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Université, 24 Rue Lhomond, 75005 Paris, France

3 Department of Mathematics, King’s College London, Strand WC2R 2LS,
London, United Kingdom

E-mail: gabriele.sicuro@unibo.it

Received 10 May 2023
Accepted for publication 13 September 2023
Published 15 November 2023

Online at stacks.iop.org/JSTAT/2023/114001
https://doi.org/10.1088/1742-5468/ad0221

Abstract. From the sampling of data to the initialisation of parameters, ran-
domness is ubiquitous in modern Machine Learning practice. Understanding
the statistical fluctuations engendered by the different sources of randomness
in prediction is therefore key to understanding robust generalisation. In this
manuscript we develop a quantitative and rigorous theory for the study of fluc-
tuations in an ensemble of generalised linear models trained on different, but
correlated, features in high-dimensions. In particular, we provide a complete
description of the asymptotic joint distribution of the empirical risk minimiser
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for generic convex loss and regularisation in the high-dimensional limit. Our res-
ult encompasses a rich set of classification and regression tasks, such as the lazy
regime of overparametrised neural networks, or equivalently the random features
approximation of kernels. While allowing to study directly the mitigating effect
of ensembling (or bagging) on the bias-variance decomposition of the test error,
our analysis also helps disentangle the contribution of statistical fluctuations,
and the singular role played by the interpolation threshold that are at the roots
of the ‘double-descent’ phenomenon.

Keywords: learning theory, machine learning
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1. Introduction

Randomness is ubiquitous in Machine Learning. It is present in the data (e.g. noise in
acquisition and annotation), in commonly used statistical models (e.g. random features
(RFs) (Rahimi and Recht 2007)), or in the algorithms used to train them (e.g. in
the choice of initialisation of weights of neural networks (Narkhede et al 2022), or
when sampling a mini-batch in Stochastic Gradient Descent (Bottou 2012)). Strikingly,
fluctuations associated to different sources of randomness can have a major impact
in the generalisation performance of a model. For instance, this is the case in least-
squares regression with RFs, where it has been shown (D’Ascoli et al 2020, Geiger
et al 2020, Jacot et al 2020) that the variance associated with the random projections
matrix is responsible for poor generalisation near the interpolation peak (Advani and
Saxe 2017, Spigler et al 2019, Belkin et al 2020). As a consequence, this double-descent
behaviour can be mitigated by averaging over a large ensemble of learners, effectively
suppressing this variance. Indeed, considering an ensemble (sometimes also refereed to as
a committee (Drucker et al 1994)) of independent learners provide a natural framework
to study the contribution of the variance of prediction in the estimation accuracy. In
this manuscript we leverage this idea to provide an exact asymptotic characterisation
of the statistics of fluctuations in empirical risk minimisation with generic convex losses
and penalties in high-dimensional models. We focus on the case of synthetic datasets,
and we apply our results to RF learning in particular.

1.1. Setting

Let (xµ,yµ) ∈ Rd×Y, µ ∈ [n] := {1, . . . ,n}, denote a labelled data set composed of n
independent samples from a joint density p(x,y) (e.g. Y = {−1,1} for a binary clas-
sification problem). In this manuscript we are interested in studying an ensemble of
K parametric predictors, each of them depending on a vector of parameters wk ∈ Rp,
k ∈ [K], and independently trained on the dataset {(xµ,yµ)}µ∈[n]. Note that even if the
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vectors of parameters {wk}k∈[K] are trained independently, they correlate through the
training data. Statistical fluctuations in the learnt parameters can then arise for differ-
ent reasons. For instance, a common practice is to initialise the parameters randomly
during optimisation, which will induce statistical variability between the different pre-
dictors. Alternatively, each predictor could be trained on a subsample of the data, as it
is commonly done in bagging (Breiman 1996). The statistical model can also be inher-
ently stochastic, e.g. the RFs approximation for kernel methods (Rahimi and Recht
2007). Finally, the predictors could also be jointly trained, e.g. coupling them through
the loss or penalty as it is done in boosting (Schapire 1990).

Our goal in this work is to provide a sharp characterisation of the statistical fluctu-
ations of the ensemble of parameters {wk}k∈[K] in a particular, mathematically tract-
able, class of predictors: generalised linear models,

ŷ (x) = f̂

(
ŵ>

1 u1 (x)√
p

, . . . ,
ŵ>

KuK (x)
√
p

)
(1)

where uk : Rd → Rp, k ∈ [K] is an ensemble of possibly correlated features and f̂ : RK →
Y is an activation function. For most of this work, we discuss the case in which the
predictors are independently trained through regularised empirical risk minimisation:

ŵk = argmin
w∈Rp

[
1

n

n∑
µ=1

ℓ

(
yµ,

w>uk (x
µ)

√
p

)
+

λ

2
‖w‖22

]
(2)

with a convex loss function ℓ : Y ×R→ R (e.g. the logistic loss) and ridge penalty whose
strength is given by λ ∈ R+. However, our analysis also includes the case in which
the learners are jointly trained with a generic convex penalty. This case will be fur-
ther discussed in section 4. In what follows we will also concentrate in the RFs case
where uk(x) = ϕ(F kx) with ϕ : R→ R an activation function acting component-wise
and F k ∈ Rp×d a family of independently sampled random matrices. Besides being an
efficient approximation for kernels (Rahimi and Recht 2007), RFs are often studied as
a simple model for neural networks in the lazy and neural tangent kernel regimes of
deep neural networks (Jacot et al 2018, Chizat et al 2019), in which case the matrices
F k correspond to different random initialisation of hidden-layer weights. Moreover, the
RFs model displays some of the exotic behaviours of high-dimensional overparamet-
rised models, such as double-descent (Gerace et al 2020, Mei and Montanari 2021) and
benign overfitting (Bartlett et al 2020), therefore providing an ideal playground to study
the interplay between fluctuations and overparametrisation. A broader class of features
maps is also discussed in section 4.

To provide an exact characterisation of the statistics of the estimators in
equation (2), we shall assume data is generated from a target

y = f0

(
θ>x√

d

)
, θ ∼N (0d,ρId) , ρ ∈ R+

0 , (3)
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Figure 1. Pictorial representation of the model considered in the paper for K =2.
Two learners with the same architecture (in grey) receive a correlated input gen-
erated from the same vector x∼N (0d,Id). The output ŷ is an average of their
outputs. While the study of an ensemble of learners is already interesting per se,
it is also pivotal to study the fluctuation between learners, and the error steaming
from the difference in the weights in random features and lazy training.

with f0 : R→Y and Id d -dimensional identity matrix. The dataset is then constructed
generating i.i.d. n vectors xµ ∼N (0d,Id), µ ∈ [n].

An illustration summary of the setting considered here in given in figure 1. Note that
such architecture can be interpreted as a two-layer tree neural network, also known in
some contexts as the tree-committee or parity machine (Schwarze and Hertz 1992).

1.1.1. Main contributions. The results in this manuscript can be listed as follows.

• We provide a sharp asymptotic characterisation of the joint statistics of the ensemble
of empirical risk minimisers {ŵk}k∈[K] in the high-dimensional limit where p,n→+∞
with n/p kept constant, for any convex loss and penalty. In particular, we show that

the pre-activations {ŵ>
k uk}k∈[K] are jointly Gaussian, with sufficient statistics obeying

a set of explicit closed-form equations. Note that the analysis of ensembling with non-
square losses is out of the grasp of the most commonly adopted theoretical tools (e.g.
random matrix theory). Therefore, our proof method based on recent progress on
approximate message passing (AMP) techniques (Javanmard and Montanari 2013,
Berthier et al 2020, Gerbelot and Berthier 2021) is of independent interest. Different
versions of our theorem are discussed throughout the manuscript. First, in section 2
for the particular case of independently trained learners on RFs (theorem 1). Later,
in section 4 for the general case of jointly trained learners on correlated Gaussian
covariates (theorem 2).

• We discuss the role played by fluctuations in the non-monotonic behaviour of
the generalisation performance of interpolators (a.k.a. double-descent behaviour).
In particular—as discussed in Geiger et al (2020), d’Ascoli et al (2021)for the
ridge case—the interpolation peak arises from the model overfitting the particu-
lar realisation of the random weights. We show the test error can be decomposed
ϵg(K = 1) = ϵg + δϵg in terms of a fluctuation-free term ϵg and a fluctuation term δϵg
responsible for the double-descent behaviour, see figure 2 for the case of max-margin
classification.

https://doi.org/10.1088/1742-5468/ad0221 5
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Figure 2. Left. Test error for logistic regression with λ= 10−4 and different values
of K as function of p/n= 1/α with n/d= 2 and ρ=1. Dots represent the aver-
age of the outcomes of 103 numerical experiments. Here we adopted ϕ(x) = erf(x)
and estimator f̂(v) = sign(

∑
k vk). Right. Decomposition of the K =1 test error

ϵg = ϵg + δϵg for the estimator (a), with n/d= 2 and λ= 10−4. We plot also the
contribution δϵg corresponding to the estimator (b): we numerically observed that
such decomposition coincides in the two cases. Note also the presence of a kink in
δϵg at the interpolation transition.

• In the context of classification, we discuss how majority vote and score averaging,
two popular ensembling procedures, compare in terms of generalisation performance.
More specifically, we show that in the setting we study score averaging consistently
outperforms the majority vote predictor. However, for a large number of learners
K � 1 these two predictors agree, see figure 5(right).

• Finally, we discuss how ensembling can be used as a tool for uncertainty quantification.
In particular, we connect the correlation between two learners to the probability of dis-
agreement, and show that it decreases with overparametrisation, see figure 5(centre).
We provide a full characterisation of the joint probability density of the confidence
score between two independent learners, see figure 5(left).

1.1.2. Related works. The idea of reducing the variance of a predictor by averaging
over independent learners is quite old in Machine Learning (Hansen and Salamon 1990,
Perrone and Cooper 1993, Perrone 1994, Krogh and Vedelsby 1995), and an early asymp-
totic analysis of the regression case was given in Krogh and Sollich (1997). In particu-
lar, a variety of methods to combine an ensemble of learners appeared in the literature
(Opitz and Maclin 1999). In a very inspiring work, Geiger et al (2020) carried out an
extensive series of experiments in order to shed light on the generalisation properties of
neural networks, and reported many observations and empirical arguments about the
role of the variance due to the random initialisation of the weights in the double-descent
curve using an ensemble of learners. This was a major motivation for the present work.

https://doi.org/10.1088/1742-5468/ad0221 6

https://doi.org/10.1088/1742-5468/ad0221


Fluctuations, bias, variance and ensemble of learners: exact asymptotics for convex losses in high-dimension

J.S
tat.

M
ech.(2023)

114001

Closest to our setting is the work of Neal et al (2018), D’Ascoli et al (2020), Jacot et al
(2020) which disentangles the various sources of variance in the process of training deep
neural networks. Indeed, here we adopt the model defined by D’Ascoli et al (2020),
and provide a rigorous justification of their results for the case of ridge regression. A
slightly finer decomposition of the variance in terms of the different sources of ran-
domness in the problem was later proposed by Adlam and Pennington (2020a). Lin and
Dobriban (2021) show that such decomposition is not unique, and can be more generally
understood from the point of view of the analysis of variance framework. Interestingly,
subsequent papers were able to identity a series of triple (and more) descent, e.g. Chen
et al (2020), Adlam and Pennington (2020b), d’Ascoli et al (2021).

The RFs model was introduced in the seminal work of Rahimi and Recht (2007)
as an efficient approximation for kernel methods. Drawing from early ideas of Karoui
(2010), Pennington and Worah (2017) showed that the empirical distribution of the
Gram matrix of RF is asymptotically equivalent to a linear model with matched second
statistics, and characterised in this way memorisation with RF regression. The learn-
ing problem was first analysed by Mei and Montanari (2021), who provided an exact
asymptotic characterisation of the training and generalisation errors of RF regression.
This analysis was later extended to generic convex losses by Gerace et al (2020) using
the heuristic replica method, and later proved by Dhifallah and Lu (2020) using convex
Gaussian inequalities.

The aforementioned asymptotic equivalence between the RF model and a Gaussian
model with matched moments has been named the Gaussian Equivalence Principle
(GEP) (Goldt et al 2020). Rigorous proofs in the memorisation and learning setting
with square loss appeared in Pennington and Worah (2017), Mei and Montanari (2021),
and for general convex penalties in Hu and Lu (2020), Goldt et al (2021). Goldt et al
(2021) and Loureiro et al (2021b) provided extensive numerical evidence that the GEP
holds for more generic feature maps, including features stemming from trained neural
networks.

Most of the previously mentioned works deriving exact asymptotics for the RF
model in the proportional limit use either Random Matrix Theory techniques or con-
vex Gaussian inequalities. While these tools have been recently used in many different
contexts, they ultimately fall short when considering an ensemble of predictors with gen-
eric convex loss and regularisation, along with structured design matrices. Therefore,
to prove the results herein we employ an AMP proof technique (Bayati and Montanari
2011a, Donoho and Montanari 2016), leveraging on recently introduced progresses in
Gerbelot and Berthier (2021), Loureiro et al (2021b) which enables to capture the full
complexity of the problem and obtain the asymptotic joint distribution of the ensemble
of predictors. LeJeune et al (2020) studies ensembles of ordinary least-squares learned
from subsamples of a common data matrix, and shows its equivalence to an implicit
ridge regularisation.

2. Learning with an ensemble of random features

In this section give a first formulation of our main result, namely the exact asymptotic
characterisation of the statistics of the ensembling estimator introduced in equation (1).

https://doi.org/10.1088/1742-5468/ad0221 7
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We prove that, in the proportional high dimensional limit, the statistics of the arguments
of the activation function in equation (1) is simply given by a multivariate Gaussian,
whose covariance matrix we can completely specify. This result holds for any convex
loss, any convex regularisation, and for all models of generative networks uk : Rd → Rp,
as we will show in full generality in section 4. However, for simplicity, in this section and
in the following we focus on the setting described in section 1, in which the statistician
averages over an independent ensemble of RFs, i.e. uk(x) = ϕ(F kx). In this case, our
result can be formulated as follows:

Theorem 1 (simplified version). Assume that in the high-dimensional limit where
d,p,n→+∞ with α := n/p and γ := d/p kept Θ(1) constants, the Wishart matrix FF ⊺

has a well-defined asymptotic spectral distribution. Then in this limit, for any
pseudo-Lispchitz function of order 2 φ : R×RK → R, we have

E(x,y)

[
φ

(
y,

ŵ⊺
1u1√
p

, . . . ,
ŵ⊺

KuK√
p

)]
P−→ E(ν,µ) [φ(f 0 (ν) ,µ)] , (4)

where (ν,µ) ∈ RK+1 is a jointly Gaussian vector (ν,µ)∼N (0K+1,Σ) with covariance

Σ=

(
ρ m1⊺K

m1K Q

)
, Q := (q0− q1)IK + q11K,K , (5)

with 1K,K ∈ RK×K and 1K ∈ RK are a matrix and a vector of ones respectively. The
entries of Σ are solutions of a set of self-consistent equations given in Corollary 4.

As discussed in the introduction, the asymptotic statistics of the single learner has
been studied in Dhifallah and Lu (2020), Gerace et al (2020), Loureiro et al (2021b).
Their result amounts to the analysis of the estimator solving the empirical risk minim-
isation problem in equation (2) and it is recovered imposing K =1 in the theorem above.

For K =1, (ν,µ) ∈ R2 is jointly Gaussian with zero mean and covariance Σ=

(
ρ m
m q0

)
.

However, such result is not enough to quantify the correlation between different
learners, induced by the training on the same dataset, which is required to compute,
e.g. the test error associated with an ensembling predictor as in equation (1). For

example, in the simple case where f0(u) = u and f̂(v) = 1
K

∑
k vk, the mean-squared

error on the labels is given by ϵg = E(x,y)[(y− ŷ(x))2] = ρ+(q0− q1)K
−1+ q1− 2m,

which crucially depends on the average correlation between two independent learners4

q1 :=
1
pE[ŵ

⊺
1ŵ2]. Our main result is precisely an exact asymptotic characterisation of

this correlation in the proportional limit of the previous theorem. Once m, q0 and q1
have been determined, the generalisation error can be computed as

ϵg := E(x,y) [∆(y, ŷ (x))]
n→+∞−−−−→ E(ν,µ)

[
∆
(
f 0 (ν) , f̂ (µ)

)]
(6)

for any error measure ∆: Y ×Y → R+.

4 Note that since all learners are here assumed to be statistically equivalent, their pair-wise correlation is the same on average. In
the general case, discussed in section 4, the correlation matrix Q ∈ RK×K can have a more complex structure.
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Suppose now that

f̂ (v)≡ f̂0

(
1

K

∑
k

vk

)
(7)

for some f̂0 : R→Y activation function of the single learner. In this case we can intro-

duce the random variable µ̂
d
= limK→+∞

1
K

∑
kµk. It is not difficult to see that the joint

probability p(ν, µ̂)∼N (02,Σ̂) where Σ̂=

(
ρ m
m q1

)
. This formally coincides with the

joint distribution for the activation fields for K =1 (Gerace et al 2020), but with q0
replaced by q1 ⩽ q0. The smaller variance is due to the fact that the fluctuations of
the activation fields are averaged out by the ensembling process. The test error in the
K →+∞ limit is then

ϵg := E(ν,µ̂)

[
∆
(
f 0 (ν) , f̂0 (µ̂)

)]
, (8)

so that the fluctuation contribution to the test error for K =1 can be defined as

δϵg := E(ν,µ)

[
∆
(
f 0 (ν) , f̂0 (µ)

)]
− ϵg. (9)

The term δϵg is by definition the contribution suppressed by ensembling and corresponds
to the ambiguity introduced by Krogh and Vedelsby (1995) for the square loss. This
contribution expresses the variance in the ensemble and it is responsible for the non-
monotonic behaviour in the test error of interpolators, also known as the double-descent
behavior.

3. Applications

We will consider now two relevant examples of separable losses, namely a ridge loss
and a logistic loss. In both cases, it is possible to derive the explicit expression of the
training loss and generalisation error in terms of the elements of the correlation matrix
introduced above.

3.1. Ridge regression

If we assume f0(x) = x, f̂(v) = 1
K

∑
k vk, and a quadratic loss of the type ℓ(y,x) =

1
2(y−x)2, it is possible to write down simple recursive equations for m, q0 and q1 (see
appendix A.3.2). Taking ∆(y, ŷ) = (y− ŷ)2, the generalisation error is easily computed
as

ϵg = ρ+
q0− q1
K

+ q1− 2m
K→+∞−−−−→ ρ+ q1− 2m ≡ ϵg. (10)

Note that in this case the λ→ 0+ limit gives the minimum ℓ2-norm interpolator. In
figure 3 we compare our theoretical prediction with numerical results for λ= 10−6 and
various values of K. It is evident that the divergence of the generalisation error at α=1
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Figure 3. Left. Test error for ridge regression with λ= 10−6 and different values
of K as function of p/n= 1/α with n/d= 2 and ρ=1. Dots represent the aver-
age of the outcomes of 50 numerical experiments in which the parameters of the
neurons are estimated using min(d,p) = 200. Here we adopted ϕ(x) = erf(x). Right.
Decomposition of ϵg = ϵg + δϵg in the K =1 case.

is only due to the divergence of q0, whereas the contribution ϵg, which is independent
on q0, is smooth everywhere. Alongside with the interpolation divergence, δϵg = q0− q1
has an additional bump at p/n= d/n, which corresponds to the ‘linear peak’ discussed
by d’Ascoli et al (2021).

In the plot we present also the so-called kernel limit, corresponding to the limit
n/p= α→ 0 at fixed n/d. An explicit manipulation (see appendix A.3.2) shows that

q1 = q0 ≡ q in this limit. This implies that in the kernel limit ϵk
g does not depend on

K, being equal to ϵk
g ≡ ρ+ q− 2m. The generalisation error obtained in the kernel limit

coincides with ϵg for p>n: this is expected as in ϵg the fluctuations amongst learners are
averaged out, effectively recovering the cost obtained in the case of an infinite number
of parameters.

3.2. Binary classification

Suppose now that we are considering a classification task, such that Y = {−1,1}. For
this task we consider f0(x) = sign(x). A popular choice of loss in this classification task
is the logistic loss,

ℓ(y,x) = ln
(
1+ e−yx

)
, (11)

although other choices, e.g, hinge loss, can be considered. Since both the logistic
and hinge losses depend only on the margin yw⊺u, the empirical risk minimiser for
λ→ 0+ in both cases give the max-margin interpolator (Rosset et al 2004). We write
down the explicit saddle-point equations associated to the logistic and hinge loss in
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Figure 4. Analytical estimation of the covariance parameters characterising the
correlation with the oracle m (left), the norm of the predictor in feature space q0
and the correlation between learners q1 (right) (see equation (5) for the definition)
in a classification task using logistic loss with ridge penalty with λ= 10−4 at fixed
n/d= 2 as function of p/n. In the inset, ratio q1/q0, quantifying the correlation
between two learners. In all parameters the interpolation kink is clearly visible.

appendix A.3.3, but we will focus our attention on the logistic case for the sake of
brevity. For this choice of the loss, we obtained the values of m, q0 and q1 showed in
figure 4. Using these values, a number of relevant questions can be addressed.

3.3. Alignment of learners

Assuming that the predictor of the learner k is ŷk(x) = sign(ŵ⊺
kuk(x)), in

figure 5(centre) we estimate the probability that two learners give opposite classific-
ation. This is analytically given by

P [ŷ1 (x) 6= ŷ2 (x)] = P [µ1µ2 < 0] =
1

π
arccos

(
q1
q0

)
. (12)

Note that by definition the ratio q1/q0 is a cosine similarity between two learners in
the norm induced by the feature space. Therefore, this provides an interesting inter-
pretation of these sufficient statistics in terms of the probability of disagreement.
In particular, as illustrated in figure 5(centre) overparametrisation promotes agree-
ment between the learners, therefore suppressing uncertainty. More generally, ensem-
bling can be used as a technique for uncertainty estimation (Lakshminarayanan et al
2017). In the context of logistic regression, the pre-activation to the sign function
is often interpreted as a confidence score. Indeed, introducing the logistic function
φk(x) = (1+ exp(−p−1/2ŵ⊺

kuk(x)))
−1, it expresses the confidence of the kth classifier

in associating ŷ = 1 to the input x . Therefore, it is reasonable to ask how reliable is the
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Figure 5. Left. Joint probability density of the confidence score φi(x) = (1+
exp(−p−1/2ŵ⊺

i ui(x)))
−1 of two learners for p/n' 0.13. Centre. Probability that two

learners give discordant predictions using logistic regression as function of p/n= 1/α
with n/d= 2, ρ=1, and λ= 10−4. Right. Test error for logistic regression using the
estimators in equation (13) and K =3, with the same parameters. We adopted
ϕ(x) = erf(x). We observe that the test error obtained using (a) is always smaller
than the one obtained using (b). (Centre and right) Dots represent the average of
the outcomes of 103 numerical experiments.

logistic score as a confidence measure. For instance, what is the variance of the confid-
ence among different learners? This can be quantified by the joint probability density
ρ(φ1,φ2) := Ex[δ(φ1−φ1(x))δ(φ2−φ2(x))], which can be readily computed using our
theorem 1. Figure 5(left) shows one example at fixed p/n and vanishing λ.

3.4. Ensemble predictors

In the previous two points, we discussed how ensembling can be used as a tool to
quantify fluctuations. However, ensembling methods are also used in practical settings
in order to mitigate fluctuations, e.g. Breiman (1996). An important question in this
context is: given an ensemble of predictors {ŵk}k∈[K], what is the best way of combining
them to produce a point estimate? In our setting, this amounts to choosing the function
f̂ : RK →Y. Let us consider two popular choices for the estimator f̂ in equation (1) used
in practice:

(a) f̂ (v) = sign

(∑
k

vk

)
, (13a)

(b) f̂ (v) = sign

(∑
k

sign(vk)

)
. (13b)

In a sense, (a) provides an estimator based on the average of the output fields,
whereas (b), which corresponds to a majority rule if K is odd (Hansen and Salamon
1990), is a function of the average of the estimators of the single learners. For both
choices of the estimator we use ∆(y, ŷ) = δŷ,y to measure the test error. In figure 5(right)
we compare the test error obtained using (a) and (b) for K =3 with vanishing regular-
isation λ= 10−4. It is observed that the estimator (a) has better performances than the
estimator (b). As previously discussed, in this case logistic regression is equivalent to
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max-margin estimation, and in this case the error (a) can be intuitively understood in
terms of a robust max-margin estimation obtained by averaging the margins associated
to different draws of the RFs. In the case (a) it is easy to show that the generalisation
error takes the form

ϵg =
1

π
arccos

( √
Km√

ρ(q0− q1+Kq1)

)
K→∞−−−→ 1

π
arccos

(
m

√
ρq1

)
≡ ϵg. (14)

This formula is in agreement with numerical experiments, see figure 2(left).
Unfortunately, we did not find a similar closed-form expression in case (b). However,
we can observe that in the K →+∞ limit the generalisation error in case (a) coincides
with the generalisation error in case (b), see figure 2(right). By comparing with the
results in figure 5(centre), it is evident that the benefit of ensembling in reducing the
test error correlates with the tendency of learners to disagree, i.e. for small values of
p/n, as stressed by Krogh and Vedelsby (1995). Finally, we observe a constant value of
ϵg beyond the interpolation threshold, compatibly with the numerical results of Geiger
et al (2020).

4. The case of general loss and regularisation

In this section we generalise our results in section 2 relaxing the hypothesis on the loss,
on the regularisation and on the properties of the feature maps. In the general setting we
are going to consider, we denote P 0

y (y|x) the probabilistic law by which y is generated.

For example, in section 2, P 0
y (y|x) = δ(y− f0(x)). In the treatment given here, we allow

for more general cases (e.g. the presence of noise in the label generation). We make
no assumptions on the generative networks uk, so that the information about the first
layer is contained in the following tensors,

Ω := Ex [U (x)⊗U (x)] ∈ Rp×p⊗RK×K , (15)

Φ̂ := Ex [U (x)x⊺θ] ∈ Rp×K , (16)

Θ = Φ̂⊗ Φ̂ ∈ Rp×p⊗RK×K . (17)

In the equations above, U(x) ∈ Rp×K is the matrix having as concatenated columns
uk(x). We aim at learning a rule as in equation (1), adopting a general convex loss

ℓ̂ : Y ×RK → R, so that the weights are estimated as

Ŵ = argmin
W∈Rp×K

[
1

n

n∑
µ=1

ℓ̂

(
yµ,

diag(W ⊺Uµ)
√
p

)
+λr (W )

]
(18)

where r : Rp×K → R is a convex regularisation, Uµ ≡U(xµ) and Ŵ ∈ Rp×K matrix of
the concatenated columns {ŵk}. Here, since the optimisation problem defining the
estimator may be non strictly convex, the solution may not be unique. We then denote
with Ŵ the unique least ℓ2 norm solution of equation (18).

In the most general case, the statistical properties of Ŵ are captured by a finite set of
finite-dimensional order parameters, namely V , V̂ ,Q,Q̂ ∈ RK×K andm,m̂ ∈ RK . These
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order parameters satisfy a set of fixed-point equations. To avoid a proliferation of indices

in our formulas, let us introduce some notation. Let A= (Aij
kk ′)

i,j∈[p]
k,k ′∈[K] ∈ Rp×p⊗RK×K be

a tensor, and X = (X i
k)

i∈[p]
k∈[K], Y = (Y i

k )
i∈[p]
k∈[K], X,Y ∈ Rp×K two matrices. We will denote

〈〈A〉〉 :=

(∑
i

Aii
kk ′

)
kk ′

∈ RK×K , (19a)

〈〈X|A|Y 〉〉 :=

∑
ij

X i
kA

ij
kk ′Y

j
k ′


kk ′

∈ RK×K , (19b)

〈〈X|Y 〉〉 :=

∑
ij

X i
kY

i
k


k

∈ RK , (19c)

〈X|A|Y 〉 :=
∑
ijk

X i
kA

ij
kkY

j
k ∈ R (19d)

〈X|Y 〉 :=
∑
ik

X i
kY

i
k ∈ R. (19e)

Given a second tensor B ∈ Rp×p⊗RK×K , we write

AB :=

(∑
i ′κ

Aii ′

kκB
i ′j
κk ′

)ij

kk ′

∈ Rp×p⊗RK×K , (19f )

A ◦B :=

(∑
i ′

Aii ′

kk ′B
i ′j
k ′k

)ij

kk ′

∈ Rp×p⊗RK×K , (19g)

A�B :=
(
Aij

kk ′B
ij
kk ′

)ij
kk ′

∈ Rp×p⊗RK×K . (19h)

We can now state our general result.

Theorem 2. Let us consider the random quantities ξ ∈ RK and Ξ ∈ RK×K with entries
distributed as N (0,1). Assume that in the high-dimensional limit where d,p,n→+∞
with α := n/p and γ := d/p kept Θ(1) constants. Then in this limit, for any

pseudo-Lispchitz functions of order 2 φ : R×RK → R and φ̃ : RK×p → R, the estimator
Ŵ verifies

E(y,x)

[
φ

(
y,

〈〈Ŵ |U〉〉
√
p

)]
P−→
ˆ
Y

dyE(ν,µ)

[
P 0
y (y|ν)φ(y,µ)

]
,

1

n

n∑
µ=1

φ

(
yµ,

〈〈Ŵ |Uµ〉〉
√
p

)
P−→
ˆ
Y

dyEξ

[
Z0 (y,ω0,σ0)φ(y,h)

]
,

φ̃
(
Ŵ
)

P−→ EΞ [φ̃(G)] , (20)
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where U ≡U(x), (ν,µ) ∈ R1+K are jointly Gaussian random variables with zero mean
and covariance matrix

(ν,µ)∼N
(
01+K ,

(
ρ m⊺

m Q

))
, (21)

and we have introduced the proximals for the loss and the regularisation:

h := argmin
u

[
(u−ω)V −1 (u−ω)

2
+ ℓ̂(y,u)

]
,

G := argmin
U

〈U |
(
1p,p⊗ V̂

)
�Ω|U〉

2
−〈B|U〉+λr (U)

 , (22)

with ω :=Q1/2ξ and B := (1p⊗ m̂⊺)� Φ̂+((1p,p⊗ Q̂)�Ω)
1
2Ξ. We have also

introduced the auxiliary function

Z0 (y,µ,σ) :=

ˆ
P 0
y (y|x)dx
√
2πσ

e−
(x−µ)2

2σ . (23)

and the scalar quantities ω0 :=m⊺Q−1/2ξ and σ0 := ρ−m⊺Q−1m. The order
parameters satisfy the saddle-point equations

V̂ =−α

ˆ
Y

dyEξ

[
Z0 (y,ω0,σ0) ∂ωf

]
,

Q̂= α

ˆ
Y

dyEξ

[
Z0 (y,ω0,σ0) ff

⊺] ,
m̂=

α
√
γ

ˆ
Y

dyEξ

[
∂µZ0 (y,ω0,σ0)f

]
, (24)

and

V =
2

p
EΞ

〈
G

∣∣∣∣∣D
((

1p,p⊗ Q̂
)
�Ω

)1/2
DQ̂

∣∣∣∣∣Ξ
〉

Q=
1

p
EΞ〈〈G|Ω|G〉〉,

m=
1

√
γp

EΞ〈〈Φ̂|G〉〉. (25)

In the equation above we have introduced the short-hand notation f := V −1(h−ω).

In the theorem above, for a tensor Â ∈ Rp×p⊗RK×K , then [ DÂ
DQ̂

]kk
′,κκ ′

ij ≡ ∂Âkk ′
ij

∂Q̂κκ ′
: in

the formula, the contractions involve Latin indices only. Equations (24) are typically

called channel equations, because depend on the form of the loss ℓ̂. Equations (25),
instead, are usually called prior equations, because of their dependence on the prior,
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i.e. r. In the following Corollary, we specify their expression for a ridge regularisation,
r(W ) = 1

2‖W ‖2F.

Corollary 3 (ridge regularisation). In the hypotheses of theorem 2, if r(W ) = 1
2‖W ‖2F, then the

prior equations are

V =
1

p
〈〈Ω ◦A〉〉,

Q=
1

p

〈〈
Ω ◦
(
A
(
(1p,p⊗ m̂⊗ m̂⊺)�Θ+

(
1p,p⊗ Q̂

)
�Ω

)
A
)〉〉

,

m=
1

√
γp

〈〈A((1p,p⊗ m̂⊗1⊺K)�Θ)〉〉. (26)

In the equation above, we have used the auxiliary tensor A≡ A(V̂ ;λ,Ω) :=

(λIp⊗ IK +(1p,p⊗ V̂ )�Ω)−1 ∈ Rp×p⊗RK×K .

4.1. The random feature case and the kernel limit

Theorem 2 is given in a very general setting, and, in particular, no assumptions are
made on the features uk. We have anticipated in section 2 that, in the case of RFs, the
structure of the order parameters highly simplifies and the covariance matrix Σ is fully
specified by only three scalar order parameters for any K > 1. Here will adapt therefore
theorem 2 to the RF setting in section 2, using the notation therein. The motivation
of this section is to explicitly present the self-consistent equations that are required to
produce the results given in the paper.

Corollary 4. Assume that in the high-dimensional limit where d,p,n→+∞ with α := n/p
and γ := d/p kept Θ(1) constants, the Wishart matrix FF ⊺ has a well-defined
asymptotic spectral distribution. Then in this limit, for any pseudo-Lispchitz function
of finite order φ : R×RK → R, the estimator Ŵ verifies

E(x,y)

[
φ

(
y,

〈〈Ŵ |U〉〉
√
p

)]
P−→ E(ν,µ) [φ(f 0 (ν) ,µ)] , (27)

where (ν,µ) ∈ RK+1 is a jointly Gaussian vector with covariance

(ν,µ)∼N
(
0K+1,

(
ρ m1⊺K

m1K Q

))
, (28)

and Q := (q0− q1)IK + q11K,K . The collection of parameters (q0, q1,m) is obtained
solving a set of fixed point equations involving the auxiliary variables (q̂0, q̂1, m̂,v, v̂),
namely:

v̂ =−α

ˆ
Y

dyEω

[
Z0

(
y,

mω

q0
,ρ− m2

q0

)
∂ωf

]
, (29a)

m̂=
α
√
γ

ˆ
Y

dyEω

[
∂µZ0

(
y,

mω

q0
,ρ− m2

q0

)
f

]
, (29b)
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q̂0 = α

ˆ
Y

dyEω

[
Z0

(
y,

mω

q0
,ρ− m2

q0

)
f 2

]
, (29c)

q̂1 = α

ˆ
Y

dyEω,ω ′

[
Z0

(
y,m

ω+ω ′

q0+ q1
,ρ− 2m2

q0+ q1

)
ff ′
]
, (29d)

v =

ˆ
sϱ(s)ds
λ+ sv̂

, (29e)

m=
m̂
√
γ

ˆ
s−κ2

∗
λ+ v̂s

ϱ(s)ds, (29f )

q0 =

ˆ (
q̂0+ m̂2

)
s2− m̂2κ2

∗s

(λ+ v̂s)2
ϱ(s)ds, (29g)

q1 =

(
1+

q̂1
m̂2

)
m2. (29h)

where ω and ω ′ are two correlated Gaussian random variables of zero mean and
E[ω2] = E[ω ′2] = q0, E[ωω ′] = q1. Moreover, we have introduced the proximals

f =
Proxvℓ(y,•) (ω)−ω

v
, f ′ =

Proxvℓ(y,•) (ω
′)−ω ′

v
, (30)

with

Proxvℓ(y,•) (ω) := argmin
x

[
(x−ω)2

2v
+ ℓ(y,x)

]
. (31)

Finally, ϱ(s) is the asymptotic spectral density of the features covariance matrix

Ω≡ Var(u) = κ2
01p,p+

κ2
1

d FF ⊺+κ2
∗Ip and the coefficients are given by κ0 := Eζ [ϕ(ζ)],

κ1 := Eζ [ζϕ(ζ)], κ∗ := Eζ [ϕ
2(ζ)]−κ2

0−κ2
1 with ζ ∼N (0,1).

The previous corollary recovers the results of Dhifallah and Lu (2020), Gerace et al
(2020), and Loureiro et al (2021b) when restricted to the K =1 case by marginalisation.

4.2. The kernel limit

The so-called kernel limit is obtained by taking the limit of infinite number of parameters
so that γ→ 0 (i.e. p� d and p� n), but with a fixed ratio α/γ = n/d. To balance the
loss term and the regularisation it is convenient to rescale λ 7→ αλ. We can simplify the
saddle-point equation in this special limit introducing q̂0 7→ αq̂0, q̂1 7→ αq̂1, m̂ 7→

√
αm̂,

v̂ 7→ αv̂. The channel equations keep a simple form,

v̂ =−
ˆ
Y

dyEζ

[
Z0(y,ω0,σ0)∂ωf

]
, (32a)

m̂=
√
δ

ˆ
Y

dyEζ

[
f∂µZ0(y,ω0,σ0)

]
, (32b)
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q̂0 =

ˆ
Y

dyEζ

[
Z0(y,ω0,σ0)f

2
]
, (32c)

q̂1 =

ˆ
Y

dyEω,ω ′

[
Z0

(
y,m

ω+ω ′

q0+ q1
,ρ− 2m2

q0+ q1

)
f f ′

]
. (32d)

The p→+∞ limit in the prior equations depends on the spectral density ϱ(s). For
example, if F has random Gaussian entries with zero mean and unit variance, then ϱ(s)
is a shifted Marchenko–Pastur distribution,

ϱ(s) = ν
(
s−κ2

∗;α
−1δ,κ1

)
, (33)

where, if [x]+ = xθ(x),

ν (x;b,a) =

√
[(a+−x)(x− a−)]+

2ab2π2x
+

[
1− 1

a

]
+

δ (x) , (34)

with a± := b2(1±
√
a)2. By means of a series of algebraic manipulation, we obtain in

the end at the first order in α

v =
λ
(
κ2
1+κ2

∗
)
+ δ2κ2

1κ
2
∗v̂

λ(λ+ δκ2
1v̂)

,

m=

√
δκ2

1m̂

λ+ δκ2
1v̂

,

q0 =
δκ4

1

(
q̂0+ δm̂2

)
(λ+ δκ2

1v̂)
2 ,

q1 =
δκ4

1

(
q̂1+ δm̂2

)
(λ+ δκ2

1v̂)
2 ,

(35)

which complete our set of equations for the kernel limit.
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We thank Ali Bereyhi, Giulio Biroli, Stéphane d’Ascoli, Justin Ko for discussions, and
Francesca Mignacco for sharing code with us. We acknowledge funding from the French
National Research Agency Grants ANR-17-CE23-0023-01 PAIL and ANR-19P3IA-0001
PRAIRIE.

Appendix A. The replica approach

A.1. Notation

We introduce here some notation that will help us to keep the expressions in this
appendix more compact. Given two tensors A= (Aij

kk ′)
ij
kk ′ ∈ Rp×p⊗RK×K and B=

(Bij
kk ′)

ij
kk ′ ∈ Rp×p⊗RK×K , i, j ∈ [p], k,k ′ ∈ [K], then

Ĉ= AB⇔ Ĉij
kk ′ :=

∑
r,κ

Air
kκB

rj
κk ′ ∈ Rp×p⊗RK×K (36)

C= A�B⇔ Cij
kk ′ :=Aij

kk ′B
ij
kk ′ ∈ Rp×p⊗RK×K (37)

C̃= A ◦B⇔ C̃ij
kk ′ :=

∑
r

Air
kk ′B

rj
k ′k ∈ Rp×p⊗RK×K . (38)
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Also, if X = (X i
k)

i
k ∈ Rp×K and Y = (Y i

k )
i
k ∈ Rp×K , we write

X ⊗Y =
(
X i

kY
j
k ′

)ij
kk ′

∈ Rp×p⊗RK×K (39)

A|X〉=
(∑

jκA
ij
kκX

j
κ

)i
k
∈ Rp×K (40)

〈X|Y 〉=
∑

ikX
i
kY

i
k ∈ R (41)

〈X|A|Y 〉=
∑

ijkk ′ X i
kA

ij
kk ′Y

j
k ′ ∈ R, (42)

〈〈X|Y 〉〉=
(∑

ijX
i
kY

j
k

)
k
∈ RK (43)

〈〈X|A|Y 〉〉=
(∑

ijX
i
kA

ij
kk ′Y

j
k ′

)
kk ′

∈ RK×K , (44)

〈〈A〉〉=
(∑

iA
ii
kk ′

)
kk ′ ∈ RK×K . (45)

In other words, the double brackets 〈〈•〉〉 express the contraction of the upper indices
only. This means for example that 〈〈X|Y 〉〉= diag(X⊺Y ) ∈ RK . Finally, if u,v ∈ RK and
A ∈ RK×K , 〈u|A|v〉 := u⊺Av =

∑
kk ′ ukAkk ′vk ′ ∈ R. We will adopt the same notation in

the simple K =1 case.

A.2. The replica computation

The replica computation relies on the treatment of a Gibbs measure over the weights W
which concentrates on the weights Ŵ that minimise a certain loss ℓ̂ when a fictitious
‘inverse temperature’ parameter is sent to infinity. Such measure reads

µβ (W ) :=
Pw (W )

Z (β)

n∏
µ=1

exp
[
−βℓ̂

(
yµ,

〈〈W |Uµ〉〉
√
p

)]
, (46)

Z (β) :=

ˆ
dW Pw (W )

n∏
µ=1

exp
[
−βℓ̂

(
yµ,

〈〈W |Uµ〉〉
√
p

)]
, (47)

where Pw(W ) = e−βλr(W ) is the prior on the weights W = (W i
k)

i∈[p]
k∈[K] ∈ Rp×K , possibly

containing the regularisation. The dataset (yµ,Uµ)µ is obtained from a set of n samples

xµ ∼N (0d,Id), µ ∈ [n]. For each µ, the label yµ has distribution P 0
y

(
y|d−1/2〈θ

∣∣xµ〉
)
for

some fixed θ ∼N (0d,ρId). The array of features Uµ, instead, is obtained as function
of the vector xµ via a law U : Rd → Rp×K such that Uµ :=U(xµ) ∈ Rp×K . As we will
show below, the tensors
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Ω := Ex [U (x)⊗U (x)] ∈ Rp×p⊗RK×K , (48)

Φ̂ := Ex [U (x)〈x|θ〉] ∈ Rp×K , (49)

will incorporate the information about the action of the law U . We denote for
brevity

Py (y|u)∝ exp
[
−βℓ̂(y,u)

]
, (50)

and we proceed computing the free entropy Φ := E(yµ,xµ)µ[lnZ(β)] using the replica trick,

i.e. the fact that E[lnZ(β)] = lims→0
1
s lnE[Zs(β)]

E(yµ,xµ)µ
[Zs (β)] =

s∏
a=1

ˆ
dW aPw (W

a)

(
E(y,x)

[
P 0
y

(
y
∣∣∣〈x|θ〉√

d

)

×
s∏

a=1

Py

(
y
∣∣∣〈〈W a|U (x)〉〉

√
p

)])n

. (51)

Denoting by µa ≡ (µa
k)k∈[K], if we now consider

Ex

[
P 0
y

(
y
∣∣∣ 〈x|θ〉√

d

) s∏
a=1

Py

(
y
∣∣∣ 〈〈W a|U (x)〉〉√

d

)]

=

ˆ
dνP 0

y (y|ν)
s∏

a=1

[ˆ
dµaPy (y|µa)

]
Ex

[
δ

(
ν− 〈x|θ〉√

d

) s∏
a=1

δ

(
µa − 〈〈W a|U (x)〉〉

√
p

)]
︸ ︷︷ ︸

P (ν,µ)

. (52)

We apply now the GEP (Goldt et al 2021), i.e. we assume that P (ν,µ) is a Gaussian
with covariance matrix given by

Σ(W ) =

(
ρ m⊺

m Q

)
, (53)

where m= (ma)a∈[s] ∈ RsK and Q= (Qab)a,b∈[s] ∈ RsK×sK . Here, for each a,b ∈ [n], ma ∈
RK and Qab ∈ RK×K and are defined as

ρ := E
[
ν2
]
=

‖θ‖22
d

, (54)

ma := E [µaν] =
〈〈W a|Φ̂〉〉√

pd
, (55)

Qab := E
[
µaµb⊺]= 〈〈W a|Ω|W b〉〉

p
. (56)

In the end

E(yµ,xµ)µ
[Zs (β)] = Eθ

[
s∏

a=1

ˆ
dW aPw (W

a)

(ˆ
dy
ˆ

dνP 0
y (y|ν)
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×
s∏

a=1

[ˆ
dµaPy (y|µa)

]
P (ν,µ)

)n]

=

(
s∏

a=1

¨ dmadm̂a

(2π)K

)(
s∏

a=1

¨ dQabdQ̂ab

(2π)K
2

)

×
ˆ dρdρ̂

2π
exp

(
pΦ(s)

(
ρ,m,Q, ρ̂,m̂,Q̂

))
. (57)

Absorbing the factor −i in the integrals, and denoting by n/p= α and d/p= γ,

Φ(s)
(
ρ,m,Q, ρ̂,m̂,Q̂

)
=−γρρ̂−√

γ
s∑

a=1

〈m̂a|ma〉−
∑
a⩽b

〈Q̂ab|Qab〉

+αΨ(s)
y (ρ,m,Q)+Ψ(s)

w

(
ρ̂,m̂,Q̂

)
. (58)

Here we have introduced

Ψ(s)
y (ρ,m,Q) := ln

[ˆ
dy
ˆ

dνP 0
y (y|ν)

s∏
a=1

[ˆ
dµaPy(y|µa)

]
P (ν,µ)

]

Ψ(s)
w (ρ̂,m̂,Q̂) :=

1

p
ln
[

eρ̂‖θ‖22
(

s∏
a=1

ˆ
P (W a)e〈(1p⊗m̂a⊺)�Φ̂)|W a〉

)

×exp
(∑

a⩽b

〈W a|(1p,p⊗ Q̂
ab
)�Ω|W b〉

)]
(59)

so that in the high dimensional limit the desired average is the extremum of the func-
tional 1sΦ(s) in the s→ 0 limit,

E(yµ,xµ)µ
[lnZ (β)] = lim

s→0

1

s
ExtΦ(s)

(
ρ,m,Q, ρ̂,m̂,Q̂

)
. (60)

A.2.1. Replica symmetric ansatz. In order to take the limit, let us assume as usual a
replica symmetric (RS) ansatz:

ma ≡m a ∈ [s] ,

Qab ≡

{
R if a= b,

Q if a 6= b,

m̂a ≡ m̂ a ∈ [s] ,

Q̂
ab ≡

{
−1

2R̂ if a= b,

Q̂ if a 6= b.

(61)

Observe that lims→0Φ
(s) = 0 by construction, meaning that ρ̂= 0 fixing ρ= 1

dEθ[‖θ‖22].
Before proceeding further, we note that the matrix Q in the RS ansatz can be written as
Q= Is⊗ (R−Q)+1s,s⊗Q, where 1s,s is the s × s matrix of 1. Similarly, m= 1s⊗m,
where 1s is the column vector of s elements equal to 1. Following similar steps to the
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ones detailed, e.g. in Loureiro et al (2021b), we obtain

Ψy (ρ,m,Q,R) : = lim
s→0

1

s
Ψ(s)

y (ρ,m,Q)

=

ˆ
Y

dyEξ

[
Z0
(
y,〈m|Q−1/2|ξ〉,ρ−〈m|Q−1|m〉

)
lnZ

(
y,
√
Qξ,V

)]
,

(62)

where V :=R−Q, ξ ∼N (0K ,IK) and we have introduced

Z (y,µ,Σ) :=

ˆ
Py (y|µ)dµ√

det(2πΣ)
e− 1

2
〈u−µ|Σ−1|u−µ〉, (63)

Z0 (y,µ,σ) :=

ˆ
P 0
y (y|x)dx
√
2πσ

e−
(x−µ)2

2σ . (64)

Similarly, defining V̂ = R̂+ Q̂, we can write down the prior channel. We can write then

Ψw(m̂,Q̂,R̂)

:= lim
s→0

1

s
Ψ(s)

w (0,m̂,Q̂)

= lim
s→0

1

sp
ln
[(

s∏
a=1

ˆ
dW aPw(W

a)e〈(1p⊗m̂⊺)�Φ̂|W a〉− 1
2
〈W a|(1p,p⊗R̂)�Ω|W a〉

)

×
∏
a<b

e〈W a|(1p,p⊗Q̂)�Ω)1/2|W b〉

]

=
1

p
EΞ

[
ln
(ˆ

dW e−λβr(W )+〈(1p⊗m̂⊺)�Φ̂|W 〉+〈Ξ|(1p,p⊗Q̂)�Ω)1/2|W 〉− 1
2
〈W |(1p,p⊗V̂ )�Ω|W 〉

)]
(65)

where we have performed a Hubbard–Stratonovich transformation and Ξ≡ (Ξi
k)

i
k ∈

Rp×K has Ξi
k ∼N (0,1) for all i,k. The free entropy is then

Φ : = lim
s→0

1

s
Φ(s) =−√

γ〈m̂|m〉+ 〈V̂ |V 〉+ 〈V̂ |Q〉− 〈Q̂|V 〉
2

+αΨy (ρ,m,Q,V )+Ψw

(
m̂,Q̂, V̂

)
. (66)

We are interested in the extremum of this quantity, and therefore we have to find the
order parameters that maximise it by means of a set of saddle-point equations. Defining
for brevity

ω =Q1/2ξ, ω0 = 〈m|Q−1|ω〉, σ0 = ρ−〈m|Q−1|m〉, (67)
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a first set of saddle-point equation is

V̂ =−α

ˆ
Y

dyEξ

[
Z0 (y,ω0,σ0)∂ωf

]
, (68a)

Q̂= α

ˆ
Y

dyEξ

[
Z0 (y,ω0,σ0)ff

⊺] , (68b)

m̂=
α
√
γ

ˆ
Y

dyEξ

[
Z0 (y,ω0,σ0)f

0f
]

(68c)

where

f 0 ≡ ∂ω0 lnZ0 (y,ω0,σ0) (69)

f ≡ ∂ω lnZ (y,ω,V ) . (70)

A.2.2. Zero temperature state evolution equations. To obtain a nontrivial β →+∞ limit
we rescale V̂ 7→ βV̂ , V 7→ β−1V , Q̂ 7→ β2Q̂, m̂ 7→ βm̂. After this change of variable,
equations (79) remain formally identical. To complete the set of saddle-point equations,
let us observe that, defining

L(y,u) =
1

2
〈u−ω|V −1|u−ω〉+ ℓ̂(y,u) (71)

then after the rescaling

lnZ
(
y,ω,β−1V

)
= ln
ˆ e−βL(y,u)du√

det(2πV )

β�1−−→−βL(y,h) with h= argmin
u

L(y,u) . (72)

In this way the remaining saddle-point equations keep the form (68) but with

f := V −1 (h−ω) . (73)

In the β →+∞ limit, we can write also

Ψw

(
m̂,Q̂,R̂

)
=

1

p
EΞ

[
ln
(ˆ

dW e−λβr(W )+β〈B|W 〉− β
2
〈W |(1p,p⊗V̂ )�Ω|W 〉

)]

=−β

p
EΞ

〈G|
(
1p,p⊗ V̂

)
�Ω|G〉

2
−〈B|G〉+λr (G)

 (74)

where

B := (1p⊗ m̂⊺)� Φ̂+
((

1p,p⊗ Q̂
)
�Ω

)1/2
Ξ (75)

and

G := argmin
U

〈U |
(
1p,p⊗ V̂

)
�Ω|U〉

2
−〈B|U〉+λr (U)

 . (76)
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As a result, the remaining saddle point equations are

V =
2

p
EΞ

〈
G

∣∣∣∣∣D
((

1p,p⊗ Q̂
)
�Ω

)1/2
DQ̂

∣∣∣∣∣Ξ
〉

(77a)

Q=
1

p
EΞ〈〈G|Ω|G〉〉, (77b)

m=
1

√
γp

EΞ〈〈Φ̂|G〉〉. (77c)

In the first equation, the derivative produce in general a 6-index tensor. Denoting

Â ∈ Rp×p⊗RK×K , then [ DÂ
DQ̂

]kk
′,κκ ′

ij ≡ ∂Âkk ′
ij

∂Q̂κκ ′
. In the formula, the contractions involve Latin

indices only.

A.2.3. The case of ℓ2 regularisation. If we assume an ℓ̂2 regularisation r(W ) = 1
2‖W ‖2F,

Ψw is a Gaussian integral that can be explicitly computed before the rescaling in β.
Denoting

A :=
[
λIK ⊗ Ip+

(
1p,p⊗ V̂

)
�Ω

]−1

and Θ := Φ̂⊗ Φ̂ ∈ Rp×p⊗RK×K (78)

we obtain the following saddle-point equations for V , Q and m ,

V =
〈〈A ◦Ω〉〉

p
, (79a)

Q=
1

p

〈〈
Ω ◦
(
A
(
(1p,p⊗ m̂⊗ m̂⊺)�Θ+

(
1p,p⊗ Q̂

)
�Ω

)
A
)〉〉

(79b)

m=
1

√
γp

〈〈A((1p,p⊗ m̂⊗1⊺K)�Θ)〉〉. (79c)

A.2.4. Training loss and generalisation error. The order parameters introduced to solve
the problem allow us to reach our ultimate goal of computing the average errors of the
learning process. We have

ϵℓ̂ ≡
1

n

n∑
ν=1

ℓ̂

(
yν ,

〈〈Ŵ |U ν〉〉
√
p

)
n→+∞−−−−→−∂βΨy

=

ˆ
dyEξ

[
Z0(y,ω0,σ0)

Z (y,ω,V )

ˆ
ℓ̂(y,u)e− 1

2
〈ω−µ|V −1|ω−u〉−βℓ̂(y,u)du√

det(2πV )

]
× β→+∞−−−−−−→

V 7→β−1V

ˆ
dyEξ

[
Z0(y,ω0,σ0) ℓ̂(y,h)

]
, (80)

where h is the proximal introduced above and all overlaps have to be intended computed
at the fixed point.
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We can also study the generalisation error

ϵg = E(y,U)

[
∆

(
y, ŷ

(
〈〈Ŵ |U〉〉

√
p

))]

=

ˆ
dµ
ˆ

dν
ˆ

dy∆(y, ŷ (µ))P 0
y (y|ν)Ex

[
δ

(
µ− 〈〈Ŵ |U〉〉

√
p

)
δ

(
ν− 〈x|θ〉√

d

)]
=

ˆ
E(ν,µ)

[
∆(y, ŷ (µ))P 0

y (y|ν)
]
dy (81)

where (ν,µ) are jointly Gaussian with covariance

Σ=

(
ρ m⊺

m Q

)
. (82)

In particular, if P 0
y (y|ν) = δ(y− f0(ν)), then ϵg = E(ν,µ) [∆(f 0(ν), ŷ(µ))], which corres-

ponds to (6).

A.3. Separable loss with ridge regularisation

Let us focus now on the case of separable losses, i.e. losses in the form ℓ̂(y,u) =∑
k ℓ(y,uk), which is a crucial special case in the analysis of our contribution. We will

assume a ridge regularisation r(W ) = 1
2‖W ‖2F. Let us also assume that the K generat-

ive networks are statistically equivalent. This implies a specific structure in the tensors
Θ and Ω,

Ωkk ′ =Ω⊺
k ′k

d
=

{
Ω for k = k ′,

Ω̂ for k < k ′,
(83)

Θkk ′ =Θ⊺
k ′k

d
=

{
Θ for k = k ′,

Θ̂ for k < k ′.
(84)

Here by
d
= we mean that the equalities hold in distribution. Observe Ωkk and Ωkk ′ are

not uncorrelated quantities. For reasons of symmetry reasons, we impose therefore the
ansatz

V = vIK ,

m=m1K ,

Q= (q0− q1)IK + q11K,K ,

V̂ = v̂IK ,

m̂= m̂1K ,

Q̂= (q̂0− q̂1)IK + q̂11K,K .

(85)

It is easily seen that

Q1/2 =
√
q0− q1IK +

√
q0+(K − 1)q1−

√
q0− q1

K
1K,K , (86)

Akk ′ = (λIp+Ωkk)
−1 δkk ′. (87)
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Plugging this ansatz in our equations, and introducing η = q1/q0, we obtain

v̂ =−α

ˆ
Y

dyEζ

[
Z0(y,ω0,σ0)∂ωf

]
,

m̂=
α
√
γ

ˆ
Y

dyEζ

[
f∂µZ0(y,ω0,σ0)

]
,

q̂0 = α

ˆ
Y

dyEζ

[
Z0(y,ω0,σ0)f

2
]
,

q̂1 = αEy,ζ,ζ ′

[
Z0

(
y,

m
√
q0

ζ + ζ ′

1+ η
,ρ− 2m2

q0+ q1

)
ff ′
]
,

with ω0 :=
mζ
√
q0
, σ0 := ρ− m2

q0
. (88)

The new variables ζ1 and ζ2 are obtained by a linear transformation from the old ones.
In particular, they are distributed as two components of a vector

ζ =

(√
1− ηIK +

√
1+ (K − 1)η−

√
1− η

K
1K,K

)
ξ, (89)

where ξ ∼N (0K ,IK). It follows that ζ,ζ
′ ∼N (0,1) but they are correlated as

E [ζζ ′] = η. (90)

Moreover, we have introduced the proximal

f =
h−ω

v
where h= argmin

x

[(
x−√

q0ζ
)2

2v
+ ℓ(y,x)

]
(91)

and the corresponding f ′ obtained using ζ ′. The remaining equations read

v =
tr
[
(λIp+ v̂Ω)−1Ω

]
p

, (92a)

m=
m̂
√
γ

tr
[
Θ(λIp+ v̂Ω)−1

]
p

(92b)

q0 =
tr
[
(λIp+ v̂Ω)−1 (m̂2Θ+ q̂0Ω

)
(λIp+ v̂Ω)−1Ω

]
p

(92c)

q1 =
tr
[
(λIp+ v̂Ω)−1

(
m̂2Θ̂+ q̂1Ω̂

)
(λIp+ v̂Ω ′)

−1
Ω̂⊺
]

p
. (92d)
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A.3.1. The random-features model for the generative networks. To further simplify
these expressions suppose now that our generative networks are such that

uk (x) = ϕ

(
F kx√

d

)
, k ∈ [K] , (93)

where F k ∈ Rp×d are (fixed) random matrices extracted from some given distribution
and ϕ is a nonlinearity acting elementwise. As anticipated in the main text, we can
use the fact that each generative network is equivalent to the following Gaussian model
(Mei and Montanari 2021)

uk (x) 7→ κ01p+κ1
F kx√

d
+κ∗zk. (94)

for some coefficients κ0, κ1 and κ∗ depending on ϕ (see theorem 4), and zµ ∼N (0p,Ip).
Assuming now, for the sake of simplicity, to the κ0 = 0 case and that Eθ[θθ

⊺] = Id,
then

Ω
d
=

κ2
1

d
F ⊺F +κ2

∗Ip,

Θ
d
=

κ2
1

d
F ⊺F ,

Θ̂
d
= Ω̂

d
=

κ2
1

d
F ⊺F ′, F

d
= F ′ d

= F k ∀k ∈ [K] . (95)

Once the spectral density ϱ(s) of Ω is introduced, it is immediate to see that the
equations for q0, m and v take the forms given in the main text. The equation for q1
requires an additional step. If we introduce the symmetric random matrix

F̂ :=
κ2
1

d
F

((
λ+ v̂κ2

∗
)
Ip+

v̂κ2
1

d
F ⊺F

)−1

F ⊺ ∈ Rp×p (96)

then we can rewrite the equation as

q1 =
(
m̂2+ q̂1

) tr
[
F̂ F̂

′]
p

=
m̂2+ q̂1

γ

(
tr F̂
p

)2

=

(
1+

q̂1
m̂2

)
m2, (97)

where in the second equality we used the fact that F̂ and F̂
′
are asymptotically free.

A.3.2. Ridge regression. Let us consider the simple case of ridge regression with
f0(x) = x. We will give here the channel equations that are obtained straightforwardly
as

v̂ =
α

1+ v

m̂=
1

1+ v

α
√
γ
,

q̂0 = α
ρ− 2m+ q0

(1+ v)2
,

q̂1 = α
ρ− 2m+ q1

(1+ v)2
.

(98)
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The kernel limit is also obtained straightforwardly taking the α→ 0 limit and rescaling
q̂0 7→ αq̂0, q̂1 7→ αq̂1, m̂ 7→

√
αm̂, v̂ 7→ αv̂.

v =
(1− δ)κ2

1+
√
(1− δ)2κ4

1+2(κ2
∗+λ)(1+ δ)κ2

1+(κ2
∗+λ)2+κ2

∗−λ

2λ

m=
1

1+λv+1
δκ2

1

q0 = q1 =
δ− 2m+ ρ(

1+2λv+1
δκ2

1

)2
− 1

≡ q. (99)

A.3.3. Binary classification problem. We consider now the case f0(x) = sign(x), corres-
ponding to a binary classification problem, and we write down the channel equations
for this problem in the case of logistic and hinge loss. In this case we have that

Z0 (y,ω0,σ0) =
δ (y− 1)+ δ (y+1)

2

(
1+ erf

(
yω0√
2σ0

))
,

∂µZ0 (y,ω0,σ0) = (δ (y− 1)− δ (y+1))
e−

ω20
2σ0

√
2πσ0

. (100)

If we pick a logistic loss in the form ℓ̂(y,µ) =
∑

k ln(1+ e−yµk), then the proximal h
solves the equation

h= ω+
yv

1+ eyh , (101)

in such a way that f = η−ω
v satisfies

∂ωf =−
(
v+2cosh

(
y
vf +ω

2

))−1

. (102)

If we use instead a hing loss ℓ̂(y,µ) =
∑

k max(0,1− yµk), the proximal is such that

f =


y if 1− v > ωy,
y−ω
v if 1− v < ωy < 1,

0 otherwise,

∂ωf =

{
− 1

v if 1− v < ωy < 1,

0 otherwise.
(103)
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In the case of the hinge loss, the simple form of the proximal allows for a more explicit
expression of the channel equations. Introducing

σ̂ = ρ− 2m2

q0+ q1
, N (ζ,ζ ′;η) =

exp
(
− ζ2+ζ ′2−2ηζζ ′

2(1−η2)

)
2π
√
1− η2

(104)

we obtain

v̂ =
α

v

ˆ 1/√q0

1−v√
q0

e− ζ2

2 dζ√
2π

(
1+ erf

(
mζ√
2q0σ

))
,

m̂=
α

√
ργv

v+erf
(√

ρ
2q0σ

)
− (1− v)erf

(
(1− v)

√
ρ

2q0σ

)
√
2π

+

√
q0σ

ρ

exp
(
− ρ

2q0σ

)
− exp

(
ρ(1−v)2

2q0σ

)
2π


q̂0 = α

[ˆ 1−v√
q0

−∞

e− ζ2

2 dζ√
2π

(
1+ erf

(
mζ√
2q0σ

))

+

ˆ 1/√q0

1−v√
q0

e− ζ2

2 dζ√
2π

(
1+ erf

(
mζ√
2q0σ

))(
1−√

q0ζ

v

)2
 ,

q̂1 = α

¨ 1−v√
q0

−∞
N
(
ζ,ζ ′;q1/q0

)
dζdζ ′

(
1+ erf

(
m√
2q0σ̂

ζ + ζ ′

1+ q1/q0

))

+2α

ˆ 1/√q0

1−v√
q0

dζ
ˆ 1−v√

q0

−∞
dζ ′N

(
ζ,ζ ′;q1/q0

)(
1+ erf

(
m√
2q0σ̂

ζ + ζ ′

1+ q1/q0

))(
1−√

q0ζ

v

)

+α

¨ 1/√q0

1−v√
q0

dζdζ ′N
(
ζ,ζ ′;q1/q0

)(
1+ erf

(
m√
2q0σ̂

ζ + ζ ′

1+ q1/q0

))
×
(
1−√

q0ζ

v

)(
1−√

q0ζ
′

v

)
. (105)

Let us now make the change of variables ζ 7→
√
q0+q1z+

√
q0−q1z ′

√
2q0

and ζ ′ 7→
√
q0+q1z−

√
q0−q1z ′

√
2q0

.

This allows us to rewrite the expression for q1 as
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q̂1 = α

ˆ √
2(1−v)

−∞
N (z;0, q0+ q1)

(
1+ erf

(
mz√

σ̂ (q0+ q1)

))
erf

(√
2(1− v)− z√

q0− q1

)

+2α

ˆ √
2(1−v/2)

−∞
N (z;0, q0+ q1)

(
1+ erf

(
mz√

σ̂ (q0+ q1)

))

×

1

v
− 1

v

[
z

2
erf

(
x√

q0− q1

)
+

√
q0− q1
2π

e− x2

2

]√2−z

|
√
2(1−v)−z|

dz

+α

¨ 1/√q0

1−v√
q0

dζdζ ′N (z;0, q0+ q1)N (z ′ : 0,1)

(
1+ erf

(
mz√

σ̂ (q0+ q1)

))
×
(
1−√

q0ζ

v

)(
1−√

q0ζ
′

v

)
. (106)

Appendix B. Proof of the main theorem

In this section we prove theorem 2, from which all other analytical results in the paper
can be deduced. We start by reminding the learning problem defining the ensemble of
estimators with a few auxiliary notations, so that this part is self contained. The sketch
of proof is one pioneered in Bayati and Montanari (2011b), Donoho and Montanari
(2016) and is the following: the estimator W∗ is expressed as the limit of a care-
fully chosen sequence, an AMP iteration (Bayati and Montanari 2011a, Zdeborová and
Krzakala 2016), whose iterates can be asymptotically exactly characterised using an
auxiliary, closed form iteration, the state evolution equations. We then show that con-
verging trajectories of such an AMP iteration can be systematically found.

B.1. The learning problem

We start by reminding the definition of the problem. Consider the following generative
model

y = f0

(
1√
d
X0w0,ϵ0

)
(107)

where y ∈ Rn,X0 ∼N (0,Σ00) ∈ Rn×d,w0 ∈ Rd, ϵ0 ∈ Rd is a noise vector and Σ00 ∈ Rd×d

is a positive definite matrix. The goal is to learn this generative model using an ensemble
of predictors W =

[
w1|w2|. . .|wK

]
∈ Rp×K where each predictor wk ∈ Rp,k ∈ [1,K] is

learned using a sample dataset Xk ∈ Rn×p, where, for any i ∈ [1,n] and k ∈ [0,K], we
have:

E
[
xk
i

(
xk ′

i

)>]
=Σkk ′ (108)

where each sample is Gaussian and we denote:
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Σ=


Σ00 Σ01 . . . Σ0K

Σ10 Σ11 . . . Σ1K

. . .
ΣK0 ΣK1 . . . ΣKK

 ∈ R(Kp+d)×(Kp+d). (109)

The predictors interact with each sample dataset in a linear way, i.e. we will consider a
generalised linear model acting on the ensemble of products {Xkwk}Kk=1:

W∗ ∈ argmin
W∈Rp×K

L

(
y,

{
1
√
p
Xkwk

}K

k=1

)
+ r0 (W) (110)

where L, r0 are convex functions. We wish to determine the asymptotic properties of
the estimator W∗ in the limit where n,p,d→∞ with fixed ratios α= n/p,γ = d/p. We
now list the necessary assumptions for our main theorem to hold.

B.1.1. Assumptions

• the functions L, r0 are proper, closed, lower-semicontinuous, convex functions. The loss
function L is pseudo-lipschitz of order 2 in both its arguments and the regularisation
r 0 is pseudo-Lipschitz of order 2. The cost function L(X.)+ r(.) is coercive.

• for any 1⩽ k ⩽K, the matrix Σk ∈ Rp×p is symmetric and there exist strictly positive
constants κ0,κ1 such that κ0 ⩽ λmin(Σk)⩽ λmax(Σk)⩽ κ1. We also assume that the
matrix Σ is positive definite.

• Their exists a positive constant Cf0 such that
∥∥∥f0( 1√

d
X0w0,ϵ0)

∥∥∥
2
⩽

Cf0

(∥∥∥ 1√
d
X0w0

∥∥∥
2
+ ‖ϵ0‖2

)
.

• The dimensions n,p,d grow linearly with finite ratios α= n/p and γ = d/p.

• The ground truth vector w0 ∈ Rd and noise vector ϵ0 ∈ Rn are sampled from subgaus-
sian probability distributions independent from each other and from all other random
quantities of the learning problem.

The proof method we will employ involves expressing the estimator W∗ as the limit of
a carefully chosen sequence. In the case of non-strictly convex problems, the estimator
may not be unique, making it unclear what estimator is reached by the sequence (at
best we know it belongs to the set of zeroes of the subgradient of the cost function).
We thus start with the following problem

W∗ ∈ argmin
W∈Rp×K

L
(
y,{Xkwk}Kk=1

)
+ rλ2 (W) (111)

where, for any W ∈ Rp×K , rλ2 (W) = r0 (W)+
λ2

2
‖W‖2F (112)

i.e. we add a ridge regularisation to the initial problem to make it strongly convex. We
will relax this additional strong convexity constraint later on.
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B.2. Asymptotics for the strongly convex problem

We now reformulate the minimisation problem equation (111) to make it amenable to
an AMP iteration. The key feature of this ensembling problem, outside of the convexity
which will be crucial to control the trajectories of the AMP iteration, is the fact that
each predictor only interacts linearly with each design sample, along with the correlation
structure of the overall dataset. We are effectively sampling n vectors of size (Kp+ d)
from the Gaussian distribution with covariance Σ, i.e.

[
x0|x1|. . .|xK

]
∼N (0,Σ). We

then write {Xkwk}Kk=0 =
[
X0w0| . . . |XKwK

]
∈ Rn×(K+1), such that

[
X0w0| . . . |XKwK

]
=
[
X0| . . . |XK

]
W = ZΣ1/2

[
w0 0

0 W̃

]
(113)

where W̃ =


w1 0 . . . 0
0 w2 . . . 0

. . .
0 0 . . . wK

 ∈ RKp×K (114)

and Z ∈ Rn×(Kp+d) is a random matrix with i.i.d. N (0,1) elements. Then, any sample[
x0|x1|. . .|xK

]
may be rewritten as

x0 =Ψ1/2a and
[
x1|. . .|xK

]
=Φ>Ψ−1/2a+

(
Ω−Φ>Ψ−1Φ

)1/2
b (115)

X0 =AΨ1/2 and
[
X1|. . .|XK

]
=AΨ−1/2Φ+B

(
Ω−Φ>Ψ−1Φ

)1/2
(116)

where a ∈ Rd,b ∈ RKp are vectors with i.i.d. standard normal components, A ∈
Rn×d,B ∈ Rn×Kp are the corresponding design matrices, and the covariance matrices
are given by Ψ=Σ00 ∈ Rd×d,Φ=

[
Σ11|Σ12|Σ13. . .|Σ1K

]
∈ Rd×Kp and

Ω=


Σ11 Σ12 . . . Σ1K

Σ21 Σ22 . . . Σ2K

. . .
ΣK1 ΣK2 . . . ΣKK

 ∈ RKp×Kp. (117)

The optimisation problem may then be written, introducing the appropriate scalings

W̃∗ ∈ argmin
W̃∈RKp×K

L
(
f 0

(
1√
d
Aw̃0

)
,

1
√
p

(
AΨ−1/2Φ+B

(
Ω−Φ>Ψ−1Φ

)1/2)
W̃

)
+ r
(
W̃
)

(118)

where we let w̃0 =Ψ1/2w0, its scaled norm ρw̃0 =
1
d ‖w̃0‖22 and we introduced the

function

r : RKp×K → R (119)

W̃→ rλ2 (W) . (120)
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In order to isolate the contribution correlated with the teacher, we condition the design
matrix A on the teacher distribution y, we can write

A= E [A|y] +A−E [A|y] (121)

= E [A|Aw̃0] +A−E [A|Aw̃0] (122)

=APw̃0 + ÃP⊥
w̃0

(123)

where Ã is an independent copy of A, see Bayati and Montanari (2011a) lemma 11.
The cost function then becomes

L

(
f 0

(√
ρw̃0s

)
,
1
√
p

(
s

(
Φ>w0

)>√
dρw̃0

+ ÃP⊥
w̃0
Ψ−1/2Φ + B

(
Ω−Φ>Ψ−1Φ

)1/2)
W̃

)
+ r
(
W̃
)

(124)

where s=A w̃0

‖w̃0‖2
∈ Rn is an i.i.d. standard normal vector. The term ÃP⊥

w̃0
Ψ−1/2Φ+

B
(
Ω−Φ>Ψ−1Φ

)1/2
can then be represented as a Rn×Kp Gaussian matrix with covari-

ance

Φ>Ψ−1/2P⊥
w̃0
Ψ−1/2Φ+Ω−Φ>Ψ−1Φ = Ω−Φ>Ψ−1/2Pw̃0Ψ

−1/2Φ (125)

= Ω−Φ>Ψ−1/2 w̃0w̃
>
0

‖w̃0‖22
Ψ−1/2Φ = Ω− cc>

‖w̃0‖22
(126)

where we introduced c=Φ>w0 ∈ RKp and ρc =
1
p ‖c‖

2
2, reaching the cost function

L

f 0

(√
ρw̃0s

)
,
1
√
p

s
c>√
dρw̃0

+Z

(
Ω− cc>

‖w̃0‖22

)1/2
W̃

+ r
(
W̃
)
. (127)

Introducing m= 1√
dp
W̃>c ∈ RK ,C=Ω− cc⊤

‖w̃0‖22
∈ RKp×Kp, and the Lagrange multiplier

ν associated to m, the optimisation problem can equivalently be written

inf
m∈RK ,W̃∈RKp×K

sup
ν∈RK

L
(
f 0

(√
ρw̃0s

)
,s

m>
√
ρw̃0

+
1
√
p
ZC1/2W̃

)
+ r
(
W̃
)
−ν>

(
W̃>c−

√
dpm

)
. (128)
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We now look for an explicit expression of the matrix square root C1/2

C=Ω1/2

(
Id−

Ω−1/2c
(
Ω−1/2c

)>
‖w̃0‖22

)
Ω1/2 let c̃=Ω−1/2c (129)

= Ω1/2
(
P⊥

c̃ +κPc̃

)
Ω1/2 where κ= 1− ‖c̃‖22

‖w̃0‖22
(130)

= Ω1/2
(
P⊥

c̃ +
√
κPc̃

)(
P⊥

c̃ +
√
κPc̃

)
Ω1/2 (131)

where the positivity of κ is ensured by the positive-definiteness of Σ. The problem then
becomes

inf
m,W̃

sup
ν

L
(
f 0

(√
ρw̃0s

)
,s

m>
√
ρw̃0

+

√
κ

√
p
ZPc̃Ω

1/2W̃+
1
√
p
Z̃P⊥

c̃ Ω
1/2W̃

)
+ r
(
W̃
)

−ν>
(
W̃>c−

√
dpm

)
(132)

where Z̃ is an independent copy of Z, see Bayati and Montanari (2011a) lemma 11.
Then

√
κ

√
p
ZPc̃Ω

1/2W̃ =

√
κ

√
p
s̃
c>W̃

‖c̃‖2
(133)

=
√
κs̃

c>W̃

p
√
ρc̃

(134)

= s̃

√
γκm>

√
ρc̃

(135)

where s̃= Z c̃
‖c̃‖2

is an i.i.d. standard normal vector and ρc̃ =
1
p ‖c̃‖

2
2 such that the optim-

isation problem becomes

inf
m,W̃

sup
ν

L
(
f 0

(√
ρw̃0s

)
,s

m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+
1
√
p
Z̃P⊥

c̃ Ω
1/2W̃

)
+ r
(
W̃
)
−ν>

(
W̃>c−

√
dpm

)
. (136)

Now let U=P⊥
c̃ Ω

1/2W̃, such that W̃ =Ω−1/2
(√

γc̃m⊤

ρc̃
+U

)
. The equivalent problem in

U reads

inf
m,U

sup
ν

L
(
f 0

(√
ρw̃0s

)
,s

m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+
1
√
p
Z̃U

)
+ r

(
Ω−1/2

(√
γc̃m>

ρc̃
+U

))
−ν>U>c̃. (137)

Note that the constraint defining m automatically enforces the orthogonality constraint
on U w.r.t. c̃. The following lemma characterises properties of the feasibility sets of
U,m,ν.
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Lemma 5. Consider the optimisation problem equation (137). Then there exist constants
CU,Cm,Cν such that

1
√
p
‖U‖F ⩽ CU, ‖m‖2 ⩽ Cm, ‖ν‖2 ⩽ Cν (138)

with high probability as n,p,d→∞.

Proof. Consider the optimisation problem defining W̃∗

W̃∗ ∈ argmin
W̃∈RKp×K

L
(
y,XW̃

)
+ r̃0 (W)+

λ2

2

∥∥∥W̃∥∥∥2
F

(139)

which, owing to the convexity of the cost function, verifies

1

p

(
L
(
y,XW̃∗

)
+ r̃0

(
W̃∗
)
+

λ2

2

∥∥∥W̃∗
∥∥∥2
F

)
⩽ 1

p
(L(y,0)+ r̃0 (0)) . (140)

The functions L and r̃0 are assumed to be proper, thus their sum is bounded below for
any value of their arguments and we may write

1

p

λ2

2

∥∥∥W̃∗
∥∥∥2
F
⩽ 1

p
(L(y,0)+ r̃0 (0)) . (141)

The pseudo-Lipschitz assumption on L and r̃0 then implies that there exist positive
constants CL and Cr̃0 such that

1

p

λ2

2

∥∥∥W̃∗
∥∥∥2
F
⩽ 1

p

(
CL

(
1+ ‖y‖22

))
+Cr̃0 (142)

⩽ 1

p

(
CL

(
1+Cf0

∥∥∥∥ 1√
d
X0w0

∥∥∥∥2
2

+Cf0

∥∥ϵ20∥∥
))

+Cr̃0 (143)

where the second line follows from the scaling assumption on the teacher function f 0.
Hence

1

p

λ2

2

∥∥∥W̃∗
∥∥∥2
F
⩽ CL

(
1+Cf0

∥∥∥∥ 1√
d
A

∥∥∥∥2
op

∥∥∥Ψ1/2
∥∥∥2
op

γ

d
‖w‖20+Cf0

α

n
‖ϵ0‖22

)
+Cr̃0 (144)

where ‖•‖op denotes the operator norm of a given matrix, and we remind thatA has i.i.d.

N (0,1) elements. By assumption the maximum singular value of Ψ1/2 is bounded. The
maximum singular value of a random matrix with i.i.d.N (0, 1d) elements is bounded with
high probability as n,p,d→∞, see e.g. Vershynin (2010). Finally,w0 and ϵ0 are sampled
from subgaussian probability distributions, thus their scaled norms are bounded with
high probability as n,p,d→∞ according to Bernstein’s inequality, see e.g. Vershynin
(2018). An application of the union bound then leads to the following statement: there

exists a constant CW̃ such that 1
p‖W̃‖22 ⩽ CW̃, with high probability as n,p,d→∞. Now

using the definition of U
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1

p
‖U‖2F =

1

p

∥∥∥P⊥
c̃ Ω

1/2W̃
∥∥∥2
F

(145)

⩽
∥∥P⊥

c̃

∥∥2
op

∥∥∥Ω1/2
∥∥∥2
op

1

p

∥∥∥W̃∥∥∥
F

(146)

where the singular values of P⊥
c̃ and Ω1/2 are bounded with probability one. Therefore

there exists a constant CU such that 1√
p ‖U‖⩽ CU with high probability as n,p,d→∞.

Then, by definition of m and the Cauchy–Schwarz inequality

‖m‖22 ⩽
1

d
‖c‖22

1

p

∥∥∥W̃∥∥∥2
F

(147)

⩽ ‖Φ‖2op
1

d
‖w0‖22

1

p

∥∥∥W̃∥∥∥2
F

(148)

combining the results previously established on W̃ and w0 with the fact that the max-
imum singular value of Φ is bounded, there exists a positive constant Cm such that
‖m‖2 ⩽ Cm with high probability as n,p,d→∞. We finally turn to ν. The optimality
condition for m in problem equation (128) gives

ν =− 1√
dp

s>
√
ρw̃0

∂L
(
y,

sm>
√
ρw̃0

+
1
√
p
ZC1/2W̃∗

)
. (149)

The pseudo-Lipschtiz assumption on L implies that we can find a constant C∂L such
that

‖ν‖22 =
1

dp

‖s‖22
ρw̃0

CL

(
1+ ‖y‖22+

∥∥∥∥ sm>
√
ρw̃0

+
1
√
p
ZC1/2W̃∗

∥∥∥∥2
2

)
(150)

the last bound then follows from similar arguments as those employed above.

The optimisation problem equation (137) is convex and feasible. Furthermore, we
may reduce the feasibility sets of m,ν to compact spaces, and the function of U is
coercive and thus has bounded lower level sets. Strong duality then implies we can
invert the order of minimisation to obtain the equivalent problem

inf
m

sup
ν

inf
U
L
(
f 0

(√
ρw̃0s

)
,s

m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+
1
√
p
Z̃U

)
+ r

(
Ω−1/2

(√
γc̃m>

ρc̃
+U

))
−ν>U>c̃ (151)

and study the optimisation problem in U at fixed m,ν:

inf
U∈RKp×K

L̃
(

1
√
p
Z̃U

)
+ r̃ (U) (152)
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where we defined the functions

L̃ : Rn×K → R (153)

1
√
p
Z̃U→L

(
f 0

(√
ρw̃0s

)
,s

m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+
1
√
p
Z̃U

)
(154)

r̃ : RKp×K → R (155)

U→ r

(
Ω−1/2

(√
γc̃m>

ρc̃
+U

))
−ν>U>c̃ (156)

and the random matrix Z̃ with i.i.d. N (0,1) elements is independent from all other
random quantities in the problem. The asymptotic properties of the unique solution to
this optimisation problem can now be studied with a non-separable, matrix-valued AMP
iteration. The AMP iteration solving problem equation (152) is given in the following
lemma

Lemma 6. Consider the following AMP iteration

ut+1 = Z̃
>
ht

(
vt
)
− et

(
ut
)
〈h ′

t〉> (157)

vt = Z̃et
(
ut
)
−ht−1

(
vt−1

)
〈e ′

t〉> (158)

where for any t ∈ N

ht

(
vt
)
=

(
RL(y,.),St

(
s
m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+vt

)
−
(
s
m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+vt

))(
St
)−1

(159)

et
(
ut
)
=Rr(Ω−1/2.),Ŝt

(
utŜt+Ω−1/2cν>Ŝt+

√
γc̃m>

ρc̃

)
−

√
γc̃m>

ρc̃
(160)

and St = 〈
(
et
) ′〉>, Ŝt =−

(
〈
(
ht
) ′〉>)−1

. (161)

Then the fixed point (u∞,v∞) of this iteration verifies

Rr(Ω−1/2.),Ŝ∞

(
u∞Ŝ∞+Ω−1/2cν>Ŝ∞+

√
γc̃m>

ρc̃

)
−

√
γc̃m>

ρc̃
=U∗ (162)

RL(y,.),S∞

(
s
m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+v∞
)
− s

m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

= Z̃U∗ (163)

where U∗ is the unique solution to the optimisation problem equation (152).

Proof. To find the correct form of the non-linearities in the AMP iteration, we match
the optimality condition of problem equation (152) with the generic form of the fixed
point of the AMP iteration equation (233). In the subsequent derivation, we absorb the

scaling 1√
d
in the matrix Z̃, such that its elements are i.i.d. N (0,1/d), and omit time
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indices for simplicity. Going back to problem equation (152), its optimality condition
reads :

Z̃
>
∂L̃
(
Z̃U

)
+ ∂r̃ (U) = 0. (164)

For any pair of K ×K symmetric positive definite matrices S, Ŝ, this optimality
condition is equivalent to

Z̃
>(

∂L̃
(
Z̃U

)
S+ Z̃U

)
S−1+

(
∂r̃ (U) Ŝ+U

)
Ŝ−1 = Z̃>Z̃US−1+UŜ−1 (165)

where we added the same quantity on both sides of the equality. For the loss function,
we can then introduce the resolvent, formally D-resolvent:

v̂ = ∂L̃
(
Z̃U

)
S+ZU ⇐⇒ Z̃U =RL̃,S (v̂) (166)

such that

RL̃,S (v̂) =
(

Id+ ∂L̃(•)S
)−1

(v̂) = argmin
T∈Rn×K

{
L̃(T )+

1

2
tr
(
(T − v̂)S−1 (T − v̂)>

)}
.

(167)

Similarly for the regularisation, introduce

û≡
(

Id+ ∂r̃ (•) Ŝ
)
(U) U =Rr̃,Ŝ (û) (168)

where S ∈ RK×K is a positive definite matrix, and

Rr̃,Ŝ (v̂) =
(

Id+ ∂r̃ (•) Ŝ
)−1

(v̂) = argmin
T∈RKp×K

{
r̃ (T )+

1

2
tr
(
(T − v̂) Ŝ−1 (T − v̂)>

)}
(169)

where Ŝ ∈ RK×K is a positive definite matrix, and v̂ ∈ Rd×K . The optimality condition
equation (165) may then be rewritten as:

Z̃
> (

RL̃,S (v̂)− v̂
)
S−1 =

(
û−Rr̃,Ŝ (û)

)
Ŝ−1 (170)

Z̃Rr̃,Ŝ (û) =RL̃,S (v̂) (171)

where both equations should be satisfied. We can now define update functions based
on the previously obtained block decomposition. The fixed point of the matrix-valued
AMP equation (233), omitting the time indices for simplicity, reads:

u+ e(u)〈h ′〉> = Z̃
>
h(v) (172)

v+h(v)〈e ′〉> = Z̃e(u) . (173)

Matching this fixed point with the optimality condition equation (170) suggests the
following mapping:

h(v) =
(
RL̃,S (v)−v

)
S−1,

e(u) =Rr̃,Ŝ

(
uŜ
)
,

S = 〈e ′〉>,

Ŝ=−
(
〈h ′〉>

)−1
,

(174)
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where we redefined û≡ ûŜ in (168). We are now left with the task of evaluating the

resolvents of L̃, r̃ as expressions of the original functions L, r. Starting with the loss
function, we get

RL̃,S (v) = argmin
x∈Rn×K

{
L
(
f 0

(√
ρw̃0s

)
,s

m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+x

)
+
1

2
tr
(
(x−v)S−1 (x−v)

)>}
(175)

letting x̃= s m⊤
√
ρw̃0

+ s̃
√
γκm⊤
√
ρc̃

+x, the problem is equivalent to

RL̃,S(v) = argmin
x̃∈Rn×K

{
L(f0 (

√
ρw̃0

s) , x̃)

+
1

2
tr

(x̃−

(
s
m⊤
√
ρw̃0

+ s̃

√
γκm⊤
√
ρc̃

+v

))
S−1

(
x̃−

(
s
m⊤
√
ρw̃0

+ s̃

√
γκm⊤
√
ρc̃

+v

))⊤


− s
m⊤
√
ρw̃0

− s̃

√
γκm⊤
√
ρc̃

(176)

=RL(y,.),S

(
s
m⊤
√
ρw̃0

+ s̃

√
γκm⊤
√
ρc̃

+v

)
− s

m⊤
√
ρw̃0

− s̃

√
γκm⊤
√
ρc̃

(177)

and the corresponding non-linearity will then be

h(v) =

(
RL(y,.),S

(
s
m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+v

)
−
(
s
m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+v

))
S−1 (178)

Moving to the regularisation, the resolvent reads

Rr̃,Ŝ (u) = argmin
x∈RKp×K

{
r

(
Ω−1/2

(√
γc̃m>

ρc̃
+x

))
−ν>x>Ω−1/2c

+
1

2
tr
(
(x−u) Ŝ−1 (x−u)>

)}
(179)

letting x̃=
√
γc̃m⊤

ρc̃
+x, we obtain

Rr̃,Ŝ (u) = argmin
x̃∈RKp×K

{
r
(
Ω−1/2x̃

)
−ν>x̃>Ω−1/2c (180)

+
1

2
tr

((
x̃−

(
u+

√
γc̃m>

ρc̃

))
Ŝ−1

×
(
x̃−

(
u+

√
γc̃m>

ρc̃

))>)}
−

√
γc̃m>

ρc̃
(181)
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= argmin
x̃∈RKp×K

{
r
(
Ω−1/2x̃

)
(182)

+
1

2
tr

((
x̃−

(
u+Ω−1/2cν>Ŝ+

√
γc̃m>

ρc̃

))
Ŝ−1

×
(
x̃−

(
u+Ω−1/2cν>Ŝ+

√
γc̃m>

ρc̃

))>)}
(183)

−
√
γc̃m>

ρc̃
(184)

Rr(Ω−1/2.),Ŝ

(
u+Ω−1/2cν>Ŝ+

√
γc̃m>

ρc̃

)
−

√
γc̃m>

ρc̃
. (185)

Which gives the following non-linearity for the AMP iteration

e(u) =Rr(Ω−1/2.),Ŝ

(
uŜ+Ω−1/2cν>V+

√
γc̃m>

ρc̃

)
−

√
γc̃m>

ρc̃
. (186)

The following lemma then gives the exact asymptotics at each time step of the AMP
iteration solving problem equation (152) : its state evolution equations.

Lemma 7. Consider the AMP iteration equations (157)–(161). Assume it is initialised

with u0 such that limd→∞
1
d

∥∥e0(u0)>e0(u
0)
∥∥

F exists, a positive definite matrix Ŝ0, and
h−1 ≡ 0. Then for any t ∈ N, and any pair of seqeunces of uniformly pseudo-Lipschitz
functions ϕ1,n : RKp×K and ϕ2,n : Rn×K , the following holds

ϕ1,n

(
ut
) P' E

[
ϕ1,n

(
G
(
Q̂t
)1/2)]

(187)

ϕ2,n

(
vt
) P' E

[
ϕ2,n

(
H
(
Qt
)1/2)]

(188)

where G ∈ RKp×K and H ∈ Rn×K are independent random matrices with i.i.d. standard
normal elements, and Qt,Q̂t,Vt,V̂t are given by the equations

Qt =
1

p
E

(R
r(Ω−1/2.),(V̂t)−1

(
G(Q̂t)1/2(V̂t)−1+Ω−1/2cν⊤(V̂t)−1+

√
γc̃m⊤

ρc̃

)
−

√
γc̃m⊤

ρc̃

)⊤

×

(
R

r(Ω−1/2.),(V̂t)−1

(
G(Q̂t)1/2(V̂t)−1+Ω−1/2cν⊤(V̂t)−1+

√
γc̃m⊤

ρc̃

)
−

√
γc̃m⊤

ρc̃

) (189)

Q̂t =
1

p
E

((RL(y,.),Vt−1(.)− Id
)(

s
m⊤
√
ρw̃0

+ s̃

√
γκm⊤
√
ρc̃

+H(Qt−1)1/2
)
(Vt−1)−1

)⊤

(190)

×
(
RL(y,.),Vt−1(.)− Id

)(
s
m⊤
√
ρw̃0

+ s̃

√
γκm⊤
√
ρc̃

+H(Qt−1)1/2
)
(Vt−1)−1

 (191)
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Vt =
1

p
E

[
(Q̂t)−1/2G⊤R

r(Ω−1/2.),(V̂t)−1

(
G(Q̂t)1/2(V̂t)−1+Ω−1/2cν⊤(V̂t)−1+

√
γc̃m⊤

ρc̃

)]
(192)

V̂t =−1

p
E

[
(Qt−1)−1/2H⊤

((
RL(y,.),Vt−1(.)− Id

)(
s
m⊤
√
ρw̃0

+ s̃

√
γκm⊤
√
ρc̃

+H(Qt−1)1/2
))

(Vt−1)−1

]
. (193)

Proof. Owing to the properties of Bregman proximity operators (Bauschke et al 2003,
2006), the update functions in the AMP iteration equations (157)–(161) are Lipschitz
continuous. Thus under the assumptions made on the initialisation, the assumptions of
theorem 11 are verified, which gives the desired result.

Lemma 8. Consider iteration equations (157)–(161), where the parameters Q,Q̂,V , V̂
are initialised at any fixed point of the state evolution equations of lemma 7. For any
sequence initialised with V̂ 0 = V̂ and u0 such that

lim
d→∞

1

d
e0 (u0)

>e0 (u0) =Q (194)

the following holds

lim
t→∞

lim
p→∞

1
√
p

∥∥ut−u⋆
∥∥

F = 0 lim
t→∞

lim
d→∞

1
√
p

∥∥vt−v⋆
∥∥

F = 0. (195)

Proof. The proof of this lemma is identical to that of lemma 7 from Loureiro et al
(2021b).

Combining these results, we obtain the following asymptotic characterisation of U∗.

Lemma 9. For any fixed m and ν in their feasibility sets, let U∗ be the unique solution
to the optimisation problem equation (152). Then, for any sequences (in the problem
dimension) of pseudo-Lipschitz functions of order 2 ϕ1,n : Rn×K → R and
ϕ2,n : RKp×K → R, the following holds

ϕ1,n (U
∗)

P' E
[
ϕ1,n

(
Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1+Ω−1/2cν>V̂−1

+

√
γc̃m>

ρc̃

)
−

√
γc̃m>

ρc̃

)]
(196)

ϕ2,n

(
1
√
p
Z̃U∗

)
P' E

[
ϕ2,n

(
RL(y,.),V

(
s
m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+HQ̂1/2

)
−s

m>
√
ρw̃0

− s̃

√
γκm>

√
ρc̃

)]
(197)

where G ∈ RKp×K and H ∈ Rn×K are independent random matrices with i.i.d. standard
normal elements, and Q,Q̂,V,V̂ are given by the fixed point (assumed to be unique) of
the following set of self consistent equations

Q=
1

p
E
[(

Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1+Ω−1/2cν>V̂−1+

√
γc̃m>

ρc̃

)
−

√
γc̃m>

ρc̃

)>

(198)
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(
Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1+Ω−1/2cν>V̂−1+

√
γc̃m>

ρc̃

)
−

√
γc̃m>

ρc̃

)]
(199)

Q̂=
1

p
E
[((

RL(y,.),V(.)− Id
)(

s
m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+HQ1/2

)
V−1

)>

×
((

RL(y,.),V(.)− Id
)(

s
m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+HQ1/2

)
V−1

)]
(200)

V =
1

p
E
[
Q̂−1/2G>Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1+Ω−1/2cν>V̂−1+

√
γc̃m>

ρc̃

)]
(201)

V̂ =−1

p
E
[
Q−1/2H>

((
RL(y,.),V(.)− Id

)(
s
m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+HQ1/2

)
V−1

)]
.

(202)

Proof. Combining the results of the previous lemmas, this proof is close to that of theorem
1.5 in Bayati and Montanari (2011b).

Returning to the optimisation problem on m,ν in equation (151), the solution U∗,
at any dimension, verifies the zero gradient conditions on m,ν:

∂ν = 0 ⇐⇒ (U∗)> c̃= 0 (203)

∂m= 0 ⇐⇒
(

s
√
ρw̃0

+
s̃
√
γκ

ρc̃

)>

L
(
f 0

(√
ρw̃0s

)
,s

m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+
1
√
p
Z̃U

)
+

√
γṽ>

ρc̃
Ω−1/2∂r

(
Ω−1/2

(√
γc̃m>

ρc̃
+U

))
= 0. (204)

Using lemma 9 while assuming the subgradients of L, r are pseudo-Lipschitz (we discuss
this assumption in section B.4), we obtain for m

1

p
E

[(
Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1+Ω−1/2cν>V̂−1+

√
γc̃m>

ρc̃

)
−

√
γc̃m>

ρc̃

)>

c̃

]
= 0

(205)

⇐⇒ m=
1√
dp

E
[
c̃>Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1+Ω−1/2cν>V̂−1+

√
γc̃m>

ρc̃

)]
(206)
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and for ν

1

p
E
[(

s
√
ρw̃0

+
s̃
√
γκ

ρc̃

)⊤
∂L

(
f0 (

√
ρw̃0

s) ,RL(y,.),V

(
s
m⊤
√
ρw̃0

+ s̃

√
γκm⊤
√
ρc̃

+HQ̂1/2

))
(207)

+

√
γc̃⊤

ρc̃
Ω−1/2∂r

(
Ω−1/2

(
R

r(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1+Ω−1/2cν⊤V̂−1+

√
γc̃m⊤

ρc̃

)))]
= 0. (208)

Using the definition of D-resolvents, this is equivalent to

1

p
E
[(

s
√
ρw̃0

+
s̃
√
γκ

ρc̃

)> (
Id−RL(y,.),V (.)

)(
s
m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+HQ̂1/2

)
V−1 (209)

+

√
γc̃>

ρc̃

(
Id−Rr(Ω−1/2.),V̂−1 (.)

)(
GQ̂1/2V̂−1+Ω−1/2cν>V̂−1+

√
γc̃m>

ρc̃

)
V̂

]
= 0

(210)

which simplifies to

ν> =− 1
√
γp

E

[(
s

√
ρw̃0

+
s̃
√
γκ

ρc̃

)> (
Id−RL(y,.),V (.)

)
×
(
s
m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+HQ̂1/2

)
V−1

]
(211)

which brings us to the following set of six self consistent equations

Q=
1

p
E
[(

Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1+Ω−1/2cν>V̂−1+

√
γc̃m>

ρc̃

)
−

√
γc̃m>

ρc̃

)>

(212)

(
Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1+Ω−1/2cν>V̂−1+

√
γc̃m>

ρc̃

)
−

√
γc̃m>

ρc̃

)]
(213)

Q̂=
1

p
E
[((

RL(y,.),V(.)− Id
)(

s
m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+HQ1/2

)
V−1

)>

×
((

RL(y,.),V(.)− Id
)(

s
m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+HQ1/2

)
V−1

)]
(214)

V =
1

p
E
[
Q̂−1/2G>Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1+Ω−1/2cν>V̂−1+

√
γc̃m>

ρc̃

)]
(215)

V̂ =−1

p
E
[
Q−1/2H>

((
RL(y,.),V(.)− Id

)(
s
m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+HQ1/2

)
V−1

)]
(216)

m=
1√
dp

E
[
c̃>Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1+Ω−1/2cν>V̂−1+

√
γc̃m>

ρc̃

)]
(217)
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ν> =− 1
√
γp

E
[(

s
√
ρw̃0

+
s̃
√
γκ

ρc̃

)> (
Id−RL(y,.),V (.)

)
×
(
s
m>
√
ρw̃0

+ s̃

√
γκm>

√
ρc̃

+HQ̂1/2

)
V−1

]
. (218)

This set of equations then characterises the asymptotic distribution of the estimator U∗

in the sense of lemma 9, with the optimal values of m and ν. Using the definition of U∗

and Z̃U∗, along with the definition of the function r w.r.t. the original regularisation
function, a tedious but straightforward calculation allows reconstruct the asymptotic
properties of W∗ and of the set {Xkw

∗
k}

K
k=1 given in the main text.

B.3. Relaxing the strong convexity constraint

Assuming the set of self consistent equations (212) have a unique fixed point regard-
less of the strong convexity assumption, this solution defines a unique set of six order
parameters for the λ2 = 0 case. Furthermore, using proposition 12, the unique estim-
ator W∗(λ2) solving problem equation (111) for strictly positive λ2 converges to the
least-norm solution to the convex (but not strongly) equation (110). Thus, for any
pseudo-Lipschitz observable of U∗(λ2), we have, one the one side a continuous function
of λ2 with a unique continuous extension at λ2 = 0, and on the other side a function
of λ2 prescribed by the expectation taken w.r.t. the asymptotic Gaussian model para-
metrised by the state evolution parameters which is defined for all positive values of
λ2. Since both functions match for any strictly positive λ2, continuity implies they also
match for λ2 = 0 and we obtain the exact asymptotics of the least ℓ2 norm solution of
problem equation (110). Regarding the uniqueness of the solution to the fixed point
equations (212), it is shown in Loureiro et al (2021a) that a similar set of equations,
although for a vector valued variable, i.e. no ensembling, the solution is unique even
if the original problem is not strictly convex. This is proven by showing that the fixed
point equations are the solution of a strictly convex problem. We expect this to be true
here as well, and leave this part for a longer version of this paper.

B.4. A comment on non-pseudo-Lipschitz subgradients

Provided the subgradients in equation (203) are pseudo-Lipschitz continuous, the proof
goes through. However some convex functions commonly used in machine learning, such
as the hinge loss or the ℓ1 norm for the penalty, have non-pseudo-Lipschitz gradient.
To circumvent this issue, one can consider the optimisation problem where both loss
and regularisation are replaced by their Moreau envelopes with strictly positive para-
meters τ1, τ2, as is done in Celentano et al (2020) for the LASSO. Moreau envelopes
are everywhere differentiable and have Lipschitz gradient for strictly positive values
of their parameter (Bauschke et al 2011), thus the asymptotic characterisation holds.
One can then take the parameters to zero, using the fact that the limit at zero in the
parameters of Moreau envelopes is well defined (Bauschke et al 2011), recovering the
original function. Since proximity operators are defined as strongly convex problems,
the sequence of problems defined by the proximal operator of a Moreau envelope with
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decreasing parameter converges to the proximal operator of the original function when
the parameter is taken to zero. Finally, inverting the expectations on random quantities
with the limit taking the parameters of the Moreau envelopes to zero can be done by
verifying the dominated convergence theorem using the firm-nonexpansiveness of prox-
imity operators and the corresponding bounds on their norms, see Bauschke et al (2011)
chapter 4, section 1. We leave the details of this part to a longer version of this paper.

B.5. Toolbox

In this section, we reproduce part of the appendix of Loureiro et al (2021b) for complete-
ness, in order to give an overview of the main concepts and tools on AMP algorithms
which will be required for the proof.

B.5.1. Notations. For a given function ϕ : Rd×K → Rd×K , we write:

ϕ(X) =

ϕ
1 (X)
...

ϕd (X)

 ∈ Rd×K (219)

where each ϕi : Rd×K → RK . We then write the K ×K Jacobian

∂ϕi

∂Xj
(X) =


∂ϕi

1(X)
∂Xj1

· · · ∂ϕi
1(X)

∂XjK

...
. . .

...
∂ϕi

K(X)

∂Xj1
· · · ∂ϕi

K(X)

∂XjK

 ∈ RK×K . (220)

For a given matrix Q ∈ RK×K , we write Z ∈ Rn×K ∼N (0,Q⊗ In) to denote that the
lines of Z are sampled i.i.d. from N (0,Q). Note that this is equivalent to saying that

Z = Z̃Q1/2 where Z̃ ∈ Rn×K is an i.i.d. standard normal random matrix. The notation
P' denotes convergence in probability. We start with some definitions that commonly
appear in the AMP literature, see e.g. Bayati and Montanari (2011a), Javanmard and
Montanari (2013), Berthier et al (2020). The main regularity class of functions we will
use is that of pseudo-Lipschitz functions, which roughly amounts to functions with poly-
nomially bounded first derivatives. We include the required scaling w.r.t. the dimensions
in the definition for convenience.

Definition 10 (pseudo-Lipschitz function). For k,K ∈ N∗ and any n,m ∈ N∗, a function
ϕ : Rn×K → Rm×K is called a pseudo-Lipschitz of order k if there exists a constant
L(k,K) such that for any X,Y ∈ Rn×K ,

‖ϕ(X)−ϕ(Y )‖F√
m

⩽ L(k,K)

(
1+

(
‖X‖F√

n

)k−1

+

(
‖Y ‖F√

n

)k−1
)

‖X −Y ‖F√
n

(221)

where ‖•‖F denotes the Frobenius norm. Since K will be kept finite, it can be absorbed
in any of the constants.
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For example, the function f : Rn×K → R,X 7→ 1
n ‖X‖2F is pseudo-Lipshitz of order 2.

B.5.2. Moreau envelopes and Bregman proximal operators. In our proof, we will also fre-
quently use the notions of Moreau envelopes and proximal operators, see e.g. Bauschke
et al (2011), Parikh and Boyd (2014). These elements of convex analysis are often
encountered in recent works on high-dimensional asymptotics of convex problems, and
more detailed analysis of their properties can be found for example in Thrampoulidis
et al (2018), Loureiro et al (2021a). For the sake of brevity, we will only sketch the
main properties of such mathematical objects, referring to the cited literature for fur-
ther details. In this proof, we will mainly use proximal operators acting on sets of real
matrices endowed with their canonical scalar product. Furthermore, proximals will be
defined with matrix valued parameters in the following way: for a given convex function
f : Rd×K → R, a given matrix X ∈ Rd×K and a given symmetric positive definite matrix
V ∈ RK×K with bounded spectral norm, we will consider operators of the type

argmin
T∈Rd×K

{
f (T )+

1

2
tr
(
(T −X)V −1 (T −X)>

)}
. (222)

This operator can either be written as a standard proximal operator by factoring the
matrix V −1 in the arguments of the trace:

proxf(•V 1/2)

(
XV −1/2

)
V 1/2 ∈ Rd×K (223)

or as a Bregman proximal operator (Bauschke et al 2003) defined with the Bregman
distance induced by the strictly convex, coercive function (for positive definite V )

X 7→ 1

2
tr
(
XV −1X>) (224)

which justifies the use of the Bregman resolvent

argmin
T∈Rd×K

{
f (T )+

1

2
tr
(
(T −X)V −1 (T −X)>

)}
= (Id+ ∂f (•)V )−1 (X) . (225)

Many of the usual or similar properties to that of standard proximal operators (i.e. firm
non-expansiveness, link with Moreau/Bregman envelopes, . . .) hold for Bregman prox-
imal operators defined with the function (224), see e.g. Bauschke et al (2003, 2006). In
particular, we will be using the equivalent notion to firmly nonexpansive operators for
Bregman proximity operators, called D− firm operators. Consider the Bregman prox-
imal defined with a differentiable, strictly convex, coercive function g : X → R, where
X is a given input Hilbert space. Let T be the associated Bregman proximal of a given
convex function f : X → R, i.e. for any x ∈ X

T (x) = argmin
y∈X

{f (x)+Dg (x,y)} . (226)
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Then T is D-firm, meaning it verifies

〈Tx−Ty,∇g (Tx)−∇g (Ty)〉⩽ 〈Tx−Ty,∇g (x)−∇g (y)〉 (227)

for any x,y in X .

B.5.3. Gradients of Bregman envelopes. Consider, for any X ∈ Rd×K the Bregman
envelope

Mf,V (X) = inf
T∈Rd×K

{
f (T )+

1

2
tr
(
(T −X)V −1 (T −X)>

)}
(228)

then

∇XMf,V (X) =
(
X− (Id+ ∂f (•)V )−1 (X)

)
V−1 (229)

and

∇VMf,V (X) =−1

2

∥∥∥(X− (Id+ ∂f (•)V )−1 (X)
)
V−1

∥∥∥2
F
. (230)

B.5.4. Gaussian concentration. Gaussian concentration properties are at the root of
this proof. Such properties are reviewed in more detail, for example, in Vershynin (2018).
We refer the interested reader to related works for a more detailed discussion.

B.5.5. Approximate message-passing. Approximate message-passing algorithms
(Donoho et al 2009, Rangan 2011, Donoho and Montanari 2016) are a statistical
physics inspired (Mézard et al 1987, Zdeborová and Krzakala 2016) family of iter-
ations which can be used to solve high dimensional inference problems. One of the
central objects in such algorithms are the so called state evolution equations, a low-
dimensional recursion equations which allow to exactly compute the high dimensional
distribution of the iterates of the sequence. In this proof we will use a specific form
of matrix-valued AMP iteration with non-separable non-linearities. In its full gen-
erality, the validity of the state evolution equations in this case is an extension of
the works of Javanmard and Montanari (2013), Berthier et al (2020) included in
Gerbelot and Berthier (2021). Consider a sequence Gaussian matrices A(n) ∈ Rn×d with
i.i.d. Gaussian entries, Aij(n)∼N (0,1/d). For each n,d ∈ N, consider two sequences of
pseudo-Lipschitz functions{

ht : Rn×K → Rn×K
}
t∈N

{
et : Rd×K → Rd×K

}
t∈N (231)

initialised on u0 ∈ Rd×K in such a way that the limit

lim
d→∞

1

d

∥∥∥e0 (u0
)>

e0
(
u0
)∥∥∥

F
(232)

exists, and recursively define:
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ut+1 =A>ht

(
vt
)
− et

(
ut
)
〈h ′

t〉> (233)

vt =Aet
(
ut
)
−ht−1

(
vt−1

)
〈e ′

t〉> (234)

where the dimension of the iterates are ut ∈ Rd×K and vt ∈ Rn×K . The terms in brackets
are defined as:

〈h ′
t〉=

1

d

n∑
i=1

∂hi
t

∂vi

(
vt
)
∈ RK×K 〈e ′

t〉=
1

d

d∑
i=1

∂eit
∂ui

(
ut
)
∈ RK×K . (235)

We define now the state evolution recursion on two sequences of matrices {Qr,s}s,r⩾0

and {Q̂r,s}s,r⩾1 initialised with Q0,0 = limd→∞
1
de0(u

0)>e0(u
0):

Qt+1,s =Qs,t+1 = lim
d→∞

1

d
E
[
es

(
Ẑ

s
)>

et+1

(
Ẑ

t+1
)]

∈ RK×K (236)

Q̂t+1,s+1 = Q̂s+1,t+1 = lim
d→∞

1

d
E
[
hs (Z

s)>ht

(
Zt
)]

∈ RK×K (237)

where (Z0, . . . ,Zt−1)∼N (0,{Qr,s}0⩽r,s⩽t−1⊗ In),(Ẑ
1
, . . . ,Ẑ

t
)∼N (0,{Q̂r,s}1⩽r,s⩽t⊗

Id). Then the following holds

Theorem 11. In the setting of the previous paragraph, for any sequence of
pseudo-Lipschitz functions ϕn : (Rn×K ×Rd×K)t → R, for n,d→+∞:

ϕn

(
u0,v0,u1,v1, . . . ,vt−1,ut

) P' E
[
ϕn

(
u0,Z0,Ẑ

1
,Z1, . . . ,Zt−1,Ẑ

t
)]

(238)

where
(Z0, . . . ,Zt−1)∼N (0,{Qr,s}0⩽r,s⩽t−1⊗ In),(Ẑ

1
, . . . ,Ẑ

t
)∼N (0,{Q̂r,s}1⩽r,s⩽t⊗ In).

B.5.6. A useful result from convex analysis Here we remind a result from Bauschke et al
(2011) describing the limiting behaviour of regularised estimators for vanishing regular-
isation.

Proposition 12 (theorem 26.20 from Bauschke et al (2011)). Let f and h be proper, lower
semi-continuous, convex functions. Suppose that argminf ∩dom(g) 6= ∅ and that h is
coercive and strictly convex. Then g admits a unique minimiser x0 over argminf and,
for every ϵ ∈]0,1[, the regularised problem

argmin
x

f (x)+ ϵh(x) (239)

admits a unique solution xϵ. If we assume further that h is uniformly convex on any
closed ball of the input space, then limϵ→0xϵ = x0.
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