let Psing be set of maximal ideals of R which are singular;

(6) For each p ∈ Psing, set Sp to be S0, S′′, S1 or Sl depending on whether p is in P{0}
Rp

, P(0,1)
Rp

, P{1}
Rp

or
not above p;

(7) Use Lemma 7.3 to compute the order S which is locally equal to Sp for each p ∈ Psing and maximal
at every order maximal ideal;

(8) Return S.

Theorem 7.4. Algorithm 6 is correct.

Proof. The result follows since an order is determined by its localizations.

The next and final algorithm combines all the previous ones to compute representatives of Aisom
π .

Algorithm 7.
Input: An isogeny class Aπ of abelian varieties with commutative endomorphism ring.
Output: A set of representatives of the isomorphism classes of in the category Cπ (see Definition 5.1).

(1) Compute the order R = Z[π, q/π];

(2) Initialize an empty list R;

(3) Run Algorithm 5 and let R{0} ×R′ ×R{1} be the output;

(4) Run Algorithm 4 and let
∏

lRl be the output;

(5) For each Y = (I{0}, Ĩ, I{1}, (I l)l) in R{0} ×R′ ×R{1} ×
∏

lRl, do the following:

(1) Use Algorithm 6 to compute the endomorphism ring SY of Y ;

(2) Compute a set of representatives J1, . . . , Js of the class group Cl(SY ) of SY ;

(3) For j = 1, . . . , s, append (Y, Jj) to R.

(6) Return R.

Theorem 7.5. Algorithm 7 is correct.

Remark 7.6. Let Y = (I{0}, Ĩ, I{1}, (I l)l) be an element as in Step 5 of Algorithm 7. Let P be the set
of maximal ideals of R that are either above p, or coprime to p and singular. For each p in P set Ip to be

I{0}, ∆̃−1(Ĩ), I{1} or I l, depending on whether p is in P{0}
Rp

, P(0,1)
Rp

, P{1}
Rp

or not above p. Use Lemma 3.7

to construct a fractional R-ideal IY whose localization at p is Ip for each p ∈ P. Similarly, construct

a fractional WR-ideal MY whose localization at p is ∆̃(Ip) ⊗Z Zp for p ∈ P{0}
Rp
⊔ P{1}

Rp
and Ĩ ⊗Z Zp for

p ∈ P(0,1)
Rp

. Then for each representative Jj of Cl(SY ) the pair (Y, Jj) represents the isomorphism class

of the object (IY Jj ,MY ∆(Jj ⊗Z Zp)) of Cπ.

Proof of Theorem 7.5. The result follows from Theorem 4.9 as well as Theorem 3.12, combined with the
fact that a fractional ideal in E is determined by its localizations together with an element of the Picard
group.

Remark 7.7. We could theoretically, in several of the algorithms presented above, use the duality of
Subsection 4.3.2 to only make computations for places ν of Ep with slope in [0, 1/2]. This is not something
that we have extensively implemented in practice, since we do not believe it would significantly improve
the efficiency of our algorithms.

8 Examples

The examples in this section are computed using the implementations of the algorithms in this paper
which are available at https://github.com/stmar89/IsomClAbVarFqCommEndAlg2.

2The examples in this paper where computed using the code at commit c25be473adfeb1dba9932d47961e54649889fa78
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Let Aπ be an isogeny class of abelian varieties over Fq of dimension g with commutative endomorphism
algebra E = Q[π]. Put R = Z[π, q/π], as before. Let S be the set of overorders of R and let E be the
subset of S consisting of endomorphism rings, that is, orders T such that there exists X ∈ Aπ with
End(X) = T . Consider the following three statements:

(1) For every S ∈ E and T ∈ S, if S ⊆ T then T ∈ E .

(2) The order S = ∩T∈ET is in E .

(3) For every S in E , n(OE) divides n(S), where n(S) (resp. n(OE)) is the number of isomorphism
classes of abelian varieties in Aπ with endomorphism ring S (resp. OE).

If Aπ is ordinary, or almost ordinary, or if q is prime, then statements (1), (2) and (3) hold true; see [21,
Corollary 4.4], [24, Theorem 4.5] (for odd characteristic) and Corollary 5.5 together with Example 5.6
(for all characteristics).

Now assume further that Aπ has p-rank < g. Let p be the maximal ideal of R = Z[π, q/π] corre-
sponding to the local-local part. Consider the following statements:

(*) End(X)p is maximal for every X in Aπ.

(a) There exists a unique maximal ideal P of OE above p with slope ≤ 1/2.

(b) All maximal ideals of OE above p have slope 1/2.

(c) For each maximal ideal P of OE above p we have that the slope equals 1/nP or 1−1/nP, where nP
is the dimension of EP over Qp, that is, the product of the ramification index and the inertia degree.

Note that Aπ is almost ordinary if and only if all three conditions (a), (b) and (c) hold true.
Let T be the set of all maximal ideals of R except the one above p of slope (0, 1). In the rest of the

section, we will associate to each order S ∈ S four nonnegative integers: n(S), the number of isomorphism
classes of abelian varieties in Aπ with endomorphism ring S (as defined above); w(S), the number of
elements of WT (S); d(S), the number of W ′

R{F ′, V ′}-ideals with endomorphism ring S; and h(S), the
class number of S.

Proposition 8.1. For all S ∈ S,
n(S) = w(S)d(S)h(S).

Proof. This follows from Theorem 5.2 combined with Propositions 3.8, 3.9 and 6.1.

Hence, we have S ∈ E , that is, S is the endomorphism ring for some X ∈ Aπ, if and only if n(S) > 0,
which is also equivalent to d(S) > 0.

Proposition 8.2. Let Aπ be an isogeny class of g-dimensional abelian varieties over Fq with commutative
endomorphism algebra and p-rank < g. We have the following implications:

(a) + (b) + (c) =⇒ (∗) =⇒ (1) + (2) + (3).

Proof. As pointed out above, (a), (b) and (c) all hold if and only if Aπ is almost ordinary. The first
implication is shown in Example 5.6.

Corollary 5.8 shows that (*) implies (1) and (2). We now show that (*) also implies (3), completing the
proof of the second implication. By Proposition 8.1, the number n(S) is divisible by d(S)h(S). Observe
that (*) implies that d(S) = d(OE) for each S ∈ E , and that h(OE) divides h(S) since the extension map
Cl(S)→ Cl(OE) is surjective. Every fractional OE-ideal is locally principal, hence w(OE) = 1. It follows
that the number of abelian varieties with endomorphism ring OE is determined only by the class group
of OE and by the local-local part. More precisely, we have n(OE) = d(OE)h(OE). Combining all these
statements we see that n(OE) divides n(S) for each S ∈ E , as required.

In each of following three examples (Examples 8.3, 8.4 and 8.5), we negate exactly one of the three
statements (a), (b), (c), and show that (*) does not hold and that (1), (2) or (3) fails.

In Example 8.6, we exhibit an isogeny class with p-rank < g for which all of (1), (2) and (3) hold true,
but (*) fails. This examples also shows that (1) + (2) + (3) is not equivalent to the isogeny class being
almost ordinary.
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In Example 8.7, we exhibit an isogeny class with abelian varieties with the same endomorphism ring
but whose a-numbers are different.

In all the examples below we have w(S) = 1 for all S ∈ S. We would have w(S) > 1, for some S ∈ S,
if and only if R is not Bass at some maximal ideal of T . For an example of an R with this property, see
[21, Example 7.4].

We conclude the section with some observations and a further example, arising from the computations
we have performed. In the following graphs, each vertex represents an overorder S of R, labeled with the
pair (d(S), h(S)), and each edge represents an inclusion, labeled with its index. If S is in E , that is, S
is the endomorphism ring for some X ∈ Aπ, then we add in the subscript of the label, the a-numbers of
the isomorphism classes of Dieudonné modules. In all examples (except Example 8.7) we write only one
value, since all the Dieudonné modules have the same a-number.

Example 8.3. Consider the polynomial

h = x8 + x7 + x6 + 4x5 − 4x4 + 16x3 + 16x2 + 64x+ 256.

It determines an isogeny class of geometrically simple abelian fourfolds over F4 with commutative endo-
morphism algebra E = Q[π] = Q[x]/h. The isogeny class has LMFDB label 4.4.b b e ae and p-rank 2.
The algebra E has 3 places above p = 2 with slopes, ramification indices and inertia degrees equal to
(0, 1, 2), (1, 1, 2), (1/2, 2, 2), respectively. Hence, this isogeny class satisfies conditions (a) and (b), but not
condition (c).

The unique maximal ideal of the order R = Z[π, 16/π] in E above 2 is singular and in P(0,1)
R2

. One
computes that R has 13 overorders S and for each of these w(S) = 1. It follows from Proposition 8.1
that n(S) = d(S)h(S).

(2,32)[1] (4,8)[2]

(0, 48) (0, 12)

(0, 192) (0, 96) (2,24)[1] (1,12)[2] (3,4)[2]

(0, 48) (0, 12)

(0, 48) (0, 24)

4

4

2 2
2

2

2

2

2

2

2

2

2

2

2 2

2 2

We see that statements (1), (2) and (3) do not hold true for this isogeny class. Hence, also statement (*)
does not hold for this isogeny class: only the maximal order has maximal local-local part.

Example 8.4. Put h1 = x2 − 2x+ 4, h2 = x2 + 2x+ 4 and consider the polynomial

h = x4 + 4x2 + 16 = h1 · h2.

It determines an isogeny class Aπ of abelian surfaces over F4 with commutative endomorphism algebra
E = Q[π] = Q[x]/h. Put E1 = Q[π1] = Q[x]/h1 and E2 = Q[π2] = Q[x]/h2. Any X ∈ Aπ is isogenous
to a product of supersingular elliptic curves C1 × C2 with Ci ∈ Aπi

. Note that the supersingular curves
in Aπ1

are quadratic twists of the ones in Aπ2
. The LMFDB labels of Aπ, Aπ1

, Aπ2
are 2.4.a e, 1.4.ac,

1.4.c, respectively. Therefore, conditions (b) and (c) hold, but not condition (a).

The unique maximal ideal of the order R = Z[π, 16/π] in E above 2 is singular and in P(0,1)
R2

. One
computes that R has 13 overorders S and for each of these w(S) = 1. It follows from Proposition 8.1
that n(S) = d(S)h(S).

An abelian variety X is isomorphic to a product C1×C2 with Ci ∈ Aπi
if and only if the order S is the

direct product of S1×S2 with S1 an order in E1 and S2 an order in E2. Such orders are marked with a ∗
in the label in the graph below. The number of isomorphism classes which are products of elliptic curves
can be derived from [28, Theorem 4.5] (which corrects parts of the statement of [33, Theorem 4.5]).
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(0, 1, ∗)
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(0, 4) (0, 2) (0, 1) (4,1)[2]

(2,2)[1]
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2
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We see that statements (1), (2) and (3) do not hold true for this isogeny class. Hence, also statement (*)
does not hold for this isogeny class: only the maximal order has maximal local-local part.

Example 8.5. Consider the polynomial

h = x8 − 6x7 + 18x6 − 36x5 + 68x4 − 144x3 + 288x2 − 384x+ 256.

It determines an isogeny class of geometrically simple abelian fourfolds over F16 with commutative endo-
morphism algebra E = Q[π] = Q[x]/h. The isogeny class has LMFDB label 4.4.ag s abk cq and p-rank 0,
but it is not supersingular. The algebra E has two places above p = 2 with slopes, ramification indices and
inertia degrees equal to (1/4, 2, 2), (3/4, 2, 2), respectively. Hence, this isogeny class satisfies conditions
(a) and (c), but not condition (b).

The order R = Z[π, 4/π] has two singular maximal ideals: one above 11, and one above 2 which

is in P(0,1)
R2

. The index of R in OE is 704 = 11 · 64. The output of Algorithm 4 consists of exactly 2
classes, which can be represented by the maximal order OE and the unique overorder T of R with index
[OE : T ] = 11. One then computes that R has 34 overorders S and for each of these w(S) = 1. It
follows from Proposition 8.1 that n(S) = d(S)h(S). Since the graph of inclusions of all overorders is
too unwieldy, in the following graph, we draw the lattice of inclusion of the overorders S of R which are
actually endomorphism rings for some X ∈ Aπ, that is, for which d(S) > 0.

(2,1)[1] (4,1)[2]

(2,1)[1] (4,1)[2]

(2,3)[1] (2,1)[1]

4

11 11

2

11

4

2

On the one hand, we see from the graph that (2) and (3) do not hold true for this isogeny class. Hence,
also statement (*) does not hold for this isogeny class: only the maximal order has maximal local-local
part. On the other hand, if one considers all overorder of R, the inclusion with index 4 does not factor
as the composition of two inclusions. It follows that this isogeny class satisfies condition (1).

Example 8.6. Consider the polynomial

h = x6 − x5 − 3x4 + 45x3 − 27x2 − 81x+ 729.

It determines an isogeny class of geometrically simple abelian threefolds over F9 with commutative endo-
morphism algebra E = Q[π] = Q[x]/h. The isogeny class has LMFDB label 3.9.ab ad bt and p-rank 1.
The algebra E has three places above p = 3 with slopes, ramification indices and inertia degrees equal
to (0, 1, 1), (1, 1, 1) and (1/2, 1, 4), respectively. Hence, this isogeny class satisfies conditions (a) and (b),
but not condition (c).
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The unique singular maximal ideal of the order R = Z[π, 9/π] is the maximal ideal (3, π, 9/π), which

is in P(0,1)
R3

. One computes that R has 4 overorders S and for each of these w(S) = 1. It follows from
Proposition 8.1 that n(S) = d(S)h(S).

(0, 60) (0, 30) (2,20)[1] (2,2)[2]3 3 9

Statements (1), (2) and (3) hold true for this isogeny class, but statement (*) does not hold, since only
the maximal order has maximal local-local part.

Example 8.7. Consider the polynomial

h = x6 + 11x5 + 60x4 + 208x3 + 480x2 + 704x+ 512.

It determines an isogeny class of abelian threefolds over F8 with commutative endomorphism algebra
E = Q[π] = Q[x]/h. The isogeny class has LMFDB label 3.8.l ci ia and p-rank 1. Any X ∈ Aπ is
isogenous to a product of a supersingular elliptic curve and an almost ordinary abelian surface.

The unique singular maximal ideal of the order order R = Z[π, 8/π] is the maximal ideal (2, π, 8/π),

which is in P(0,1)
R2

. One computes that R has 16 overorders S and for each of these w(S) = 1. It follows
from Proposition 8.1 that n(S) = d(S)h(S). If d(S) > 0 for an overorder S, then we add in the subscript of
the label, the a-numbers of the isomorphism classes of Dieudonné modules, using the exponent to denote
the number of isomorphism classes of Dieudonné modules with the indicated a-number. The unique
endomorphism ring with index 2 in the maximal order is the endomorphism ring of 7 isomorphism classes
of abelian varieties, all with pairwise non-isomorphic Dieudonné modules. Six of these isomorphism
classes of abelian varieties have a-number 1 while the last one has a-number 2. The only overorder of R
which is a direct product of two orders is the maximal order. We highlight this in the graph with a ∗ in
its label. This means that the only abelian varieties that are isomorphic to a product of an elliptic curve
and an abelian surface are the ones with maximal endomorphism ring.

(0, 2)

(0, 2) (0, 1) (0, 1) (0, 2)

(0, 8) (0, 4) (0, 2) (0, 2) (0, 1) (1,1, ∗)[2]

(0, 4) (0, 1) (4,1)[14] (7,1)[16,2]

(0, 2)

2

2

2

2 2

2 2

2

2

2

2

2

2

2 2

2

2

2

2

2

2
2

2
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2

Observations 8.8. We have computed the isomorphism classes of abelian varieties for several thousands
of isogeny classes (using lists of isogeny classes found in the LMFDB [19], which was compiled following
[8]) with commutative endomorphism algebra E = Q[π] of dimension g and p-rank < g−1 over non-prime
finite fields. We observed the following:

• the order R is never an endomorphism ring;

• there is always an endomorphism ring which is not maximal at the local-local part, that is, condition
(*) does not hold. Note that if this observation would always hold then the first implication in
Proposition 8.2 is actually an equivalence, and vice versa.

Remark 8.9. Over a prime field, every isogeny class contains an abelian variety with R as endomorphism
ring, see [3]. Moreover, over any finite field, any isogeny class of ordinary abelian varieties contains an
abelian variety with R as endomorphism ring, see [7].

Contrary to this, we showed in Example 5.6 that no almost-ordinary abelian variety over a non-prime
finite field has R as endomorphism ring.

36

http://www.lmfdb.org/Variety/Abelian/Fq/3/8/l_ci_ia


Recall that Proposition 4.14 says that if Aπ is an isogeny class over Fq with commutative endomor-
phism algebra which is non-ordinary and such that q = pa is not a prime, then the order R = Z[π, q/π]
is not maximal at the maximal ideal p = (p, π, q/π). The converse does not hold, as we show in the
following example.

Example 8.10. Let Aπ be an isogeny class of simple abelian surfaces over F2 with p-rank 0 determined
by the characteristic polynomial h(x) = x8 − 2x5 − 4x3 + 16; see the LMFDB-label 4.2.a a ac a. Let
E = Q(π) be the endomorphism algebra of the isogeny class. The order R = Z[π, 2/π] has a unique
maximal ideal above p = 2, which is p = (2, π, 2/π). One computes that the quotient p/p2 has 8
elements, while R/p ≃ F2. This shows that p is singular, that is, the order Rp is not maximal.

Notation

• Fq, a finite field with q = pa elements of characteristic p.

• Aπ, an isogeny class of abelian varieties over Fq with commutative endomorphism algebra E = Q[π],
where π is the Frobenius endomorphism.

• Aisom
π , the set of Fq-isomorphism classes in Aπ.

• Xπ = Xπ,p ×
∏

ℓ̸=p Xπ,ℓ, where Xπ,p (resp. Xπ,ℓ) is the set of isomorphism classes of Dieudonné
modules (resp. ℓ-Tate modules) in Aπ.

• for an order S and a set T of maximal ideals of S: W(S)T , the set of fractional S-ideals modulo
the relation Im ≃m Jm for all m ∈ T ; see Definition 3.1 (also for variants).

• h(x), the square-free characteristic polynomial of π.

• OE , the maximal order of E.

• Ep = E ⊗Q Qp =
∏

ν|pEν .

• R = Z[π, q/π]; Rp = R⊗Z Zp.

• L = Qp(ζq−1), the unramified extension of Qp of degree a.

• W = OL = Zp[ζq−1].

• σ, the Frobenius automorphism of L/Qp.

• for a place ν of Ep: eν , the ramification index; fν , the inertia degree; gν = gcd(a, fν); s(ν) =
valν(π)/aeν , the slope.

• τν , the Frobenius automorphism of LEν/Eν .

• pEν
(respectively pLEν

), the maximal ideal of OEν
(respectively OLEν

).

• A =
∏

ν|pAν , where Aν =
∏gν

j=1 LEν .

• ∆ : Ep ↪→ A, induced by the diagonal embeddings Eν ↪→ Aν .

• Fν : Aν → Aν , an additive map satisfying the Frobenius property, that is, F a
ν = ∆|Eν

(πν) and
Fνλ = λσFν , for every λ ∈ L.

• F = (Fν)ν|p acting of A =
∏

ν|pAν .

• Fν with the Frobenius property is of W -type if Fν(z) = αν · zσ, where αν = (1, . . . , 1, uν) ∈ Aν

with NLEν (uν) = πν ; see Definition 4.4.

• V = pF−1.

• WR = W ⊗Zp
R.
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• for ∗ = {0}, (0, 1) or {1}: P∗
Rp

, the set of maximal ideal of Rp below a place ν with s(ν) ∈ ∗.

• Rp = R
{0}
p ⊔R(0,1)

p ⊔R{0}
p , where R∗

p = Rp ∩
∏

ν:s(ν)∈∗Eν .

• for ∗ = {0}, (0, 1) or {1}: E∗, A∗, W ∗
R, F ∗, V ∗, etc. denote the ∗-part of the corresponding object.

• for the local-local part (i.e the (0, 1)-part), we use also ′: E′, A′, W ′
R, F ′, V ′, etc.

• Υ, the set of ∆′-isomorphism classes of fractional W ′
R{F ′, V ′}-ideals with multiplicator ring OA′ ;

see Definition 4.20.

• Cπ, a category of pairs (I,M) where I is a fractional R-ideal in E, and M is a WR{F, V }-ideal such
that ∆−1(M) = ip(I)Rp; morphisms are HomCπ

((I,M), (J,N)) = {α ∈ E|αI ⊆ J,∆(ip(α))M ⊆
N}; see Definition 5.1.

• Ã (resp. Ã′, W̃R, etc.), the ‘global version’ of A (resp. A′, WR, etc.); see Subsection 6.1.
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[15] Markus Kirschmer and Jürgen Klüners, Chow groups of orders in number fields, arXiv e-prints
(2022), arXiv:2208.14688.

[16] Markus Kirschmer, Fabien Narbonne, Christophe Ritzenthaler, and Damien Robert, Spanning the
isogeny class of a power of an elliptic curve, Math. Comp. 91 (2021), no. 333, pp. 401–449.
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