When alpha-complexes collapse onto codimension-1 submanifolds - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

When alpha-complexes collapse onto codimension-1 submanifolds

Bianca B. Dornelas
  • Fonction : Auteur
  • PersonId : 1443706
André Lieutier
  • Fonction : Auteur
  • PersonId : 1134066

Résumé

Given a finite set of points P sampling an unknown smooth surface M in R3, our goal is to triangulate M based solely on P. Assuming M is a smooth orientable submanifold of codimension 1 in Rd, we introduce a simple algorithm, Naive Squash, which simplifies the alpha-complex of P by repeatedly applying a new type of collapse called vertical relative to M. Naive Squash also has a practical version that does not require knowledge of M. We establish conditions under which both the naive and practical Squash algorithms output a triangulation of M. We provide a bound on the angle formed by triangles in the alpha-complex with M, yielding sampling conditions on P that are competitive with existing literature for smooth surfaces embedded in R3, while offering a more compartmentalized proof. As a by-product, we obtain that the restricted Delaunay complex of P triangulates M when M is a smooth surface in R3 under weaker conditions than existing ones.
Fichier principal
Vignette du fichier
2411.10388v1.pdf (2.36 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04790473 , version 1 (19-11-2024)

Licence

Identifiants

Citer

Dominique Attali, Mattéo Clémot, Bianca B. Dornelas, André Lieutier. When alpha-complexes collapse onto codimension-1 submanifolds. 2024. ⟨hal-04790473⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More