Pré-Publication, Document De Travail Année : 2024

Mirror Descent Algorithms for Risk Budgeting Portfolios

Mirror Descent Algorithms for Risk Budgeting Portfolios

Résumé

This paper introduces and examines numerical approximation schemes for computing risk budgeting portfolios associated to positive homogeneous and sub-additive risk measures. We employ Mirror Descent algorithms to determine the optimal risk budgeting weights in both deterministic and stochastic settings, establishing convergence along with an explicit non-asymptotic quantitative rate for the averaged algorithm. A comprehensive numerical analysis follows, illustrating our theoretical findings across various risk measures -including standard deviation, Expected Shortfall, deviation measures, and Variantiles -and comparing the performance with that of the standard stochastic gradient descent method recently proposed in the literature.

Fichier principal
Vignette du fichier
article.pdf (2.46 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04787053 , version 1 (18-11-2024)

Identifiants

  • HAL Id : hal-04787053 , version 1

Citer

Martin Arnaiz Iglesias, Adil Rengim Cetingoz, Noufel Frikha. Mirror Descent Algorithms for Risk Budgeting Portfolios. 2024. ⟨hal-04787053⟩

Collections

UNIV-PARIS1
26 Consultations
9 Téléchargements

Partager

More