On Conormal Lie Algebras of Feigin-Odesskii Poisson Structures
Résumé
The main result of the paper is a description of conormal Lie algebras of Feigin-Odesskii Poisson structures. In order to obtain it, we introduce a new variant of a definition of a Feigin-Odesskii Poisson structure: we define it using a differential on the second page of a certain spectral sequence. In the general case, this spectral sequence computes morphisms and higher Ext ′ s between filtered objects in an Abelian category. Moreover, we use our definition to give another proof of the description of symplectic leaves of Feigin-Odesskii Poisson structures.
Domaines
Géométrie algébrique [math.AG]Origine | Fichiers produits par l'(les) auteur(s) |
---|