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Abstract

This paper introduces and examines numerical approximation schemes for
computing risk budgeting portfolios associated to positive homogeneous and
sub-additive risk measures. We employ Mirror Descent algorithms to deter-
mine the optimal risk budgeting weights in both deterministic and stochastic
settings, establishing convergence along with an explicit non-asymptotic quan-
titative rate for the averaged algorithm. A comprehensive numerical analysis
follows, illustrating our theoretical findings across various risk measures – in-
cluding standard deviation, Expected Shortfall, deviation measures, and Vari-
antiles – and comparing the performance with that of the standard stochastic
gradient descent method recently proposed in the literature.

Keywords: Risk Budgeting, risk measures, Mirror Descent, Monte Carlo,
numerical finance.
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1 Introduction

The financial problem of constructing investment portfolios has often been analyzed
as a mathematical optimization problem, at least since Markowitz [31] formulated
it as maximizing a portfolio’s expected return under a constraint on risk, defined
by variance. Solving this problem to obtain the optimal portfolio typically requires
numerical methods, except in trivial cases where analytical solutions exist, such as
when the only constraint is that portfolio weights sum to one. Today, efficient tools
exist to compute this portfolio under almost any set of convex constraints, given
the expected return vector and the covariance matrix of asset returns (see [32], [46],
and [13]). However, this framework is rarely adopted in its classical form in real-life
applications, mainly due to the fact that it heavily depends on accurate estimates of
expected returns, variances, and covariances. Small errors in these inputs, especially
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in expected returns, can lead to vastly different and potentially suboptimal portfolio
allocations ([12] and [34]).

Alternative portfolio construction approaches that prioritise risk management
and diversification over return maximisation have thus been proposed – especially
following the dot-com crash and the Great Financial Crisis – to address investment
objectives beyond optimising a mean-variance criterion. Risk budgeting is one such
approach, aiming to construct a long-only portfolio in which each asset contributes
to the portfolio’s total risk according to a risk budget specified by the investor. For
a comprehensive introduction, we refer to [44]. This method is thus closely aligned
with the principles of diversification, helping to mitigate concentrated risks within
the portfolio.

The risk budgeting problem is mathematically formulated as a system of nonlin-
ear equations, which also corresponds to the first-order conditions of a constrained
convex minimisation problem. Leveraging this variational characterisation, and un-
der positive homogeneous and sub-additive risk measures, the existence of a unique
solution has been extensively studied in the literature; see, for example, [14] and
[15]. However, an analytical solution is generally not obtainable, prompting the
development of various numerical methods for computing risk budgeting portfolios.

Volatility has been one of the earliest and most extensively studied risk mea-
sures in the context of risk budgeting [38]. Initial efforts, including those by [30] and
[6], focused on minimizing a least-squares formulation. Subsequently, [17] proposed
employing Newton’s method, with [45] further advancing this approach by demon-
strating the feasibility of Nesterov acceleration, leveraging the self-concordant nature
of the objective function to achieve provable convergence. Additionally, [28] advo-
cates for a cyclical coordinate descent algorithm, which proves particularly efficient
for high-dimensional portfolios.

Risk measures beyond volatility have also attracted interest in risk budgeting.
Expected Shortfall (ES for short) is one of the most extensively studied, as it is
considered to be more representative of the true risk of financial investments and
satisfies certain desirable mathematical properties, as outlined in [2] and [40]. For
example, [33] proposes formulating the problem as a second-order cone program
when asset returns are modeled by discrete distributions. For continuous distri-
butions, [22] introduces a cutting planes algorithm, while [4] develops a numerical
procedure based on a novel ES estimator that also facilitates statistical inference of
ES-based risk budgeting portfolios. Other risk measures have also been considered,
such as Mean Absolute Deviation (MAD) [3] and Expectiles [10], highlighting the
importance of flexibility in defining risk using a diverse set of risk measures in the
risk budgeting framework.

A comprehensive stochastic formulation of the risk budgeting problem is pre-
sented in [15], grounded in a unified probabilistic framework applicable to a wide
range of risk measures. Specifically, the problem is cast as a stochastic optimisation
task whenever the risk measure can be represented as the minimum of a convex
function expressed in expectation form—a structure that encompasses, for instance,
Bayes risk measures [23]. To enable the computation of risk budgeting portfolios
across an extensive class of risk measures—including entire families of spectral risk
measures [1] and deviation measures as defined in [42]—the authors of [15] pro-
pose employing a standard projected stochastic gradient descent (SGD) algorithm,
though its convergence properties are not examined.

Our primary objective in this paper is to propose and study Mirror Descent
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(MD) algorithms for computing risk budgeting portfolios associated with general
positive homogeneous and sub-additive risk measures. Originating from the pi-
oneering work of Nemirovskij and Yudin [36], MD provides a natural framework
for addressing optimisation problems, particularly when the mirror mapping (also
known as proximal mapping) is explicit. MD has the appealing property of defining
a smooth trajectory that remains within the constrained set, thus eliminating the
need for additional projection steps, as required in the SGD algorithm proposed in
[15]. This effectively pushes the boundaries of the domain to an infinite distance
from any interior point. For a comprehensive introduction and extensions to the
stochastic setting and convex-concave stochastic saddle-point problems, we refer to
[37] and [35]. Additional almost sure convergence results for convex and non-convex
stochastic optimisation problems can be found in [29] and [47]. We also refer to the
recent work [18] in which a stochastic MD scheme is proposed for optimal portfolio
allocation with ES penalty. Thus, MD appears to be a natural method to implement
for solving the constrained convex minimisation problem associated with the risk
budgeting problem.

However, a key assumption for deriving L1(P) convergence (also known as re-
gret bounds) and concentration inequalities for MD schemes – the boundedness of
the objective’s gradient – is not satisfied in our context. Indeed, the gradient of
the objective function diverges on the boundary of the domain, preventing direct
application of standard results (see, e.g. [35]). To overcome this major challenge,
we instead employ a tailored, tamed version of the gradient, which, like the original
gradient, vanishes only at the unique minimiser of the objective function but re-
mains uniformly bounded across the entire domain. This modified gradient enables
us to develop both deterministic and stochastic MD schemes and to establish their
convergence to the unnormalised risk budgeting portfolio for general risk measures
under mild assumptions. In both deterministic and stochastic settings, we further
establish a non-asymptotic a.s. convergence rate for the weighted averaged sequence.
Our stochastic framework accommodates a wide range of risk measures, including
volatility, ES, deviation measures, and Variantiles, among others. To the best of
our knowledge, our scheme is the first to ensure a.s. convergence along with a non-
asymptotic quantitative convergence rate for computing risk budgeting portfolios
across general risk measures.

The paper is organized as follows. In Section 2, we briefly introduce the risk
budgeting problem, emphasising its formulation as the solution to a strictly con-
vex optimisation problem, which serves as the cornerstone for our analysis in the
subsequent sections. Section 3 begins by presenting our tailored, tamed version of
the gradient and some key results essential for establishing the convergence of our
schemes. We then introduce our deterministic MD (DMD) algorithm, providing con-
vergence results along with a convergence rate for the weighted averaged sequence.
Next, we propose and analyse a stochastic MD (SMD) scheme in a stochastic frame-
work where the risk measure is expressed as the minimum of a convex map. We
establish the a.s. convergence of the SMD algorithm, along with a non-asymptotic
a.s. convergence rate for the weighted average sequence. In Section 4, we conduct an
extensive numerical analysis to assess the practical advantages of the MD approach
over standard projected gradient descent methods, particularly in the stochastic
setting, for accurately computing risk budgeting portfolios of various sizes under
different risk measures. The proofs of the main and auxiliary results are deferred to
Appendix A.
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Notations: R0 stands for R\{0} and R0
+ for R+\{0}. For a vector x ∈ Rd, we write

∥x∥ = ∥x∥1 =
∑d

i=1 |xi| for its norm and ∥x∥∞ = max1≤i≤d |xi| = sup∥y∥1≤1⟨y, x⟩
stands for the dual norm of ∥.∥1. The simplex of dimension d is denoted by ∆d ={
u ∈ Rd

+ : u1 + · · ·+ ud = 1
}

and we let let ∆>0
d :=

{
u ∈ (R0

+)
d : u1 + · · ·+ ud = 1

}
.

2 The Risk Budgeting Problem

We consider a financial market composed of d assets whose returns are given by the
Rd-valued random variable X on a probability space (Ω,F ,P) which is assumed to
be rich enough to accommodate all of the subsequent random variables. A financial
portfolio is identified with its corresponding vector of weights u = (u1, · · · , ud)
belonging to the simplex ∆d. If the portfolio is given by the vector u ∈ ∆d, then
−⟨u,X⟩ = −

∑d
i=1 uiXi corresponds to its loss, recalling that ⟨., .⟩ stands for the

Euclidean scalar product on Rd.
In order to assess the risk of the loss of a financial portfolio, we consider a risk

measure ρ that is a function mapping a random variable Z to the real number
ρ(Z) ∈ R. We deliberately omit the space on which ρ is defined but typically one
has Z ∈ L0(P), L1(P) or L2(P).

The risk measure ρ is said to be risk budgeting compatible (RB-compatible for
short) if it is positive homogeneous and sub-additive, namely if for any λ ≥ 0,

ρ(λZ) = λρ(Z) (PH)

and, for any real-valued random variables Z1 and Z2

ρ(Z1 + Z2) ≤ ρ(Z1) + ρ(Z2). (SA)

To any RB-compatible risk measure ρ, we associate the map

rρ : Rd
+ ∋ y → ρ(−⟨y,X⟩) ∈ R.

In particular, the risk associated to the portfolio u is thus given by rρ(u) =
ρ(−⟨u,X⟩).

In what follows, we will always assume that the map rρ is continuous on Rd
+

and continuously differentiable on the open set (R0
+)

d. The positive homogeneity
property of the risk measure ρ combined with Euler’s homogeneous function theorem
implies that the risk linked with a portfolio represented by its vector of weights u
can be decomposed as follows

rρ(u) =

d∑
i=1

ui∂uirρ(u), u ∈ ∆>0
d . (2.1)

In the risk budgeting literature, the i-th term of the above sum, ui∂uirρ(u), is
referred to as the risk contribution of asset i to the overall portfolio risk. The risk
budgeting problem, therefore, involves identifying a vector of weights u⋆ such that
the risk contributions align with predetermined proportions, represented by a vector
of risk budgets b, of the total risk.

To be more specific, for a given vector of risk budget b ∈ ∆>0
d , we say that

u ∈ ∆>0
d solves the risk budgeting problem RBb if the following condition holds:

ui∂uirρ(u) = birρ(u), i = 1, · · · , d.
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Throughout the paper, we will assume that the risk of any long-only portfolio is
positive, that is, rρ(u) > 0, for any u ∈ ∆d. We refer to [15] and also [8, 24] where
a similar assumption is made in the context of ES and shortfall risk minimization.

The existence and uniqueness of a vector of weights that solves RBb for a given
vector of risk budgets b ∈ ∆>0

d , along with its characterization as the solution to a
strictly convex optimization problem, has been investigated in several works, see for
instance [4, 15, 14, 28, 45]. Here, we recall the characterization provided in [15].

Theorem 2.1. [15, Theorems 1 and 2] Let b ∈ ∆>0
d . Let g : R+ → R be a

continuously differentiable, convex and increasing function. Let the function Γg :
(R0

+)
d → R be defined by

Γg : y 7→ g(rρ(y))−
d∑

i=1

bi log yi.

There exists a unique minimizer y⋆ of the strictly convex function Γg satisfying
∇Γg(y

⋆) = 0 and

u∗ :=
y⋆

∥y⋆∥1
solves the risk budgeting problem RBb. Moreover, if u is a solution to RBb then

u = u⋆.

We highlight that this result serves as the cornerstone of our analysis. Indeed,
the numerical schemes we propose will be specifically designed to target the unique
minimizer y⋆ of the aforementioned strictly convex optimization problem. Theorem
2.1 subsequently demonstrates that the renormalized minimizer yields the unique
solution to the risk budgeting problem RBb.

3 Mirror Descent Algorithm

To solve the minimization problem introduced in Theorem 2.1, we are naturally led
to use gradient descent schemes and their stochastic counterpart when the map ρ
writes as an expectation of a random function. However, several specific difficulties
appear. The first one is the fact that the gradient of Γg diverges on ∂(R0

+)
d due to

the presence of the term
∑d

i=1 bi log(yi), thus requiring a specific treatment. The
second difficulty is that the minimization problem is set over (R0

+)
d and not Rd.

To address the first challenge, we will employ a tailored, tamed version of the
gradient, which, like ∇Γg, vanishes only at the unique minimizer of Γg. The second
challenge, stemming from the constrained nature of the minimisation problem, is
managed using the MD algorithm-a flexible optimisation technique widely used in
convex optimisation and machine learning, as noted in the introduction. This algo-
rithm has the advantageous property of defining a trajectory that remains entirely
within the constrained set, thereby eliminating the need for additional projection
steps that could be difficult to implement in practice.

3.1 Taming the singularity of the gradient

The target of our MD algorithm is the unique minimizer y⋆ of the strictly convex
map Γg. However, as already mentioned, a significant challenge in efficiently im-
plementing this scheme lies in the divergence of the gradient at the boundary of its
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domain ∂(R0
+)

d. Specifically, since bi > 0, it follows that ∂yiΓg(y) → −∞, as soon
as yi ↓ 0 for some i ∈ {1, · · · , d}. Hence, supy∈(R0

+)d ∥∇Γg(y)∥∞ = ∞.
As highlighted in [35], the boundedness of the objective function’s gradient on the

constrained set is a crucial prerequisite for establishing a quantitative convergence
rate for this type of recursive procedure.

In order to circumvent this major difficulty, we build our numerical procedure
on a tamed version of ∇Γg. We let y = min1≤i≤d yi and define

κ(y) = y ∧ 1, y ∈ Rd
+.

We then remark that the map (R0
+)

d ∋ y 7→ κ(y)∇Γg(y) can be extended by
continuity on Rd

+.1 Indeed, note that if yi = 0 for some i ∈ {1, · · · , d}, then, y = 0
so that

(κ(y)∇Γg(y))j = y g′(rρ(y))∂yjrρ(y)− bj
y

yj

=

{
−bj , if yj = y = 0

0, otherwise

so that κ(y)∇Γg(y) ̸= 0 on Rd
+\(R0

+)
d. We thus conclude that the unique minimizer

y⋆ of Γg satisfies

{y∗} =
{
y ∈ (R0

+)
d : ∇Γg(y) = 0

}
=

{
y ∈ Rd

+ : κ(y)∇Γg(y) = 0
}
.

It is here important to emphasize that, in contrast to ∇Γg, the map y 7→
κ(y)∇Γg(y) remains bounded on any centred closed ball Bm of radius m and di-
mension d, since for any y ∈ Bm, the following holds

∥κ(y)∇Γg(y)∥∞

≤ max
y∈Bm

{
g′(rρ(y))∥∇rρ(y)∥∞

}
+ max

1≤i≤d
bi
y ∧ 1

yi

≤ M⋆(m, b, d) := max
y∈Bm

{
g′(rρ(y))∥∇rρ(y)∥∞

}
+ max

1≤i≤d
bi.

(3.1)

We conclude this section by the following technical lemma that will play a central
role to address the convergence of our algorithm.

Lemma 3.1. For all y ∈ Rd
+, y ̸= y⋆, it holds

⟨y − y⋆, κ(y)∇Γg(y)⟩ > 0.

Proof. The strict convexity of Γg guarantees that the desired property holds on
(R0

+)
d. Now, if y ∈ Rd

+\(R0
+)

d then y = 0 so that

⟨y − y⋆, κ(y)∇Γg(y)⟩ =
∑

j:yj=0

(yj − y⋆j )(−bj) =
∑

j:yj=0

y⋆j bj > 0

which concludes the proof.
1Throughout the article, we will use the convention 0/0 = 1.
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3.2 Deterministic Mirror Descent Algorithm

Although our primary objective is to address the stochastic framework, where ρ is
expressed as an expectation, in certain practical settings the function y 7→ rρ(y) =
ρ(−⟨y,X⟩) is known explicitly or semi-explicitly. In such cases, it is advantageous
to rely on a deterministic Mirror Descent (DMD) algorithm to approximate y⋆. We
introduce the Bregman divergence

DF (y, y
′) = F (y)− F (y′)− ⟨∇F (y′), y − y′⟩, y, y′ ∈ (R+)

d

generated by the negative entropy function F (y) =
∑d

i=1 yi log(yi), y ∈ Rd
+. The

map DF is also known as the Kullback–Leibler divergence inasmuch it satisfies

DF (y, y
′) =

d∑
i=1

yi log(yi/y
′
i)−

d∑
i=1

yi +
d∑

i=1

y′i.

Let m > 0. Using the fact that the map [0,m] ∋ y 7→ y log(y)− 1
2my2 is convex,

one deduces

DF (y, y
′) ≥ 1

2m
∥y − y′∥21, for any y, y′ ∈ Rd

+ ∩Bm. (3.2)

Let (γk)k≥1 be a deterministic positive learning sequence. Starting from y0 ∈
(R0

+)
d ∩ Bm, the deterministic MD algorithm constructs the sequence (yk)k≥1 in-

ductively where at step k, given yk ∈ (R0
+)

d ∩ Bm, yk+1 is obtained by solving the
optimization problem

yk+1 = Pm
yk(γk+1κ(y

k)∇Γg(y
k))

where, for a given y ∈ (R0
+)

d ∩Bm, the proximal mapping Pm
y : Rd → (R0

+)
d ∩Bm,

associated with DF , is defined by

Pm
y (v) = argmin

w∈(R0
+)d∩Bm

{⟨v, w − y⟩+DF (y, w)} =


ye−v, if ∥ye−v∥1 ≤ m,

m
∥ye−v∥1 ye

−v, otherwise,
(3.3)

where ye−v = (y1e
−v1 , · · · , yde−vd).

The key point here is that the unique solution to the above constrained strictly
convex minimization problem is explicit. Indeed, from (3.3), it directly follows that
yk+1 = (yk+1

1 , · · · , yk+1
d ), for k ≥ 0, is given by

yk+1
i = (Pm

yk(γk+1κ(y
k)∇Γg(y

k)))i

=


yki e

−γk+1κ(y
k) ∂yiΓg(yk), if ∥yke−γk+1κ(y

k)∇Γg(yk)∥1 ≤ m,

m

∥yke−γk+1κ(y
k)∇Γg(yk)∥1

yki e
−γk+1κ(y

k))∂yiΓg(yk), otherwise

i = 1, · · · , d.

(3.4)
The recursive scheme outlined above can be implemented as soon as the gradient

∇Γg is available. The following theorem presents the principal result of this section,
with its proof deferred to Appendix A.1.
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Theorem 3.1. Assume that m ≥ ∥y⋆∥1. Assume additionally that the learning step
sequence (γn)n≥1 satisfies

∑
n≥1 γn = ∞ and

∑
n≥1 γ

2
n < ∞. Then, the sequence

(yn)n≥0 defined by (3.4) converges to y⋆ as n ↑ ∞. Moreover, the weighted averaged
sequence (ȳn)n≥1 of (yn)n≥0 defined by

ȳn =

∑n
k=1 γky

k−1∑n
k=1 γk

, n ≥ 1,

satisfies

Γg(ȳ
n)− Γg(y

⋆) ≤
DF (y

⋆, y0) + 1
2mM2

⋆

∑n
k=0 γ

2
k+1

(min0≤k≤n−1 yk ∧ 1)
∑n

k=0 γk+1
, n ≥ 1, (3.5)

where M⋆ is given by (3.1).

Remark 1. Concerning the convergence rate given by (3.5), under the two con-
ditions

∑
n≥1 γn = ∞ and

∑
n≥1 γ

2
n < ∞, one may select γn = γn− 1

2
−δ, with

δ ∈ (0, 1/2] and γ > 0. A straightforward comparison between series and integrals
then yields

Γg(ȳ
n)− Γg(y

⋆) ≤ Kn− 1
2
+δ, n ≥ 1.

Alternatively, choosing γn = n−1/2 log(n)−( 1
2
+δ), for some δ > 0, ensures that

the Bertrand series
∑

n≥1 γ
2
n converges, yielding

Γg(ȳ
n)− Γg(y

⋆) ≤ K
(log n)

1
2
+δ

√
n

, n ≥ 1,

for some constant K < ∞ which depends on m, d, M⋆ and δ. Thus, we recover the
usual convergence rate achieved by deterministic MD schemes, up to a logarithmic
factor [35].

Remark 2. An explicit bound for the initialisation error term DF (y
⋆, y0) can be

established in terms of the parameter m and the dimension d by appropriately choos-
ing y0. Specifically, if y0 is selected as argminRd

+∩Bm
F = e−1(1, · · · , 1) if m ≥ e−1d

or md−1(1, · · · , 1) otherwise, then F (y0) = minRd
+∩Bm

F ≥ −de−1. Furthermore,
if m ≤ 1 then since F ≤ 0 on Rd

+ ∩ Bm, we have maxRd
+∩Bm

F ≤ 0; whereas, if

m ≥ 1, then F (x) = ∥x∥1
∑d

i=1

{
xi

∥x∥1 log(
xi

∥x∥1 ) +
xi

∥x∥1 log(∥x∥1)
}

≤ m log(m) for

any x ∈ Rd
+ ∩Bm. Hence,

DF (y
⋆, y0) ≤ max

Rd
+∩Bm

F − min
Rd
+∩Bm

F ≤ (m log(m))+ +
d

e
.

This upper bound is particularly valuable as it illuminates the dependence of the
convergence rate on the dimension, indicating that this rate grows at most linearly
with d.

Remark 3. The above result indicates that one must select m sufficiently large,
ensuring that m ≥ ∥y⋆∥1. Given that y⋆ is unknown, this necessitates a some-
what arbitrary choice for the user.2 From a numerical standpoint, it is evident that

2In fact, one can use the identity rρ(y
⋆) = 1

g′(rρ(y⋆))
(from Theorem 2.1) to determine a reason-

able choice for m ≥ ∥y⋆∥1. For example, when g = Id, this implies rρ(y
⋆) = 1, indicating that the

risk of the portfolio under the weights y⋆ equals 1. This equality provides insight into the order of
magnitude of the elements of y⋆.
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choosing m too small – such that m < ∥y⋆∥1 – will prevent the algorithm from con-
verging to y⋆. With respect to the convergence rate, although the upper bound is
indeed influenced by selecting an excessively large value of m, we do not observe a
significant impact on the convergence rate of the weighted averaged sequence (ȳn)n≥1

during practical implementations. We refer the reader to Section 4 for a discussion
of numerical evidence.

3.3 Stochastic Mirror Descent

3.3.1 Stochastic framework

In this section, we propose and analyze a stochastic version of the previous MD
algorithm within a stochastic framework. This is achieved in the presence of a
convex loss function R2 ∋ (ξ, x) 7→ L(ξ, x), such that L(ξ,−⟨y,X⟩) ∈ L1(P) for any
(ξ, y) ∈ R× Rd

+, and satisfying the condition:

g(rρ(y)) = min
ξ∈R

E[L(ξ,−⟨y,X⟩)] = E[L(ξ⋆(y),−⟨y,X⟩)], y ∈ (R0
+)

d, (3.6)

where the minimizer ξ⋆(y) is assumed to be uniquely defined for every y ∈ (R0
+)

d.
As already noticed in [15], when g = Id, the associated risk measure is linked to

the notions of Bayes pair and Bayes risk measure mathematically characterized as
the minimization of an expected loss function over a set of possible decisions [23].
Such risk measures ensure robust risk minimization and optimal decision-making
under uncertainty.

From both practical and theoretical perspectives, it is valuable to consider the
general framework where g ̸= Id. Perhaps the most significant example is volatility,
which attains its minimum under the square map g(x) = x2.While a stochastic al-
gorithm may not be the most efficient numerical method for addressing the problem
when volatility is chosen as the risk measure, it is crucial that the stochastic frame-
work accommodates volatility, as it is the most widely used risk measure in the risk
budgeting paradigm. Other examples include Lp-deviation risk measures for p ≥ 1,
which similarly are characterized by a minimum under the map g(x) = xp. For a
more detailed discussion, we refer to Section 3.3.3.

In this framework, the optimization problem related to the RB problem equiva-
lently writes

min
y∈(R0

+)d
Γg(y) = min

z:=(ξ,y)∈R×(R0
+)d

{h(z) := E [H(z,X)]} (3.7)

where

H(z,X) := L(ξ,−⟨y,X⟩)−
d∑

i=1

bi log(yi), z = (ξ, y) ∈ R× (R0
+)

d.

The following result demonstrates the existence of a solution to the above opti-
mization problem, which, in turn, provides the unique solution to the risk budgeting
problem. The proof of this result is deferred to Appendix A.2.

Proposition 3.1. Assume that the function (ξ, x) 7→ L(ξ, x) satisfies the following
regularity and integrability conditions:
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• P(X /∈ DL) = 0 where

DL =
{
x ∈ Rd : R× (R0

+)
d ∋ (ξ, y) 7→ L(ξ,−⟨y, x⟩) is continuously differentiable

}
.

• For any centered ball BR ⊂ R× (R0
+)

d of radius R > 0,

sup
(ξ,y)∈BR

{|∂ξL(ξ,−⟨y,X⟩)|+ |X||∂xL(ξ,−⟨y,X⟩)|} ∈ L1(P).

Then, the map h is continuously differentiable on R× (R0
+)

d with

∂ξh(ξ, y) = E[∂ξL(ξ,−⟨y,X⟩)] and ∂yih(ξ, y) = E
[
−Xi∂xL(ξ,−⟨y,X⟩)− bi

yi

]
, i = 1, · · · , d,

so that
Argminh =

{
z ∈ R× (R0

+)
d : ∇h(z) = 0

}
.

Moreover, if (ξ⋆, y⋆) ∈ Argminh, then y⋆ is the unique minimizer of Γg so that
u⋆ = y⋆

∥y⋆∥1 is the unique solution to the risk budgeting problem RBb.

The above proposition suggests that, to solve the original risk budgeting problem,
we must address the stochastic optimization problem (3.7). To this end, we develop
a stochastic Mirror Descent (SMD) algorithm with limiting point in {∇h = 0}.

As it can be noticed, somehow we end up with the same difficulty as before since
the gradient of H(., X) is unbounded due to the presence of the term

∑d
i=1 bi log(yi).

We thus apply the same taming technique as in the deterministic framework, namely,
similarly to what we observed in Section 3.1, it holdsz ∈ R× (R0

+)
d : ∇h(z) = E

 ∂ξH(z,X)

∇yH(z,X)

 = 0


=

z ∈ R× (R+)
d : E

 ∂ξH(z,X)

κ(y)∇yH(z,X)

 = 0

 .

recalling that κ(y) = y ∧ 1 and y = min1≤i≤d yi.
Indeed, similarly to the deterministic case, if z ∈ R× (Rd

+\(R0
+)

d) then y = 0 so
that κ(y)∂yiH(z,X) = −bi ̸= 0 if yi = 0 and 0 otherwise, which in turn implies

E

 ∂ξH(z,X)

κ(y)∇yH(z,X)

 ̸= 0 for z ∈ R× (Rd
+\(R0

+)
d).

Analogously to the previous approach, we will construct our SMD algorithm
using (∂ξH(z,X), κ(y)∇yH(z,X)) instead of ∇H(z,X). The following result, akin
to Lemma 3.1 follows from the convexity of h, and its proof is therefore omitted.

Lemma 3.2. For all z ∈ R× Rd
+, z ̸= z⋆ := (ξ⋆, y⋆), it holds〈

z − z⋆,E

 ∂ξH(z,X)

κ(y)∇yH(z,X)

〉 > 0.
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3.3.2 Stochastic Mirror Descent algorithm

In order to deal with the couple z = (ξ, y), we will work with the so-called Bregman
divergence over pairs defined by

DG(z, z
′) =

1

2
(ξ − ξ′)2 +DF (y, y

′), z, z′ ∈ R× (R0
+)

d,

associated to the map

G(z) =
1

2
ξ2 + F (y), z = (ξ, y) ∈ R×Bm,

recalling that F stands for the negative entropy function. From (3.2), we readily
get

DG(z, z
′) ≥ 1

2
(ξ− ξ′)2+

1

2m
∥y−y′∥21 ≥

1

4(m ∨ 1)
∥z− z′∥21, z, z′ ∈ R× (Rd

+∩Bm).

(3.8)
Let (γk)k≥1 be a deterministic positive learning sequence as before. Starting from

an initial point z0 = (ξ0, y0) ∈ R×(R0
+)

d, the SMD algorithm generates the sequence
(zk)k≥1 inductively. At each iteration k, given zk = (ξk, yk) ∈ R×((R0

+)
d∩Bm), the

update vector zk+1 = (ξk+1, yk+1) is obtained by solving the following optimization
problem:

zk+1 = Pm
zk

γk+1

 ∂ξH(zk, Xk+1)

κ(yk)∇yH(zk, Xk+1)


where, for a given z ∈ R × ((R0

+)
d ∩ Bm), the proxymal mapping Pm

z : R × Rd →
R× ((R0

+)
d ∩Bm), associated to DG, is defined by

Pm
z (v) = argmin

w∈R×((R0
+)d∩Bm)

{⟨v, w − z⟩+DG(z, w)} , (3.9)

and (Xk)k≥1 is a sequence of i.i.d. copies of X, independent of z0.
Analogous to the deterministic case, the unique solution to the above strongly

convex minimization problem is explicit. Specifically, for k ≥ 0, the update rule for
zk+1 = (ξk+1, yk+1) is given by:{

ξk+1 = ξk − γk+1∂ξH(zk, Xk+1)

yk+1 = Pm
yk(γk+1κ(y

k)∇yH(zk, Xk+1))
(3.10)

where, for y ∈ (R0
+)

d, the proxymal map Pm
y is defined as in (3.3). We also introduce

the natural filtration F = (Fk)k≥0, Fk = σ(ξ0, y0, X
1, . . . , Xk), k ≥ 0, associated

with the SMD scheme (zk)k≥0.
The following theorem presents the central result of this section, establishing the

a.s. convergence of the sequence (zn)n≥0, alongside an a.s. convergence rate for the
associated weighted averaged sequence (z̄n)n≥1 along its trajectory. The proof of
this result is deferred to Appendix A.3.

Theorem 3.2. Assume that m ≥ ∥y⋆∥1, that the regularity and integrability condi-
tions on the function L of Proposition 3.1 are satisfied and that

sup
(ξ,y)∈R×(Rd

+∩Bm)

{
E[(∂ξL(ξ,−⟨y,X⟩))2] + E[X2

i (∂xL(ξ,−⟨y,X⟩))2]
}
< ∞, 1 ≤ i ≤ d.

(3.11)
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Assume additionally that the learning step sequence (γn)n≥1 satisfies
∑

n≥1 γn =

∞ and
∑

n≥1 γ
2
n < ∞. Then, the sequence (zn)n≥0 defined by (3.10) converges a.s.

to the unique minimum z⋆ of h as n ↑ ∞. Moreover, the weighted averaged sequence
(z̄n)n≥1 of (zn)n≥0 defined by

z̄n =

∑n
k=1 γkz

k−1∑n
k=1 γk

, n ≥ 1,

satisfies the following a.s. upper-bound

h(z̄n)− h(z⋆) ≤
1
2(ξ

0 − ξ⋆)2 +DF (y
⋆, y0)−Mn + 1

2m ∨ 1
∑n

k=0 γ
2
k+1Yk+1

(min0≤k≤n−1 yk ∧ 1)
∑n

k=0 γk+1
, (3.12)

where (Mn)n≥1 is an F-martingale satisfying supn≥1 E[M2
n] < ∞ (thus converging

a.s. as n ↑ ∞ to M∞ < ∞) and (Yn)n≥1 is a non-negative sequence satisfying
supn≥0 E[Yn+1|Fn] ≤ N2

⋆ a.s. for some constant N2
⋆ < ∞.

Remark 4. Analogous to Remark 2, selecting y0 = e−1(1, · · · , 1) if m ≥ e−1d or
y0 = md−1(1, · · · , 1) otherwise, provides explicit control over the initialization error:
DF (y

⋆, y0) ≤ (m logm)+ + d
e .

Remark 5. Note that standard convergence rate results for the sequence (z̄n)n≥1 are
typically expressed as an upper bound on E[h(z̄n)− h(z⋆)] of order (

∑n
k=0 γk+1)

−1,
under the conditions

∑
n γn = ∞ and

∑
n γ

2
n < ∞; see, for instance, [36]. In our

case, however, the upper-boudn (3.12) gives

lim sup
n

( n∑
k=0

γk+1

)
× (h(z̄n)− h(z⋆)) < ∞ a.s.

due to the fact that supn≥1Mn < ∞,
∑

n≥1 γ
2
n+1Yn+1 < ∞ and minn≥0 y

n > 0 a.s.
While it would be valuable to establish an upper bound for E[h(z̄n) − h(z⋆)], this
proves to be quite challenging, as it would require an Lp(P)-control, for some p > 1,
on (min0≤k≤n y

k ∧ 1)−1 uniformly in n.

Remark 6. Similarly to the deterministic framework, see Remark 3, it is essential to
select m sufficiently large, ensuring that m ≥ ∥y⋆∥. Given that y⋆ remains unknown,
this necessitates a somewhat arbitrary or blind choice on the part of the user. While
an excessively large m may influence the upper bound, we find that, in practical
implementations, it does not significantly impact the convergence rate of the weighted
averaged sequence (z̄n)n≥1. We again refer the reader to Section 4 for a discussion
of the numerical evidence regarding the impact of the choice of m.

3.3.3 Some examples: Volatility, Expected Shortfall, Deviation mea-
sures

The most commonly used risk measure for the risk budgeting problem is certainly
the volatility. Taking g(x) = x2, L(ξ, x) = (x− ξ)2 and assuming that X ∈ L2(P),
we observe that

g(rρ(y)) = yTΣy = min
ξ∈R

E[L(ξ,−⟨y,X⟩)]. (3.13)

Thus, volatility as a risk measure naturally fits within the stochastic framework
outlined in Section 3.3.1. In particular, Proposition 3.1 holds, with Argminh =
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{(ξ⋆, y⋆)}, ξ⋆ = E[−⟨y⋆, X⟩] and y⋆ is the unique minimizer of Γg when volatility is
employed as the risk measure. Note, however, that the condition (3.11) in Theorem
3.2 is not met, since ξ 7→ E[(∂ξL(ξ,−⟨y,X⟩))2] and E[(∂xL(ξ,−⟨y,X⟩))2] both
exhibit quadratic growth in ξ, uniformly in y ∈ Rd

+ ∩ Bm. Nevertheless, the proof
of Theorem 3.2 can be readily adapted to overcome this minor difficulty, ensuring
a.s. convergence of the sequence (zn)n≥1, along with a similar convergence rate for
(z̄n)n≥1. We shall not dwell further on the adaptation of this proof.

Our second example is the Expected Shortfall (ES), calculated at a given con-
fidence level α ∈ (0, 1). This risk measure is closely related to another well-known
measure, the Value-at-Risk (VaR). Both ES and VaR are among the most widely
employed risk measures in the finance and insurance industries. As in [27, 2], for a
real-valued random vector Z ∈ L1(P), these two risk measures are defined by

VaRα(Z) = inf
{
ξ ∈ R : P(Z ≤ ξ) ≥ α

}
, ESα(Z) =

1

1− α

∫ 1

α
VaRa(Z) da.

(3.14)
As stated in [39, 11, 7, 9], the VaR and ES are linked by a convex optimization

problem. If the cdf FZ of Z is continuous, then VaRα(Z) is the left-end solution to

argmin
ξ∈R

{V (ξ) := E[H(ξ, Z)]} , where L(ξ, Z) := ξ +
1

1− α
(Z − ξ)+, ξ ∈ R.

(3.15)
Moreover, V is convex and continuously differentiable on R, with V ′(ξ) = E[∂ξL(ξ, Z)] =
1

1−α(FZ(ξ) − α), ξ ∈ R. If FZ is additionally increasing, then V is strictly convex
and VaRα(Z) is the unique minimizer of V :

VaRα(Z) = argminV (3.16)

and
ESα(Z) = minV.

Besides, if Z admits a continuous pdf fZ , then V is twice continuously differen-
tiable on R, with V ′′(ξ) = 1

1−αfZ(ξ), ξ ∈ R.
Hence, assuming that the random vector X ∈ L1(P) and that, for any y ∈ (R0

+)
d,

the cdf of −⟨y,X⟩ ∈ L1(P) is continuous and increasing, we see that the ES fits our
stochastic framework of Section 3.3.1. In particular, Proposition 3.1 is valid with
Argminh = {(ξ⋆, y⋆)} where y⋆ is the unique minimizer of Γg associated to the ES
and ξ⋆ = VaRα(−⟨y⋆, X⟩). Moreover, Theorem 3.2 is also satisfied.

Our final example concerns the class of deviation risk measures, of which the
standard deviation is undoubtedly the most widely employed instance, see, for ex-
ample, [42, 43, 41]. Other examples include the mean absolute deviation and semi-
deviation, each designed to capture different facets of risk. Formally, a risk measure
ρ belongs to this class if it satisfies (PH), (SA), ρ(Z + c) = ρ(Z) for all random
variable Z and all constant c and ρ(Z) > 0 for any Z ̸= 0. Building on [15], we
consider RB-compatible risk measures that encompass both symmetric and asym-
metric deviation measures, to which the stochastic framework outlined in Section
3.3.1 applies. For a, b > 0, and Z ∈ Lp(P), for some p ≥ 1, we let

ρ(Z) = min
ξ∈R

E[L(ξ, Z)]1/p, with L(ξ, z) := (a(Z − ξ)+ + b(Z − ξ)−)
p. (3.17)

Then, ρ is an RB-compatible risk measure. The aforementioned family encom-
passes several well-known risk measures for specific choices of a, b and p. When
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a = b = 1, it yields symmetric measures such as the mean absolute deviation
around the median (MAD) for p = 1 or the standard deviation for p = 2. In cases
where a ̸= b, we obtain asymmetric measures. For instance, if a = α

1−α , b = 1 and
p = 1, the resulting measure is ρ(Z) = ESα(Z) − E[Z]. Similarly, with a =

√
α,

b =
√
1− α and p = 2, we derive the square-root of the variantile at level α.

Observe that the map R ∋ ξ 7→ E[L(ξ, Z)] is convex. Moreover, if the cdf
of Z is continuous then the dominated convergence theorem guarantees that it is
continuously differentiable so that

ArgminE[L(., Z)] = {ξ ∈ R : E[∂ξL(ξ, Z)] = 0}

where

∂ξE[L(ξ, Z)] = E[∂ξL(ξ, Z)] = pE[−ap(Z − ξ)p−1
+ + bp(Z − ξ)p−1

− ]

with the convention (Z − ξ)0+ = 1Z≥ξ and (Z − ξ)0− = 1Z≤ξ. As with the example
of ES, the set ArgminE[L(., Z)] does not generally reduce to a singleton. How-
ever, if the cdf of Z is increasing then it does. Specifically, for p = 1, we have
ArgminE[L(., Z)] =

{
VaRa/(a+b)(Z)

}
.

Now, assuming that the random vector X ∈ Lp(P) and that, for any y ∈ (R0
+)

d,
the cdf of −⟨y,X⟩ is continuous and increasing, we observe that ρ aligns with the
stochastic framework of Section 3.3.1 with the map g(x) = xp. In particular, Propo-
sition 3.1 holds with Argminh = {(ξ⋆, y⋆)}, where y⋆ is the unique minimizer of Γg

and ξ⋆ is the unique minimizer associated with the optimization problem (3.17),
with Z = −⟨y⋆, X⟩. If p = 1, the condition (3.11) of Theorem 3.2 is satisfied, ensur-
ing the a.s. convergence of (zn)n≥1, along with the a.s. convergence rate of (z̄n)n≥1.
However, for p > 1, as in the first example on the volatility, (3.11) is violated, since
ξ 7→ E[(∂ξL(ξ,−⟨y,X⟩))2] and E[(∂xL(ξ,−⟨y,X⟩))2] exhibit polynomial growth in
ξ, uniformly in y ∈ Rd

+ ∩Bm. Nonetheless, one can readily adapt the proof of The-
orem 3.2 to bypass this minor issue and establish the a.s. convergence of (zn)n≥1,
along with a similar convergence rate for (z̄n)n≥1. Once again, we will refrain from
delving into the technical details of this adaptation.

4 Numerical Examples

4.1 Presentation of the model and first results

In this section, we aim to illustrate our theoretical results through a simple example.
We begin with a portfolio of three assets, constructing a risk budgeting portfolio
under ES at a confidence level of α = 95%. Equal risk budgets are assigned to each
asset, i.e., b =

(
1
3 ,

1
3 ,

1
3

)
, which corresponds to the Equal Risk Contribution (ERC)

portfolio. Our aim is to showcase the performance of our DMD and SMD algorithms
by comparing the outcomes they yield against those from a conventional method.

In the analysis that follows, we assume the joint distribution of asset returns is
represented by a mixture of two multivariate Student-t distributions, as this model
captures asymmetric and heavy-tailed characteristics commonly observed in asset
returns while allowing for precise computation of risk budgeting portfolios under ES
using the semi-analytic expressions of VaR and ES [15].

Specifically, we assume that X has the following density with respect to the
Lebesgue measure:

fX(x) := pf(x|µ1,Λ1, ν1) + (1− p)f(x|µ2,Λ2, ν2)
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where p is the probability weight for the first distribution, f(x|µ,Λ, ν) denotes the
density of a multivariate Student-t distribution with mean vector µ, covariance
matrix Λ, degrees of freedom ν given by:

f(x|µi,Λi, νi) :=
Γ
[
νi+d
2

]
Γ(νi/2)ν

d/2
i πd/2 det(Λi)1/2

{
1 +

1

νi
(x− µi)

′Λ−1
i (x− µi)

}−(νi+d)/2

.

We work with a realistic model that has been calibrated using daily returns of
JPMorgan Chase & Co. (JPM), Pfizer Inc. (PFE) and Exxon Mobil Corporation
(XOM) over the period August 2008–April 2022. The model parameters are esti-
mated using the expectation-maximization algorithm. We have obtained p = 0.7,
location vectors: µ1 = (0.0001, 0.0002,−0.0003)

′ , µ2 = (0.001, 0.0005, 0.0002)
′ ,

scale matrices:

Λ1 =


9 · 10−5 3 · 10−5 5 · 10−5

3 · 10−5 9 · 10−5 3 · 10−5

5 · 10−5 3 · 10−5 1 · 10−4

 , Λ2 =


4 · 10−4 1 · 10−4 1 · 10−4

1 · 10−4 1 · 10−4 6 · 10−5

1 · 10−4 6 · 10−5 1 · 10−4


and degrees of freedom ν1 = 3.4, ν2 = 2.6. Under these parameters, we compute
the risk budgeting portfolio using the L-BFGS-B algorithm using the semi-analytic
expressions of VaR and ES [15]. The resulting portfolio u together with the asso-
ciated risk contributions (ui∂uirρ(u))1≤i≤d are computed in order to confirm that
it is a solution to the risk budgeting problem. The corresponding VaR and ES are
also calculated. This portfolio serves as a reliable benchmark for evaluating the
convergence and accuracy of our algorithms and will hereafter be referred to as the
reference portfolio. The results are presented in Table 1.

Asset u⋆i u⋆i ∂iR(u⋆)

1 0.2535 0.01096

2 0.3866 0.01096

3 0.3599 0.01096

VaR 0.0193 ES 0.0329

Table 1: Reference portfolio: weights, risk contributions, VaR and ES.

Let us now turn to the application of the DMD and SMD schemes for computing
risk budgeting portfolios.

For the implementation of our DMD algorithm, we set γn = n−0.55, m = 100,
and perform 50,000 iterations. In practice, as will be illustrated later, it suffices to
select an m greater than ∥y⋆∥1. Here, ∥y⋆∥1 = 30.4. The initial point is defined as
y0i = 1

dσ2
i

for i = 1, . . . , d, where σ2
i denotes the variance of asset i under the first

t-Student distribution, estimated using few samples of X.
To address the stochastic optimization problem outlined in Section 3.3.1 for ES

using our SMD algorithm, we generate 106 samples of our multivariate Student-t
mixture X. The algorithm is run with 10 epochs and a stepsize of γn = n−0.75 ,
with m as in the DMD scheme. We initialize ξ0 = 0 and y0 as before.
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Our results are presented in Table 2. We observe that the DMD algorithm ac-
curately computes the optimal portfolio weights without error. The estimated VaR
and ES values are not included, as they correspond to those in Table 1. Addition-
ally, we note that the estimated weights uSMD

i and the estimated VaR from the SMD
algorithm closely align with those of the reference portfolio.

Asset uSMD
i

∣∣u⋆i − uSMD
i

∣∣ /u⋆i uDMD
i

1 0.2537 0.08% 0.2535

2 0.3877 0.30% 0.3866

3 0.3586 0.40% 0.3599

VaRSMD 0.0194 (VaRSMD - VaR)/ VaR 0.52%

Table 2: Estimated weights and VaR together with relative difference using SMD
algorithms and estimated weights using the DMD algorithm.

We now observe the convergence by plotting the three components of the se-
quence (uk)k≥0 generated by the DMD algorithm in Figure 1 with different step
sizes: γn = 1, γn = n−0.55, γn = n−0.75, n ≥ 1.

It is worth noting that the choice of step sequence (γn)n≥1 significantly impacts
the speed of convergence. Setting γn = γ = 1, i.e., a fixed step size of 1 across
iterations, appears to be optimal compared to reducing the step size over time, even
though our theoretical results do not guarantee convergence in this specific instance.
Indeed, convergence is reached in fewer than 1,000 iterations with γn = 1, whereas
choosing γn = n−0.55 ensures convergence within 50,000 iterations. By contrast,
selecting γn = n−0.75 represents the worst case. This is in line with the upper-
bound provided in Theorem 3.1. These results highlight the significant impact of
the selection of the step sequence (γn)n≥1 on the convergence rate of the DMD
algorithm.

Figure 1: Evolution of the three components of (uk)k≥0 of the DMD algorithm
for different step sequence (γn)n≥1. Left: γn ≡ 1. Center: γn = n−0.55. Right:
γn = n−0.75. Dashed lines are the asset weights of the reference portfolio in all
subplots.

We now run the SMD algorithm with N = 250, 000 iterations, comprising 25,000
samples and 10 epochs. We initialize (y0, ξ0) and set m as before, with γn = n−0.55

1While implementing a mini-batch version would likely enhance our algorithm’s accuracy, we
have opted to adhere to our theoretical framework.
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for n ≥ 1. Convergence is observed by plotting the evolution of the components
of both sequences (yk)0≤k≤N and (uk := yk/∥yk∥1)0≤k≤N , alongside (ξk)0≤k≤N in
Figure 2. A rapid convergence to the weights and VaR of the reference portfolio is
achieved, with the convergence of (ξk)k≥0 appearing faster than that of (uk)k≥0.

Figure 2: Convergence of the SMD algorithm. Left: evolution of the three com-
ponents of (yk)0≤k≤N . Center: evolution of the three components of (uk)0≤k≤N

— dashed lines are the weights of the reference portfolio. Right: evolution of
(ξk)0≤k≤N ′ , with N ′ = 100, 000 — dashed line is the VaR of the reference port-
folio

In Figure 3, we increase the number of iterations in the SMD algorithm, keeping
the parameters unchanged except for setting N = 107 iterations, divided into 106

samples and 10 epochs.
Note that the choice of m is not critical, provided it is selected to be larger than

∥y⋆∥1. Consequently, we consistently use a large m, as we did before, since selecting
an m smaller than ∥y⋆∥1 prevents convergence. This effect is illustrated in Figure 4.
When m = 10, we do not observe convergence of (uk)k≥0 towards u⋆; however, for
values of m larger than ∥y⋆∥1, convergence occurs, particularly for m = 35, 100, and
1000, with the results for m = 100 and m = 1000 appearing almost identical due
to minimal projections during the algorithm. The DMD algorithm exhibits similar
behavior.

Figure 3: Convergence of the SMD algorithm. Left: evolution of the three compo-
nents of (yk)k≥0. Center: evolution of the three components of (uk)k≥0’s — dashed
lines are the asset weights of the reference portfolio. Right: evolution of (ξk)k≥0 —
dashed line is the VaR of the reference portfolio.

We proceed with our analysis by assessing the robustness of both MD algorithms
with respect to the dimension d, corresponding to the number of assets. We con-
sider four scenarios, calibrating our model with 10, 50, 100, and 250 assets (see
Section 4.2.1 for details on selecting an arbitrary number of assets d and the cal-
ibration process). To demonstrate the convergence of both schemes, we calculate
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Figure 4: From left to right: evolution of the sequence (uk)k≥0 for m = 10, 35,
100 and 1000 respectively.

the mean deviation error (MDE) in asset weights compared to those of the reference
portfolio, defined as

MDE =
1

d

d∑
i=1

|uNi − u⋆i |.

For the DMD algorithm, we use a step sequence γn = n−0.55 and 50, 000 iter-
ations. For the SMD algorithm, we set the parameters as follows: γn = n−0.75,
with 106 samples combined with 10 epochs. The parameters ξ0, y0 and m remain
as previously specified. The results are presented in Table 3. Note that values for
SMD and DMD are scaled by a factor of 103 for clarity. The relative error of VaR
is presented as a percentage.

Assets SMD
∣∣VaRSMD − VaR

∣∣ /VaR DMD

10 1.02 0.005% 0.19

50 0.26 0.980% 0.76

100 0.25 0.075% 1.15

250 0.26 0.977% 0.85

Table 3: MDE for both DMD and SMD algorithms, scaled by 103, along with the
relative error of VaR with respect to the reference portfolio.

We also performed computations for the DMD algorithm using a constant step
size of γn = 1 over 10,000 iterations. These results are not included in Table 3, as
no errors were observed in any instance, underscoring the strong robustness of the
DMD algorithm when a constant step size is applied. The findings for both SMD
and DMD with a decreasing step size similarly demonstrate impressive robustness,
as they maintain convergence even with increasing dimensionality. For the variable
step size case, the performance remains generally satisfactory, though slightly lower
than that achieved with a fixed step size, as convergence is still ongoing and has not
yet fully stabilized.
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4.2 Error analysis for different portfolio sizes

4.2.1 Taming to the rescue: fixing stability issues

In the traditional approach to solving the risk budgeting problem, the numerical
algorithm typically follows the directions defined by the gradient ∇Γ(y), recalling
that g = Id for the case of ES. However, since the gradient diverges on ∂(R+)

d,
as proposed in Section 3.1, we moderate it by applying the factor κ(y) to ensure
convergence of the algorithm. In this subsection, we aim to demonstrate that,
beyond its theoretical benefits, this adjustment also greatly enhances the stability
and convergence of the numerical scheme, particularly in stochastic settings.

We begin by comparing the SMD algorithm, following the update rule given in
(3.10) with m = 100, to two alternative methods in terms of successful convergence
across different scenarios. The first method, referred to as classical-SGD (c-SGD),
is the projected stochastic gradient descent algorithm proposed in [15] to solve (3.7)
using the update ruleξk+1 = ξk − γk+1∂ξH(zk, Xk+1)

yk+1 = Π
(
yk − γk+1∇yH(zk, Xk+1)

)
recalling that zk = (ξk, yk) and Π : Rd → (R0

+)
d is a projection function designed

to ensure that all elements are positive. Specifically, Π is defined to replace any
negative elements with a fixed positive value, ϵ = 10−4.

The second approach, referred to as tamed-SGD (t-SGD), incorporates the con-
cept of taming the gradient and involves updating (zk)k≥0 as follows:ξk+1 = ξk − γk+1∂ξH(zk, Xk+1)

yk+1 = Π
(
yk − γk+1κ(y

k)∇yH(zk, Xk+1)
)

recalling that κ(y) = y ∧ 1 serves as the taming factor, applied in both DMD and
SMD algorithms to adjust the gradient and enhance stability.

At this stage, our primary focus is on assessing the algorithms’ ability to ap-
proach the true solution across various portfolio sizes, rather than precisely measur-
ing the accuracy of their convergence. This preliminary evaluation offers insight into
the algorithms’ convergence behavior, setting the groundwork for a subsequent anal-
ysis of their accuracy, which will be addressed in the following subsection. In brief,
the objective here is to understand the practical significance of gradient taming in
mitigating numerical divergence caused by the issue of exploding gradients.

We proceed with computing ERC portfolios for ES. To statistically analyze the
convergence rate of different algorithms across various portfolio sizes d, we follow
this procedure. We randomly select d stocks from the S&P 500 components (as
of Q2 2022) and obtain their daily returns from August 2008 to April 2022. To
capture the distributional characteristics of these returns, we fit a two-component
Student-t mixture model to the historical data. Based on the estimated parameters,
we compute a reference portfolio. We then simulate 106 data points from the fitted
model and apply the SMD, c-SGD, and t-SGD algorithms to the simulated dataset,
analyzing convergence by comparing the results to the reference portfolio.

This procedure is repeated 100 times for each d, with a new random selection
of d assets in each iteration. Across these repetitions, we monitor each algorithm’s
rate of successful convergence, noting instances of divergence due to issues such as
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exploding gradients. This approach provides insights into the robustness of each
algorithm in realistic portfolio construction settings. Specifically, divergence is de-
fined as occurring when a discrepancy in the objective function value is observed at
the final iteration n = 106. That is, if Γ(yn)− Γ(y⋆) exceeds a prescribed threshold
ε, the algorithm is classified as having diverged in that particular repetition.3

d

ε 10 25 50 100 250

5× 10−2 24 11 24 47 35

5× 10−1 23 11 23 43 11

5× 100 23 10 13 8 0

5× 101 22 2 0 0 0

Table 4: Number of divergences out of 100 repetitions for the c-SGD algorithm.

Table 4 underscores the inherent stability challenges associated with c-SGD and
illustrates the advantages of taming the gradient.4 While both t-SGD and SMD
reliably converge to the reference portfolio (with precision considerations to be dis-
cussed in the following section), c-SGD encounters an issue with gradient instability
due to certain elements of the vector y approaching zero during iterations. This
instability causes divergence in several trials. Figure 5 further illustrates the distri-
bution of error over 100 trials, highlighting outliers that correspond to instances of
non-convergence across varying numbers of iterations k. The figure suggests that,
although c-SGD can occasionally achieve accurate results, its convergence is highly
sensitive to the initial choice of the learning rate γ.5 In contrast, the tamed meth-
ods exhibit notable robustness to hyperparameter selection, consistently avoiding
divergence across all tested cases.

4.2.2 Improved accuracy via SMD

We now turn our attention to the SMD and t-SGD algorithms, both of which ex-
hibit stable convergence properties in contrast to c-SGD. Our aim is to evaluate
how closely the portfolios generated by these methods approximate the reference
portfolios when applied to the same dataset. This approach allows for an effective
comparison of the efficiency of the update rules associated with t-SGD and SMD,
while maintaining all other hyperparameters constant. By isolating the effects of
these update mechanisms, we seek to determine whether SMD offers practical advan-
tages in computing risk budgeting portfolios, in addition to its theoretical benefits.

3The error is measured by Γ(yn) − Γ(y⋆) – the distance of the objective function value at
the last iterate to the minimum – rather than the averaged iterates Γ(ȳn)− Γ(y⋆), as discussed in
Theorem 3.5, to mitigate the influence of large values in earlier iterations and to assess convergence
within reasonable computational times.

4Analogous results are not shown for t-SGD and SMD, as neither algorithm exhibited divergence
across any of the cases tested.

5For all methods, we employ a learning rate scheme defined as γn = γn−0.65. For the tamed
methods (t-SGD and SMD), initial learning rates γ are set to 1, 2.5, 5, 10, and 25 for portfolio
dimensions d of 10, 25, 50, 100, and 250, respectively. For c-SGD, the corresponding values are set
to 5, 1, 0.5, 0.25, and 0.1 for d values of 10, 25, 50, 100, and 250. These learning rates have been
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Figure 5: Errors in the objective function values for the unnormalized portfolio
weights obtained via c-SGD, calculated across 100 samples for each portfolio size.
The error Γ(yk)− Γ(y∗) is measured at various iterations k = 3× 105, 6× 105, and
9× 105 to illustrate the progression of error throughout the algorithm’s execution.
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Figure 6: The evolution of error for the SMD and t-SGD algorithms across itera-
tions.

An initial and illustrative assessment can be conducted by tracking the evolution
of error throughout the iterations. Specifically, we can simulate data from a fixed
model and run the SMD and t-SGD algorithms, recording the error Γ(yk) − Γ(y∗)
after each iteration. Figure 6 shows the median error along with a 95% confidence
interval (computed by running the algorithms on 100 different samples from the
same model) for the 3-asset model described in Section 4.1. The results indicate
that the SMD algorithm converges to the minimum faster than t-SGD. However,
this analysis may be specific to the chosen model and should be extended to general
cases and larger portfolio dimensions for a broader conclusion.

For this reason, we apply the same procedure described in Section 4.2.1 to assess
the accuracy of the computed portfolios. Table 5 displays the portfolios’ accuracy
relative to the reference portfolios, where accuracy is evaluated by the difference
between the true minimum objective function value and the objective function value
at the computed yk. Specifically, the error measure is defined as (Γ(yk)− Γ(y⋆))×
103. We report the median error and median absolute deviations (in parentheses),
computed by repeating the process 100 times with samples drawn from 100 distinct
fitted models for each d. This metric serves as a quantitative measure of how closely

selected through iterative tuning to optimize convergence for each algorithm and portfolio size.
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the computed portfolios approximate the optimal solution.

k = 3× 105 k = 6× 105 k = 9× 105

d SMD t-SGD SMD t-SGD SMD t-SGD

10 0.10 (0.05) 0.22 (0.10) 0.06 (0.02) 0.09 (0.04) 0.05 (0.02) 0.06 (0.03)

25 0.19 (0.06) 0.87 (0.38) 0.11 (0.04) 0.29 (0.15) 0.09 (0.03) 0.17 (0.09)

50 0.24 (0.08) 10.49 (2.31) 0.13 (0.03) 6.13 (1.65) 0.11 (0.03) 4.16 (1.30)

100 0.36 (0.12) 29.52 (3.73) 0.16 (0.05) 23.21 (3.21) 0.11 (0.03) 19.81 (2.95)

250 0.90 (0.27) 33.16 (9.01) 0.43 (0.11) 29.29 (7.93) 0.25 (0.08) 26.73 (7.26)

Table 5: Error in objective function values obtained by SMD and t-SGD across
different asset sizes, computed from samples of size 106 drawn from fitted models at
various iteration steps k.

Figure 7 offers further insights into the algorithms’ performance. The distribu-
tion of the error in the objective function value, Γ(yk) − Γ(y⋆), is shown for the
SMD and t-SGD algorithms, computed over 100 samples across various portfolio
sizes: d = 10, 25, 50, 100 and 250. The error is calculated for the weights at several
iterations k = 3× 105, 6× 105, and 9× 105 to illustrate the evolution of error over
the course of the algorithms. On average, the SMD algorithm consistently yields
more accurate results across tested portfolio sizes and at different stages of itera-
tion. Notably, the advantage of SMD over t-SGD becomes increasingly pronounced
as portfolio size grows. A particularly interesting observation is SMD’s ability to
recover from large errors over the course of iterations, with this robustness clearly
seen through outliers, especially for d = 50 and d = 250. For instance, the outlier
at iteration k = 3× 105 is gradually corrected, resulting in more accurate portfolio
estimations as the algorithm processes additional data points.
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Figure 7: Distribution of errors in the objective function value obtained by using
the SMD and t-SGD algorithms, computed over 100 samples for each portfolio size.

Although assessing error and accuracy through differences in objective function
values is mathematically sound, this approach lacks practical interpretability in
portfolio construction. Therefore, we extend our analysis by evaluating accuracy
using the MDE (×104) between the computed portfolio weights and the reference
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portfolio. In Table 6, we present the median of the MDEs alongside the median
absolute deviations of the MDEs (in parentheses), calculated over 100 repetitions
with samples drawn from 100 distinct fitted models for each d. This metric offers a
more intuitive measure of practical accuracy, as it directly reflects how closely the
computed portfolio weights approximate those of the reference portfolio.

k = 3× 105 k = 6× 105 k = 9× 105

d SMD t-SGD SMD t-SGD SMD t-SGD

10 7.98 (1.74) 12.09 (3.36) 6.55 (1.32) 8.00 (1.76) 5.43 (1.10) 6.06 (1.41)

25 4.97 (0.69) 9.52 (2.27) 3.84 (0.50) 5.71 (1.61) 3.43 (0.49) 4.74 (1.38)

50 2.57 (0.27) 10.73 (1.03) 2.11 (0.22) 8.97 (0.98) 1.79 (0.18) 7.94 (0.93)

100 1.34 (0.13) 9.19 (0.75) 1.06 (0.11) 8.33 (0.60) 0.95 (0.10) 7.81 (0.54)

250 0.60 (0.08) 4.91 (0.12) 0.47 (0.05) 4.66 (0.12) 0.40 (0.05) 4.49 (0.12)

Table 6: MDEs of the SMD and t-SGD algorithms across different portfolio sizes,
computed at iterations k = 3× 105, 6× 105 and 9× 105.

In Figure 8, we display the distribution of the MDEs obtained by the SMD and
t-SGD algorithms over 100 samples for each portfolio size. The error is calculated
at different iterations: k = 3× 105, k = 6× 105 and, k = 9× 105.

Table 6 and Figure 8 further confirm that the SMD algorithm produces more
accurate portfolios across all tested portfolio sizes. Additionally, it achieves high ac-
curacy even for portfolios with a large number of assets, highlighting its effectiveness
as an optimization method for computing risk budgeting portfolios for ES.
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Figure 8: Distribution of the MDEs obtained by the SMD and t-SGD algorithms,
computed over 100 samples for each portfolio size and iteration n.

4.3 Convergence using different risk measures

Previous numerical analyses have focused on a specific risk measure – ES – to have
a comprehensive understanding of the behavior of SMD and SGD-based algorithms
across different portfolio sizes when computing risk budgeting portfolios. However,
as detailed in Section 3.3.3, this framework is compatible with a wide variety of
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risk measures. In this subsection, we aim to understand whether the computational
advantage of SMD over t-SGD extends to the broader class of risk measures.

Before proceeding with the comparison of SMD and t-SGD methods using alter-
native risk measures within the class of deviation measures as formalized by (3.17)
– specifically mean absolute deviation (MAD) (p = 1, a = 1 and b = 1), volatility
(p = 2, a = 1 and b = 1), and variantile (p = 2, a = 0.75 and b = 0.25) – it is essen-
tial to verify that the algorithms converge when these measures are used. However,
we must avoid modeling X with a Student-t mixture in this context, as it requires
a (semi-)analytical representation of the objective function for each risk measure to
compute reference portfolios accurately. Therefore, we begin with a model where X
follows a centered normal distribution, using the same three assets as in Section 4.1
with the sample covariance matrix of the historical asset returns.

With this particular model, we know how to compute the risk budgeting portfo-
lio for volatility (as defined in Equation (3.13)) using deterministic algorithms such
as DMD, which provides highly precise results and serves as the reference portfolio.
Additionally, under the assumption of a centered normal distribution, the afore-
mentioned risk measures should yield the same risk budgeting portfolio, as each
can be represented as a function of portfolio volatility. Therefore, we simulate 106

data points from this distribution and run SMD algorithm to confirm the algorithm
converges to the same reference portfolio.

Asset Reference MAD Volatility Variantile

1 0.2411 0.2417 0.2417 0.2417

2 0.4150 0.4137 0.4138 0.4140

3 0.3438 0.3446 0.3445 0.3443

Table 7: Reference portfolio weights and computed weights under different portfolio
measures.

Table 7 confirms that the update rule we implemented for deviation measures
successfully converges to the optimal portfolio in a simple case of three assets. With
this verification, we can proceed with our analysis to compare SMD and t-SGD.
To make the analysis more realistic, we now model X as a centered multivariate
Student-t distribution with fixed degrees of freedom ν = 4, using the maximum-
likelihood estimate for the scale matrix Λ. This model has two main advantages:
the reference portfolios remain precisely computable, and the stochastic algorithms
are exposed to extreme losses, making the case more representative of real-world
scenarios.

In line with the procedure outlined in Section 4.2.2, we assess the accuracy of
the algorithms across different portfolio sizes. Specifically, we select d assets from
our dataset and estimate the corresponding scale matrix Λ. We then compute the
reference portfolio – identical across all risk measures – using the centered multivari-
ate Student-t model with the estimated Λ. From this model, we draw n = 5× 105

data points and apply the SMD and t-SGD algorithms. To improve the stability of
the approximated portfolios, we employ the Polyak-Ruppert averaging technique.
Rather than using the final iterate yn, we store yk for the last 20% of iterations (i.e.,
105 iterations) and calculate their empirical mean, denoted ȳn. The resulting risk

24



budgeting portfolio is then given by ūn = ȳn

∥ȳn∥1 , which provides a more accurate
estimate by averaging out the fluctuations in the final iterations.

MAD Volatility Variantile

d SMD t-SGD SMD t-SGD SMD t-SGD

10 2.26 (0.38) 2.46 (0.49) 3.91 (0.96) 16.30 (6.99) 4.55 (1.01) 21.76 (9.14)

25 1.04 (0.14) 1.14 (0.17) 2.05 (0.29) 2.75 (0.72) 2.40 (0.36) 3.32 (0.87)

50 0.57 (0.05) 0.61 (0.06) 1.23 (0.17) 1.11 (0.17) 1.40 (0.23) 1.43 (0.25)

100 0.30 (0.02) 0.34 (0.02) 0.69 (0.07) 0.65 (0.08) 0.80 (0.10) 0.79 (0.11)

250 0.13 (0.01) 0.14 (0.01) 0.30 (0.03) 0.31 (0.03) 0.34 (0.04) 0.35 (0.04)

Table 8: MDEs of the portfolios computed using the SMD and t-SGD algorithms
across different portfolio sizes.

Table 8 shows the median of the MDEs with median absolute deviations of
the MDEs (in parentheses) across different portfolio sizes d and risk measures over
100 repetitions. The initial choice of the learning rate γ is fixed across various
portfolio sizes d to avoid tuning the optimal value for each dimension, method, and
risk measure. The results indicate that SMD produces more accurate portfolios
than t-SGD in most cases, highlighting its suitability for computing risk budgeting
portfolios accurately across a range of risk measures. These values, of course, only
allow for a comparative analysis, and absolute errors could be further reduced by
choosing hyperparameters more carefully.

Conclusion

In this article, leveraging the characterization of risk budgeting portfolios as so-
lutions to a strictly convex optimization problem, we proposed and analyzed the
convergence of deterministic and stochastic mirror descent (MD) algorithms for
computing these portfolios across general risk measures. Due to the unbounded
gradient of the value function, standard convergence results for MD algorithms do
not directly apply. By developing a tailored tamed version of the gradient, we intro-
duced both deterministic and stochastic MD schemes, establishing their convergence
along with a convergence rate for the weighted averaged sequence. The stochastic
framework accommodates several commonly used risk measures, such as volatility,
expected shortfall, and deviation measures.

Our numerical results illustrate these theoretical findings, demonstrating that
both algorithms remain stable as dimensionality increases and perform more effec-
tively than the standard SGD algorithm recently proposed in the literature.

Potential directions for future research include investigating asymptotic error
properties by establishing a central limit theorem for the stochastic MD algorithm
presented here. Another promising line of inquiry could be to explore MD algorithms
when only biased samples (Xh

n)n≥1 of X, where h represents the bias parameter,
as seen for instance in the two recent works [5] or [18]. In this setting, to further
manage complexity, one might employ multi-level or multi-step Richardson-Romberg
techniques in stochastic approximation schemes, as originally developed in [25] and
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[26], and also as applied in recent works on VaR and ES in [19, 20, 21] for the special
case of the VaR and ES. It could also be worth investigating the applicability of MD
algorithms for calculating risk budgeting portfolios that take into account underlying
risk factors, as outlined in [16].
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A Appendix

A.1 Convergence for the DMD algorithm: proof of Theorem 3.1

Step 1: On the convergence of (yn)n≥1.
In order to study the convergence of the sequence (yk)k≥0 towards the unique

minimizer y⋆ of Γg, we recall that Lemma 2.1 in [35] (combined with (3.2)) guaran-
tees that

DF (w,P
m
u (v)) ≤ DF (w, u) + ⟨v, w − u⟩+m

∥v∥2∞
2

(A.1)

for any w, u ∈ (R0
+)

d ∩ Bm, v ∈ Rd. Selecting v = γk+1κ(y
k)∇Γg(y

k), u = yk and
w = y⋆ in the above inequality, and taking m ≥ ∥y⋆∥1, we get

DF (y
⋆, yk+1) ≤ DF (y

⋆, yk)− γk+1⟨κ(yk)∇Γg(y
k), yk − y⋆⟩

+mγ2k+1

∥κ(yk)∇Γg(y
k)∥2∞

2
.

(A.2)

Assuming that the learning rate satisfies
∑

k≥1 γ
2
k < ∞ and recalling (3.1), the

Robbins-Siegmund theorem yields

DF (y
⋆, yn)

n→∞−→ D∞ < ∞ and
∑
k≥0

γk+1⟨κ(yk)∇Γg(y
k), yk − y⋆⟩ < ∞. (A.3)

Since
∑

k≥1 γk = ∞, we deduce that lim infn→∞⟨κ(yn)∇Γg(y
n), yn − y⋆⟩ = 0.

The boundedness of the sequence (yn)n≥0 guarantees the existence of a subsequence
(φ(n))n≥0 such that

yφ(n) → y∞ ∈ (R+)
d ∩Bm, and ⟨κ(yφ(n))∇Γg(y

φ(n)), yφ(n) − y⋆⟩ = 0.

By continuity of Rd
+ ∋ y 7→ κ(y)∇Γg(y), it follows that limn→∞⟨κ(yφ(n))∇Γg(y

φ(n)), yφ(n)−
y⋆⟩ = ⟨κ(y∞)∇Γg(y

∞), y∞ − y⋆⟩ = 0 which in turn, by Lemma 3.1, implies that
y∞ = y⋆.

Coming back to (A.3), we eventually deduce that

lim
n→∞

DF (y
⋆, yn) = lim

n→∞
DF (y

⋆, yφ(n)) = 0

which clearly implies that (yn)n≥1 converges towards y⋆.
Step 2: On the convergence rate of (ȳn)n≥1.

In order to derive the corresponding convergence rate, we come back to (A.2)
and write

γk+1⟨κ(yk)∇Γg(y
k), yk − y⋆⟩ ≤ DF (y

⋆, yk)−DF (y
⋆, yk+1) +

1

2
mγ2k+1M

2
⋆ .

Summing over k = 0, · · · , n − 1 the previous inequality and recalling that
DF (y

k+1, y⋆) ≥ 0, we get

n∑
k=1

γk⟨κ(yk−1)∇Γg(y
k−1), yk−1 − y⋆⟩ ≤ DF (y

⋆, y0) +
1

2
mM2

⋆

n∑
k=1

γ2k .
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By convexity of Γg and Jensen’s inequality, we obtain
n∑

k=1

γkκ(y
k−1)⟨∇Γg(y

k−1), yk−1 − y⋆⟩ ≥ ( min
0≤k≤n−1

yk ∧ 1)
n∑

k=1

γk⟨∇Γg(y
k−1), yk−1 − y⋆⟩

≥ ( min
0≤k≤n−1

yk ∧ 1)
n∑

k=1

γk(Γg(y
k−1)− Γg(y

⋆))

≥ ( min
0≤k≤n−1

yk ∧ 1)(
n∑

k=1

γk)(Γg(ȳ
n)− Γg(y

⋆))

recalling that (ȳn)n≥1 is the averaged version of (yn)n≥0. Combining the two previ-
ous inequalities eventually yields

Γg(ȳ
n)− Γg(y

⋆) ≤
DF (y

⋆, y0) + 1
2mM2

⋆

∑n
k=1 γ

2
k

(min0≤k≤n−1 yk ∧ 1)
∑n

k=1 γk
, n ≥ 1,

which concludes the proof.

A.2 Proof of Proposition 3.1

Step 1: The regularity and integrability conditions combined with the dominated
convergence theorem guarantee that h is continuously differentiable on R× (R0

+)
d.

The expression for the derivatives ∂ξh(ξ, y) and ∂yih(ξ, y), i = 1, · · · , d, is easily
obtained by differentiating under expectation. The convexity of h then guarantees
that Argminh = {∇h = 0}.
Step 2: We here prove that the map (R0

+)
d ∋ y 7→ g(rρ(y)) defined by (3.6) is contin-

uously differentiable with a derivative given by ∇(g(rρ(y))) = E[−X∂xL(ξ
⋆(y),−⟨y,X⟩)].

Let y, h ∈ Rd. Note that the minimizers ξ⋆(y + h), ξ⋆(y) of E[L(.,−⟨(y + h), X⟩)]
and E[L(.,−⟨y,X⟩)] respectively, satisfy

g(rρ(y + h))− g(rρ(y))

= E[L(ξ⋆(y + h),−⟨(y + h), X⟩)]− E[L(ξ⋆(y),−⟨y,X⟩)]
≤ E[L(ξ⋆(y),−⟨(y + h), X⟩)]− E[L(ξ⋆(y),−⟨y,X⟩)]
= ⟨E[−X∂xL(ξ,−⟨y,X⟩)]ξ=ξ⋆(y), h⟩+ o(∥h∥)

as ∥h∥ ↓ 0. Similarly, one has

g(rρ(y + h))− g(rρ(y))

≥ E[L(ξ⋆(y + h),−⟨(y + h), X⟩)]− E[L(ξ⋆(y + h),−⟨y,X⟩)]
= ⟨E[−X∂xL(ξ,−⟨y,X⟩)]ξ=ξ⋆(y+h), h⟩

+

∫ 1

0
⟨E[−X∂xL(ξ,−⟨(y + th), X⟩)]ξ=ξ⋆(y+h) − E[−X∂xL(ξ,−⟨y,X⟩)]ξ=ξ⋆(y+h), h⟩ dt

= ⟨E[−X∂xL(ξ,−⟨y,X⟩)]ξ=ξ⋆(y), h⟩
+ ⟨E[−X∂xL(ξ,−⟨y,X⟩)]ξ=ξ⋆(y+h) − E[−X∂xL(ξ,−⟨y,X⟩)]ξ=ξ⋆(y), h⟩

+

∫ 1

0
⟨E[−X∂xL(ξ,−⟨(y + th), X⟩)]ξ=ξ⋆(y+h) − E[−X∂xL(ξ,−⟨y,X⟩)]ξ=ξ⋆(y+h), h⟩ dt.

Our aim now is to prove that the two last terms appearing in the right-hand side of
the above inequality are o(∥h∥). Clearly, it suffices to prove that

lim
h↓0

E[X∂xL(ξ,−⟨y,X⟩)]ξ=ξ⋆(y+h) = E[X∂xL(ξ,−⟨y,X⟩)]ξ=ξ⋆(y) (A.4)
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and that
lim
h↓0

E[X∂xL(ξ,−⟨(y + th), X⟩)] = E[X∂xL(ξ,−⟨y,X⟩)] (A.5)

locally uniformly in ξ.
Note that the convexity of the maps ξ 7→ E[L(ξ,−⟨y,X⟩)], and ξ 7→ E[L(ξ,−⟨(y+

h), X⟩)] yields (ξ − ξ⋆(y))E[∂ξL(ξ,−⟨y,X⟩)] > 0 for any ξ ̸= ξ⋆(y) and (ξ − ξ⋆(y +
h))E[∂ξL(ξ,−⟨(y + h), X⟩)] > 0 for any ξ ̸= ξ⋆(y + h). Moreover, the continu-
ity of R × (R0

+)
d ∋ (ξ, y) 7→ E[∂ξL(ξ,−⟨y,X⟩)] guarantees that for any fixed y,

ξ 7→ E[∂ξL(ξ,−⟨(y + h), X⟩)] converges to ξE[∂ξL(ξ,−⟨y,X⟩)] as h ↓ 0 locally uni-
formly. Now, [25, Theorem 2.6] guarantees that ξ⋆(y+ h) → ξ⋆(y) as ∥h∥ ↓ 0 which
combined with the continuity of ξ 7→ E[X∂zL(ξ,−⟨y,X⟩)] implies (A.4).

The second point (A.5) is a consequence of the continuity of R× Rd ∋ (ξ, y) 7→
E[X∂xL(ξ,−⟨y,X⟩)].

Combining the above arguments, we conclude that y 7→ g(rρ(y)) is continuously
differentiable and satisfies ∇(g(rρ(y))) = E[−X∂xL(ξ

⋆(y),−⟨y,X⟩)].
Step 3: If (ξ⋆, y⋆) ∈ Argminh, then ∂yih(ξ

⋆, y⋆) = 0, i = 1, · · · , d, which, according
to the conclusion of the previous step, implies that

∂yiΓg(y
⋆) = ∂yi(g(rρ(y

⋆)))− bi
y⋆i

= 0, i = 1, · · · , d.

Hence, y⋆ is the unique minimizer of Γg. The proof is now complete.

A.3 Convergence of the SMD algorithm: proof of Theorem 3.2

Step 1: On the convergence of (zn)n≥1

We use the inequality (A.1) with G instead of F (noting (3.8)) namely

DG(z,P
m
z′ (v)) ≤ DG(z, z

′) + ⟨v, z − z′⟩+m ∨ 1∥v∥2∞.

with v = γk+1(∂ξH(zk, Xk+1), κ(yk)∇yH(zk, Xk+1))T , z′ = zk and z = z⋆. Hence,

DG(z
⋆, zk+1) ≤ DG(z

⋆, zk)− γk+1

〈
E

 ∂ξH(z,X)

κ(y)∇yH(z,X)


|z=zk

, zk − z⋆

〉

− γk+1⟨∆k+1, zk − z⋆⟩+m ∨ 1γ2k+1Yk+1,
(A.6)

where we used the fact that Xk+1 is independent of (zj)0≤j≤k and introduced the
notations

∆k+1 =

 ∂ξH(zk, Xk+1)

κ(yk)∇yH(zk, Xk+1)

− E

 ∂ξH(z,X)

κ(y)∇yH(z,X)


|z=zk

,

Yk+1 :=

∥∥∥∥∥∥
 ∂ξH(zk, Xk+1)

κ(yk)∇yH(zk, Xk+1)

∥∥∥∥∥∥
2

∞

.

k ≥ 0.

(A.7)
Note that since zk is Fk-measurable and Xk+1 is independent of Fk, (∆k)k≥1 is

a sequence of F-martingale increments

E[∆k+1|Fk] = 0, for k ≥ 0.
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Now, the previous identity together with (A.6) and observing that

E[Yk+1|Fk] ≤ N2
⋆ := sup

(ξ,y)∈R×Rd
+∩Bm)

E
[∥∥∥

 ∂ξH(z,X)

κ(y)∇yH(z,X)

∥∥∥2
∞

]
< ∞, k ≥ 0

yields

E[DG(z
⋆, zk+1)|Fk] ≤ DG(z

⋆, zk)− γk+1

〈
E

 ∂ξH(z,X)

κ(y)∇yH(z,X)


|z=zk

, zk − z⋆

〉

+m ∨ 1N2
⋆γ

2
k+1.

(A.8)
The Robbins-Siegmund theorem guarantees that

DG(z
⋆, zn)

n→∞−→ D∞ ∈ L1(P) a.s. (A.9)

and ∑
n≥0

γn+1

〈
E

 ∂ξH(z,X)

κ(y)∇yH(z,X)


|z=zn

, zn − z⋆

〉
< ∞, a.s.

The first assertion above implies that the sequence (zn)n≥0 is bounded while the
second together with Lemma 3.2 and the condition

∑
k≥1 γk = ∞ guarantees that

lim inf
n→∞

〈
E

 ∂ξH(z,X)

κ(y)∇yH(z,X)


|z=zn

, zn − z⋆

〉
= 0.

As a consequence, we may assume the existence of a subsequence (φ(n))n≥0 such
that

zφ(n) → z∞ ∈ R× (Rd
+ ∩Bd

m)

and

lim
n→∞

〈
E

 ∂ξH(z,X)

κ(y)∇yH(z,X)


|z=zφ(n)

, zφ(n) − z⋆

〉
= 0.

By continuity of the map z 7→ (E[∂ξH(z,X)], E[κ(y)∇yH(z,X)]), it follows that:

lim
n→∞

〈
E

 ∂ξH(z,X)

κ(y)∇yH(z,X)


|z=zφ(n)

, zφ(n) − z⋆

〉

=

〈
E

 ∂ξH(z∞, X)

κ(y∞)∇yH(z∞, X)

 , z∞ − z⋆

〉
= 0

and, by Lemma 3.2, implies that z∞ = z⋆. Subsequently, coming back to (A.9), we
deduce that

lim
n→∞

DG(z
⋆, zn) = lim

n→∞
DG(z

φ(n), z⋆) = 0
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which clearly implies that the sequence (zn)n≥0 converges a.s. towards z⋆. Note
additionally that taking expectation on both sides of (A.8) and using Lemma 3.2
together with a direct induction argument give

sup
n≥1

E[DG(z
n, z⋆)] ≤ E[DG(z

⋆, z0)] +m ∨ 1M2
⋆

∑
n≥1

γ2n. (A.10)

The above bound will be useful in order to investigate the convergence rate of
(z̄n)n≥1 in the next step.
Step 2: On the convergence rate of (z̄n)n≥1

We now come back to (A.6) getting

γk+1

〈
E

 ∂ξH(z,X)

κ(y)∇yH(z,X)


|z=zk

, zk − z⋆

〉

≤ DG(z
⋆, zk)−DG(z

⋆, zk+1)− γk+1⟨∆k+1, zk − z⋆⟩
+m ∨ 1γ2k+1Yk+1

Summing over k = 0, 1, · · · , n the previous inequality and recalling that DG(z
⋆, zn+1) ≥

0, we get

n∑
k=0

γk+1

〈
E

 ∂ξH(z,X)

κ(y)∇yH(z,X)


|z=zk

, zk − z⋆
〉

≤ DG(z
⋆, z0)−Mn +m ∨ 1

n∑
k=0

γ2k+1Yk+1

(A.11)

where we introduced the notation

Mn :=

n∑
k=0

γk+1⟨∆k+1, zk − z⋆⟩, n ≥ 0.

Note that since (∆k)k≥1 is a sequence of F-martingale increments, (Mn)n≥0 is
an F-martingale.

Combining the convexity of h with Jensen’s inequality, we obtain

n∑
k=0

γk+1

〈
E

 ∂ξH(z,X)

κ(y)∇yH(z,X)


|z=zk

, zk − z⋆

〉

≥
n∑

k=0

γk+1κ(y
k)⟨∇h(zk), zk − z⋆⟩

≥
n∑

k=0

γk+1κ(y
k)(h(zk)− h(z⋆))

≥ min
0≤k≤n

κ(yk)(
n∑

k=0

γk+1)(h(z̄
n)− h(z⋆)).

(A.12)

Combining (A.11) with (A.12) eventually yields

h(z̄n)− h(z∗) ≤ 1

min0≤k≤n κ(yk)

1∑n
k=0 γk+1

[
DG(z

∗, z0)−Mn +m ∨ 1
n∑

k=0

γ2k+1Yk+1

]
, a.s.

(A.13)
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Step 3:
To conclude the proof, we provide some uniform controls on the two last terms

involved in the right-hand side of the previous upper-bound (A.13). Recall that{
Mn :=

∑n
k=0 γk+1⟨∆k+1, zk − z⋆⟩, n ≥ 1

}
is an F-martingale. Since

E[∥∆k+1∥22|Fk] ≤ dE
[∥∥∥

 ∂ξH(z,X)

κ(y)∇yH(z,X)

∥∥∥2
∞

]
≤ dN2

⋆

we get

⟨M⟩n ≤ dM2
⋆ sup

k≥0
∥zk − z⋆∥22

n∑
k=0

γ2k+1

which in turn implies that ⟨M⟩∞ = limn⟨M⟩n < ∞ a.s. Hence, (Mn)n≥1 converges
a.s. to M∞ < ∞ a.s. Moreover, from (3.8) and (A.10), we deduce

sup
n≥0

E[∥z⋆−zn∥22] ≤ 2(m∨1) sup
n≥0

E[DG(z
⋆, zn)] ≤ E[DG(z

⋆, z0)]+
1

2
(m∨1)N2

⋆

∑
n≥1

γ2n < ∞

so that

sup
n≥1

E[M2
n] ≤

∑
n≥0

γ2n+1E[∥∆n+1∥22∥z⋆− zn∥22] ≤ dN2
⋆ sup

n≥0
E[∥z⋆− zn∥22]

∑
n≥0

γ2n+1 < ∞.

Hence, (Mn)≥1 is bounded in L2(P).
To conclude, note that the third term in (A.13) is bounded a.s. and in L1(P)

since
E
[∑
n≥0

γ2n+1Yk+1

]
≤ N2

⋆

∑
n≥0

γ2n+1.

The proof is now complete.
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