Fluctuations, bias, variance and ensemble of learners: exact asymptotics for convex losses in high-dimension <sup>*</sup> - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Mechanics: Theory and Experiment Année : 2023

Fluctuations, bias, variance and ensemble of learners: exact asymptotics for convex losses in high-dimension *

Résumé

From the sampling of data to the initialisation of parameters, randomness is ubiquitous in modern Machine Learning practice. Understanding the statistical fluctuations engendered by the different sources of randomness in prediction is therefore key to understanding robust generalisation. In this manuscript we develop a quantitative and rigorous theory for the study of fluctuations in an ensemble of generalised linear models trained on different, but correlated, features in high-dimensions. In particular, we provide a complete description of the asymptotic joint distribution of the empirical risk minimiser
Fichier principal
Vignette du fichier
Loureiro_2023_J._Stat._Mech._2023_114001.pdf (832.2 Ko) Télécharger le fichier
Origine Publication financée par une institution
Licence

Dates et versions

hal-04785350 , version 1 (15-11-2024)

Licence

Identifiants

Citer

Bruno Loureiro, Cédric Gerbelot, Maria Refinetti, Gabriele Sicuro, Florent Krzakala. Fluctuations, bias, variance and ensemble of learners: exact asymptotics for convex losses in high-dimension *. Journal of Statistical Mechanics: Theory and Experiment, 2023, 2023, pp.114001. ⟨10.1088/1742-5468/ad0221⟩. ⟨hal-04785350⟩
14 Consultations
5 Téléchargements

Altmetric

Partager

More