A NOTE ON CONTRACTIVE SEMI-GROUPS ON A 1:1 JUNCTION FOR SCALAR CONSERVATION LAWS AND HAMILTON-JACOBI EQUATIONS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

A NOTE ON CONTRACTIVE SEMI-GROUPS ON A 1:1 JUNCTION FOR SCALAR CONSERVATION LAWS AND HAMILTON-JACOBI EQUATIONS

Résumé

We show that any continuous semi-group on $L^1$ which is (i) $L^1-$contractive, (ii) satisfies the conservation law $\partial_t \rho+\partial_x(H(x,\rho))=0$ in $\R_+\times (\R\backslash\{0\})$ (for a space discontinuous flux $H(x,p)= H^l(p) {\bf 1}_{x<0}+ H^r(p) {\bf 1}_{x>0}$), and (iii) satisfies natural continuity and scaling properties, is necessarily given by a germ condition at the junction: $\rho(t,0)\in \mathcal G$ a.e., where $\mathcal G$ is a maximal, $L^1-$dissipative and complete germ. In a symmetric way, we prove that any continuous semi-group on $L^\infty$ which is (i) $L^\infty-$contractive, (ii) satisfies with the Hamilton-Jacobi equation $\partial_t u+H(x,\partial_x u)=0$ in $\R_+\times (\R\backslash\{0\})$ (for a space discontinuous Hamiltonian $H$ as above), and (iii) satisfies natural continuity and scaling properties, is necessarily given by a flux limited solution of the Hamilton-Jacobi equation.
Fichier principal
Vignette du fichier
Identification20240930.pdf (190.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04789248 , version 1 (18-11-2024)

Identifiants

  • HAL Id : hal-04789248 , version 1

Citer

Pierre Cardaliaguet. A NOTE ON CONTRACTIVE SEMI-GROUPS ON A 1:1 JUNCTION FOR SCALAR CONSERVATION LAWS AND HAMILTON-JACOBI EQUATIONS. 2024. ⟨hal-04789248⟩
0 Consultations
0 Téléchargements

Partager

More