On curve-flat Lipschitz functions and their linearizations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

On curve-flat Lipschitz functions and their linearizations

Résumé

We show that several operator ideals coincide when intersected with the class of linearizations of Lipschitz maps. In particular, we show that the linearization $\hat{f}$ of a Lipschitz map $f:M\to N$ is Dunford-Pettis if and only if it is Radon-Nikod\'ym if and only if it does not fix any copy of $L_1$. We also identify and study the corresponding metric property of $f$, which is a natural extension of the curve-flatness introduced in [arXiv:2103.09370]. Further, we show that $\hat{f}$ is compact if and only if it does not fix any copy of $\ell_1$.
Fichier principal
Vignette du fichier
2411.08369v1.pdf (692.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04784542 , version 1 (15-11-2024)

Identifiants

Citer

Gonzalo Flores, Mingu Jung, Gilles Lancien, Colin Petitjean, Antonín Procházka, et al.. On curve-flat Lipschitz functions and their linearizations. 2024. ⟨hal-04784542⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More