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On Conormal Lie Algebras of Feigin—Odesskii Poisson
Structures

Leonid Gorodetsky* Nikita Markarian'

Abstract

The main result of the paper is a description of conormal Lie algebras of Feigin—
Odesskii Poisson structures. In order to obtain it we introduce a new variant of a
definition of a Feigin—Odesskii Poisson structure: we define it using a differential on
the second page of a certain spectral sequence. In the general case this spectral se-
quence computes morphisms and higher Ext’ s between filtered objects in an abelian
category. Moreover, we use our definition to give another proof of the description of
symplectic leaves of Feigin—Odesskii Poisson structures.
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1 Introduction

Let C' be an elliptic curve over an algebraically closed field k of characteristic 0 and let V'
be a stable vector bundle (e.g. a line bundle) of degree n > 0 on C'. The Feigin—Odesskii
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Poisson structure is a remarkable Poisson structure on the projective space P Ext!'(V, O¢)
with the following key property. Consider extensions of the form

0—>0p —>E——>V —=0, (1.1)

which are parameterized by the points of Ext'(V, O¢). One can ask when different exten-
sions lead to the same vector bundle F. Firstly note that proportional extensions always
lead to the same vector bundle F, so it is convenient to consider PExt!(V, O¢) instead
of Ext!(V,0¢). Then PExt'(V,O¢) is a disjoint union (as a set) of the isomorphism
classes of F (two extensions belong to one isomorphism class of F if they lead to the
same vector bundle F). The Feigin-Odesskii Poisson structure gives a local description
of the isomorphism classes of E: connected components of isomorphism classes of E are
symplectic leaves of the Feigin-Odesskii Poisson structure on P Ext!(V, O¢).

Feigin—Odesskii Poisson structures were introduced in 1995 by B. Feigin and A. Odesskii
in 6], and they claimed the fact about symplectic leaves, but the proof was not included
in the paper. Three years later in [§] A. Polishchuk defined some Poisson structure on
the same space using completely different approach, and only 20 years later in [15] Z.
Hua and Polishchuk proved that if V' is a line bundle then the latter Poisson structure
coincides with the Feigin—-Odesskii Poisson structure. For this reason Poisson structures
defined by Polishchuk are called Feigin—Odesskii Poisson structures as well.

In [15] Hua and Polishchuk studied shifted Poisson structures on derived stacks and
Feigin—Odesskii Poisson structures appeared as a special case of their construction. In
[16] they continued studying properties of Feigin—Odesskii Poisson structures and proved
that one can recover the elliptic curve C' from the Poisson structure. Moreover, they
gave another interpretation of Feigin—Odesskii Poisson structures in terms of the triple
Massey product (see |16, Lemma 2.1]). A connection between Feigin—Odesskii Poisson
structures and secant varieties of C' was used in [18, 21]. In [19] secant varieties were used
to prove the fact about symplectic leaves in the case when V is a line bundle. In [21] N.
Markarian and Polishchuk studied when different Feigin—Odesskii Poisson structures are
compatible, and in this paper they also provided a description of conormal Lie algebras
of the Feigin—Odesskii Poisson structure in the case when V is a line bundle.

In the present paper we give a new variant of a definition of Feigin—Odesskii Poisson
structures based on a certain spectral sequence and then we use it to give a simple proof
of the fact about symplectic leaves (Theorem [I]) and describe conormal Lie algebras of
Feigin—Odesskii Poisson structures (Theorem [2)).

The paper is organized as follows. In Section [2] we provide preliminary facts about
stable vector bundles on elliptic curves, the Serre duality on elliptic curves, Poisson struc-
tures, and first order deformations of coherent sheaves.

In Section [B] we introduce a new variant of a definition of Feigin—Odesskii Poisson
structures. In Subsection 3.1l we provide a general description of a spectral sequence com-
puting Ext’ s between objects of an abelian category that are given as extensions. We
describe differentials of this spectral sequence in terms of compositions of Ext’s and triple
Massey products. In Subsection we show that the space P Ext'(V, O¢) of proportion-
ality classes of extensions (L)) is the moduli space of filtered vector bundles £ D L D 0
with fixed associated quotients E/L ~ V and L ~ O¢. This description of allows us
to view tangent vectors to P as first order deformations of filtered vector bundles. In
Subsection we apply the construction of the spectral sequence to the extension (L)
to get a spectral sequence computing Ext®(E, E). Then we define the Feigin—Odesskii
Poisson structure on P Ext'(V, O¢) at the point corresponding to the extension (LII) as
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the differential on the second page of the constructed spectral sequence. A description
of the differential in terms of the triple Massey product shows that our definition of the
Feigin—Odesskii Poisson structure is equivalent to the definition in [16]. A similar con-
struction was used in [9] to define a symplectic structure coming from a degeneration of
the elliptic curve to P!. In Subsection [3.4 we prove Theorem [ that gives a description of
symplectic leaves of Feigin—Odesskii Poisson structures.

In Section ] we describe conormal Lie algebras of Feigin—Odesskii Poisson structures
(Theorem [2), and this is the main result of the paper. In Subsection 1] we give an
algebraic definition of the intrinsic derivative of a morphism of vector bundles on an
algebraic variety. Then, following |3], we formulate the definition of conormal Lie algebras
of a Poisson structure based on the intrinsic derivative. Finally, in Subsection we
formulate and prove Theorem ] that gives a description of conormal Lie algebras of the
Feigin—Odesskii Poisson structure. In [21] this result was proved for a special case when
V is a line bundle, and in [20] it is used to study compatibility of Feigin—Odesskii brackets
in the case if elliptic curves are given as linear sections of the Grassmannian G(2,5). Our
result would be implied by an explicit construction of the symplectic groupoid of the
Feigin—-Odesskii Poisson structures following [17], but our approach is more direct and
elementary.

Acknowledgments. L.G. is very grateful to Alexey Gorodentsev and Mikhail Finkelberg
and N.M. is very grateful to Alexander Polishchuk for many helpful conversations. N.M.
would like to thank the Max Planck Institute for Mathematics for hospitality and perfect
work conditions.

2 Preliminaries

Throughout the paper we use the following notations and conventions.

e We work over an algebraically closed field &k of characteristic 0.
e By C' we denote an elliptic curve over k, i.e. a smooth projective curve of genus 1.

e We identify vector bundles on smooth algebraic varieties with locally free coherent
sheaves.

e For a scheme X over k we denote by D(X) = D’(Coh(X)) the bounded derived
category of coherent sheaves on X. Similarly, for a k-algebra A we denote D(A) =
D*(A-Mod)

o If F': A — B is an exact functor between abelian categories, we denote the induced
functor between derived categories by the same letter F': D*(A) — D°(B).

e In order to simplify descriptions of moduli spaces and deformations we use the
following convention: we write "~ for existence of some isomorphism and ”=" for
a specified isomorphism.

2.1 Stable vector bundles on elliptic curves

Vector bundles on elliptic curves were classified by M. Atiyah in [1], and to present the
classification it is convenient to use the notion of stable vector bundles. For the following
notions and facts we refer to [10].



Definition 2.1. Let V' be a non-zero vector bundle on a smooth projective curve over k.
1. The slope of V' is the number

_ deg(V)

u(V) (V)

where deg(V') = deg(det(V)).
2. 'V is called stable if for any non-zero proper coherent subsheaf V' &V
u(V') < u(V),

Note that V' is automatically a vector bundle since any subsheaf of a locally free
coherent sheaf on a smooth projective curve is locally free.

The following two lemmas show significance of stable vector bundles on elliptic curves.

Lemma 2.1. Let r > 0 and n be integers and L be a line bundle of degree n on an elliptic
curve C'.

1. A stable vector bundle V on C' of rank r and degree n exists if and only if ged(r,n) =
1.

2. If ged(r,n) = 1, there is a unique stable vector bundle on C' of rank r and determi-
nant L.

Lemma 2.2. Let V' be a vector bundle of rank r and degree n on an elliptic curve C. If
ged(r,n) =1, then the following properties are equivalent:

(i) V is stable;
(ii) V is simple, i.e. End(V) = k;
(#ii) V is indecomposable.

Thus, stable vector bundles on an elliptic curve are exactly indecomposable vector
bundles with coprime rank and degree. For example, any line bundle is stable. The
following lemma will also be useful.

Lemma 2.3. Let V., W be stable vector bundles on a smooth projective curve such that

w(V) > p(W). Then Hom(V,W) = 0.

2.2 The Serre duality on elliptic curves

Let us fix a trivialization we >~ O¢ of the canonical line bundle on the elliptic curve
C. The Serre duality (see e.g. |3]) states that for any vector bundle V' on C' there is a
functorial non-degenerate pairing

H(C,V)® HY(C,V*) = k,
and, in particular, this gives a canonical isomorphism
HY(C,0¢) = k.
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For any vector bundles V;,V; on C' the Serre duality applied to V = V;* ® V; gives a
functorial non-degenerate pairing

Hom(V4, Vo) ® Ext!(V5, V1) — k. (2.1)

The Serre duality pairing is closely connected with the trace map. For a vector bundle V'
on C' there is a natural trace map

tr: End(V) — O¢, (2.2)

and it induces trace maps on cohomology:
tr: End(V) — H°(C,0O¢) =k, (2.3)
tr: Ext'(V,V) — HY(C,0¢) = k. (2.4)

Denote the kernels of these three trace maps by &nd(V)o, End(V ) and Ext'(V,V)o,
respectively. The trace map (22) and the section O¢ 1V, end (V) give a decomposition

End(V) = Oc @ End(V)o
and the corresponding decomposition of cohomology:
End(V) =k @ End(V),
Ext'(V,V) = k @ Ext'(V, V).
The following lemma follows from functoriality of the Serre duality.
Lemma 2.4. Let C' be an elliptic curve.
1. For a vector bundle V' on C the trace map (2.4
tr: Ext'(V,V) = k
coincides with the map given by the Serre duality pairing (21)) with Idy, € End(V).
2. For two vector bundles Vi, Vy on C the Serre duality pairing
Hom(Vi, Vo) ® Ext*(Va, Vi) — k

can be obtained in two other ways: take a composition in any order (there are two
variants) and then apply the trace map:

Hom(V1, Va) @ Ext!(Va, V1) — Ext! (V4, V1)

| -

Ext!(V5, V3) " k.

Note that if a vector bundle V is stable then
dim Ext'(V, V) = dimEnd(V) = 1,

and hence the trace map Ext'(V,V) — k is an isomorphism. Then we get a simple and
useful corollary.

Corollary 2.1. Let Vi and V4 be stable vector bundles on an elliptic curve C'. Then under
identifications Ext' (V1, V1) = k and Ext'(Vy, Vo) = k given by the trace maps, the Serre
duality pairing

Hom(V4, Vo) ® Ext!(Va, Vi) — k&

15 identified with the composition in any order.
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2.3 Poisson structures

Let X be a smooth algebraic variety over k.
Definition 2.2. A Poisson structure on X is a k-bilinear operation

{——}: Ox x Ox — Ox (2.5)
such that for any functions f,g,h € Ox the following properties hold:

1. Skew-symmetry:
{f)g} = _{ga f}7

2. Jacobi identity:
{f g}y +{g,{n f}} +{n.Af. g}} =0,

3. Leitbniz rule:

{f,9hy ={f, 9 h+g{f, h}.
The pair (X, {—, —}) is called a smooth Poisson variety.

Equivalently, one can also view a Poisson structure as a bivector field 7 € I'(X, A*(T X))
such that [r, 7] = 0, where [—, —| is the Schouten-Nijenhuis bracket. Such bivector field
is connected with the bracket from Definition by the formula

{f,9} = n(df,dyg),
and the condition [m, 7] = 0 is equivalent to Jacobi identity. Since a bivector field can be

viewed as a skew-symmetric map of vector bundles 7*X — T'X, a Poisson structure can
be also defined as a map of vector bundles

m T"X - TX, (2.6)

satisfying some additional condition which is equivalent to Jacobi identity. For any point
x € X the Poisson structure (2.6]) induces a map

T T X =T, X,

and the rank of this map is called the rank of the Poisson structure 7 at the point x.
Since 7, is skew-symmetric, its rank is always even.

Definition 2.3. Let X be a smooth algebraic variety and w: T*X — TX a Poisson
structure on X . An algebraic symplectic leaf is a maximal connected locally closed subset
7 C X such that for any point x € Z the tangent space at x to Z coincides with the image
of the Poisson structure:
1.7 =Im(m,) C T, X. (2.7)
In the case k = C Frobenius theorem implies that each point of X is contained in
an analytic symplectic leaf, which is not necessarily algebraic. Thus, even existence of
algebraic symplectic leaves is not guaranteed.

Proposition 2.1. Let X be a smooth algebraic variety and w: T*X — T'X be a Poisson
structure on X. If Z C X s an algebraic symplectic leaf of w, then Z is a smooth algebraic
variety.

Proof. Since dim T, Z is upper semicontinuous for z € Z, rkm, is lower semicontinuous
for x € Z, and dim7T,Z = rkmn, for x € Z, it follows that dim7,Z is constant on Z.
Thus, Z is smooth. O

Throughout the paper by symplectic leaves we always mean algebraic symplectic
leaves.



2.4 First order deformations of coherent sheaves

Denote by k[e] the ring of dual numbers k[t]/¢* and denote its spectrum by D = Spec k|[e].
Let X be an algebraic variety over k. Consider two Cartesian squares

XxD-*-=D XxD-1=D
AR P R
X L>pt, X Lpt,
where
e pt = Speck,

e ¢ is the natural projection X x D — D,
e 7' and p are induced by the natural embedding k — k[e],
e 7' and i are induced by the map k[e] — k, a + be — a.
Note that morphisms p/, p, 4,7 are affine, morphisms p’, p, ¢, ¢ are flat, and po i = idy.

Definition 2.4. Let E be a coherent sheaf on X. A first order deformation of E is a
coherent sheaf E on a scheme X x D such that

1. E is flat over D, i.e. the functor E ® ¢*(—): Coh(D) — Coh(X x D) is ezact,
2. i*E = E, i.e. the restriction of E to X is identified with E.

Two first order deformations E, and E, of E are equwalent if there is an isomorphism
E, ~ FE, that agrees with identifications 1*Fy = E and i*FEy = E. The set of equivalence
classes of first order deformations is denoted by Def(E).

Since we do not consider higher order deformations in this paper, we will usually omit
the term "first order". Fix a coherent sheaf F on X. There is a well-known bijection
between Def(E) and Ext'(E, E) such that zero element in Ext'(E, E) corresponds to
the trivial deformation £ = p*F (see e.g. |11]). Let us also describe this bijection
Def(E) — Ext'(E, E) using derived categories.

Firstly consider the k[e]-module k where ¢ acts trivially and consider the element
§€ Ext,lg[e](k:, k) corresponding to the extension

0—=k —=> k[e] k——=0. (2.8)

Starting from a deformation E of E we are going to construct an element T' € Ext'(E, E).
Consider the functor

p«(E ®q*(—)): Coh(D)— Coh(X). (2.9)
Lemma 2.5. One has
1. ¢*k =i, 0x,
2. E®q¢'k =1i,E,

3. p.(E®q'k)=E.



Proof. Since the k[e]-module k is the pushforward i/, O,; of the structure sheaf O,; of the
point, the flat base change implies

¢k =q"i.0py =1.¢"Op = i.0x.
Then by the projection formula
E®q¢k=E®i.Ox =i.E.
Finally, p.(E ® ¢*k) = p.i, E = E. O
The functor (23) is exact since E is flat over D, so it naturally extends to the functor
p(E @ q"(=)): D(k[e]) = D(X). (2.10)

Applying this functor to the morphism &: & — k[1] in D(k[e]) and using Lemma [2.5] we
get a morphism .

p«(F®q*€): E— El]
in D(X), i.e. an element of Ext!(F, E). In other words, the deformation E corresponds

to the element .
T = p(E ® q¢*¢) € Ext'(E, E). (2.11)

corresponding to the extension

0 E——p.E E 0,

obtained as a tensor product over k[e] of E and the extension (2.8).

Lemma 2.6. If E is a locally free sheaf on an algebraic variety X then any deformation
E of E is a locally free sheaf on X x D.

Proof. For any affine open subset U C X there are no non-trivial deformations of Ely
since Ext{;(E|y, Ely) = 0. Hence, E|lyxp = (pluxp)*(E|y) and then F is a locally trivial
sheaf. 0

For locally free sheaves on X there is a convenient description of deformations in terms
of Cech cocycles. Let E be a locally free sheaf on X. Choose a covering {Ui}ier of X by
affine open subsets Uj;, choose trivializations of E on U;, and denote the corresponding
transition functions by g;; for ¢,j € I. Let E be a deformation of E. By Lemma 2.6, E
can be trivialized on affine open subsets U; x D of X x D, and the transition functions g;;
of E can be written as Gij = gij + € - hyj for some matrices h;; of functions on X. One can
check that h,; is a 1-cocycle on X representing an element of H'(X, End(E)) = Ext'(E, E)
and, in fact, this construction gives the same bijection between deformations of E and
Ext!(E, F) as we described earlier.

Lemma 2.7. 1. Let Ey, Ey be vector bundles on an algebraic variety X and let El,
E2 be deformations of Ey, Fs correspondmg to elements Ty € Ext! (Er, Ev), Ty €
Ext! (Es, Es), respectively. Then E1 ®E2 is the deformation of E1® FEs corresponding
to Ty ®@ Idg, +1dg, ®T, € Ext'(E), ® By, By ® By).

2. Let E be a vector bundle on an algebraic variety X and let E be a deformation of
E corresponding to an element T € Ext'(E, E). Then the dual sheaf E* on X x D
is the deformation of E* corresponding to —T € Ext'(E*, E*) = Ext'(E, E).
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3. Let E be a vector bundle on an algebraic variety X and let f‘; be a deformation of
E corresponding to an element T € Ext'(E,E). Then End(E) is the deformation
of End(E) corresponding to [—,T] € Ext' (End(E), End(E)).

Proof. We will prove only the first statement, other statements are similar. Take an
affine open covering {U;} of X and let gl-lj and gfj be transition functions of E; and Es,

respectively. Then transition functions of deformations El and EQ can be written as

gl + chl; and g% + eh?,, where Cech cocycles hl; and h? represent elements T and Tp.

Then the tensor product E; ® Eg has transition functions

1 1 2 2y _ 1 2 1 2 1 2
(9i; + €hiz) ® (g5; + €hij) = 955 ® g7 + e(hy; @ g3; + gi; @ hij),

and the cocycle hllj ® gfj + gilj ® h?j represents the element 77 ® Idg, 4+ Idg, ®T5. O

3 Feigin—Odesskii Poisson Structures

3.1 The spectral sequence

Our definition of Feigin—Odesskii Poisson structures is based on the following general
spectral sequence.

Let R be a commutative ring and A be an R-linear abelian category with enough
injective objects. Consider two extensions

0—= A Ao A TA Ar L, (3.1)
0—=B-2.p- "B (3.2)

in A and the corresponding elements ¢ € Ext'(A”, A’), o € Ext!'(B", B'). We start with
the following question: how to describe Ext®*(A, B) in terms of Ext*(A’, B'), Ext*(A’, B”),
Ext*(A”, B'), Ext*(A”, B”). For example, if extensions ¢ and 1 are trivial then we can
view elements of Ext"(A, B) as 2 x 2-matrices

sk ok st € ExtF(A', B"),  oF € Ext®(A”, B"). (3:3)

(uk tk) uk € ExtF (A, BY), th € ExtF(A”, BY),
, Where

In the general case there is a natural spectral sequence computing Ext®(A, B) with such
2 x 2-matrices on the first page. The spectral sequence can be constructed as follows.
Short exact sequences ([B.1), (8.2)) give two term filtrations on A and B, and one can use
horseshoe lemma to construct injective resolutions 1%, Iy of A and B with corresponding
filtations on them. Then Ext®(A, B) can be computed as cohomology of the Hom-complex
Hom?* (7%, I3,) and filtrations on [§ and I} induce a filtration on this complex, so we get a
spectral sequence computing Ext®(A, B). A straightforward computation gives an explicit
description of this spectral sequence. We provide only the final answer.



The first page E7"* of the spectral sequence looks as follows.

(1o Ext’(A, B) Cop
3 Ext?(A’,B") " ® = Ext*(A”, B)
Ext®(A” B")
o Ext?(A’, B') o
2 Ext'(A’, B") 7 @ T Ext*(A” B')
Eth(AH,B”) o
(1o Ext(A, B o
1 Hom(A’,B") v & — Ext?(A”, B)
Eth(A”,B”)
Hom(A’, B') oy
0 @ —— . —Ext'(4", B)
Hom(A”,B") (=1)e=
—1 Hom(A”, B)
—1 0 1

This spectral sequence degenerates on the third page, so EY? = EP4 is isomorphic to the
p-th associated quotient of Ext?*?(A, B). Note that diagonals on the first page indeed
consist of 2 x 2-matrices (3.3)).

On the second page for k£ > 0 the differential dy: E, Lhtl EQHC or, more explicitly,

Eth—H(A”, B/)
ExtF(A’, B') o ¢ + 1 o Ext (A", B")

dy: {SGEth(A,,B”HwOSZO, 50@:0}_)

can be expressed using the triple Massey product M P: (see |13, [16])
da(s) = MP(p,s,1). (3.4)

Let us also provide two explicit constructions of dy, which follow from the definition of
Massey product. For s € Ext*(A’, B”) such that so¢ = 0 and 1) o s = 0 consider the
following diagram with two distinguished triangles in the derived category D°(A):

A B
X N
A ¥ A’ s B ¥ B
(1] (k] (1]



The first construction is the following. Since 1) o s = 0, there is a lift s’ € Ext*(A’, B)
such that s = mp o s’. Consider the composition s’ o ¢ and note that

mpo(sop)=s50p=0.

Hence, there is a lift s” € Ext*™(A” B') such that ip o s” = s’ 0 ¢, and then dy(s) is the
class of s” € Ext"™ (A", B).

The second construction is very similar. Since sop = 0, there is a lift s € Ext*(A, B”)
such that s’ oiy = s. Consider the composition v o s’ and note that

(hos)oiy=1os=0.
Hence, there is a lift s” € Ext*"!(A”, B') such that s” o m4 = 1 0 &', and then dy(s) is the
class of —s” € Ext*™ (A", B").
3.2 The moduli space of filtered vector bundles

Let V be a stable vector bundle of rank » > 0 and degree n > 0 on an elliptic curve C.
Consider extensions of V' by the trivial line bundle O¢, i.e. short exact sequences

0 O¢ ——=E-—">V 0. (3.5)

As in 6], we consider the following moduli space of filtered vector bundles.

Proposition 3.1. The projective space P = PExt'(V, O¢) is the moduli space of filtered
vector bundles E D L D 0 with fixed associated quotients

E/L~V, L=~O0O¢. (3.6)

Isomorphisms (B.09) are not specified, i.e. they are not a part of the data of a filtered vector
bundle. Moreover, we throw away the trivial filtered vector bundle V& Oc D O¢ D 0.

Proof. Take a point (@) € P, where a non-zero element ¢ € Ext'(V, O¢) corresponds to
an extension of the form (B3). We set L to be the image of O¢ in F and E D L D 0
to be the corresponding filtrarion. Note that if we replace ¢ by A - ¢ for some non-zero
A € k then the corresponding extension will be

0 [y ) S V4 0,

and the image of O¢ in E will not change. Hence, the filtered vector bundle £ > L D 0
depends only on the proportionality class of .

Conversely, consider a filtered vector bundle £ O L D 0 and fix some isomorphisms
E/L ~V and L ~ O¢. Using these isomorphisms we obtain an extension of the form
([B.5) corresponding to some non-zero element ¢ € Ext'(V,O¢). Since V and O¢ are a
stable vector bundles, all the isomorphisms F/L ~ V and L ~ O differ by multiplication
by non-zero constants. Hence, for different choices of isomorphisms we obtain extensions
of the form

0 O 2 p 2oy 0 (3.7)

for non-zero A\, 1 € k. Since elements of Ext*(V, O¢) corresponding to extensions (3.7)
are proportional to ¢, the proportionality class of ¢ does not depend on the choice of

isomorphisms.
It is clear that described constructions are inverse to each other. Existence of the
universal family on P = P Ext'(V, O¢) is shown in [4]. O
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The following proposition shows that P is the (n — 1)-dimensional projective space.

Proposition 3.2. Let V be a stable vector bundle of degree n > 0 on an elliptic curve C'.
Then

1. Hom(V,O¢) = Ext'(O¢, V) = 0,
2. dim Ext!(V, O¢) = dim Hom(O¢, V) = n.

Proof. Since p(V) > 0 = u(O¢) and vector bundles V' and O¢ are stable, it follows from
Lemma 2.3 that Hom(V, O¢) = 0 and then, by the Serre duality, Ext'(O¢, V) = 0. For
the second part we apply the Riemann-Roch theorem:

dim Hom(O¢, V) — dim Ext'(O¢, V) = n.

Hence, dim Hom(O¢, V) = n and, by the Serre duality, dim Ext'(V, O¢) = n. O

Now let us describe tangent spaces to P. On the one hand, P = PExt'(V,O¢) is a
projective space, so for a non-zero element ¢ € Ext'(V, O¢) there is an identification

T,P = Ext"(V,0c¢)/{p),

of degree 1 in ¢.

On the other hand, we can describe tangent spaces to P in terms of first order defor-
mations. Recall from Section 2.4 that we write D = Spec k[e] for the spectrum of dual
numbers, and we have natural morphisms p: C' x D — C' and ¢: C — C x D such that
poi=1idyx. The universal property of P leads to the following definition.

Definition 3.1. Let £ D L D 0 be a filtered vector bundle on C such that E/L ~V and
L~ O¢. A (first order) deformation of E O L D 0 is a filtered coherent sheaf E O L D0
on C x D such that

1. *E=FE and *L = L,
2. E/i ~ p*V and L~ p*Oc, i.e. associated quotients deform trivially.

The set of equivalence classes of deformations of E O L D 0 is denoted by Def(E D L D
0).

Thus, if £ D L D 0 is a filtered vector bundle corresponding to a point (@) € P then
the tangent space T,,P to P consists of the deformations of £ > L D 0:

T,P = Def(E D L > 0).

Note that if E > L D 01is a deformation of E' D L D 0 then L and E are automatically
flat over D. Hence, in this case F is a deformation of E, and we get a map

Def(E D L © 0) — Def(FE)

that forgets about L.
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3.3 Definition of Feigin—Odesskii Poisson structures

We start from a stable vector bundle V' of degree n > 0 on an elliptic curve C' and consider
proportionality classes of extensions

0 Oc E 1% 0,

which are parameterized by P = P Ext!(V, O¢). We will define the Feigin-Odeskii Poisson
structure m on P as a morphism of vector bundles

m: TP — TP.
Since P is a projective space, for any non-zero ¢ € Ext'(V, O¢) we have the identification
T,P =Ext'(V,0c)/{¢),
of degree 1 in ¢, and using the Serre duality pairing
(—,—): Hom(O¢, V) @ Ext'(V,0¢) — k

we can write
T:P = (¢)" C Hom(Oc, V).

Fix a non-zero element ¢ € Extl(V, Oc¢) corresponding to an extension

0—>Op—>E—=V —=0 (3.8)

and consider the corresponding filtered vector bundle £ D L D 0. We can apply to the
extension (B.8)) the construction of the spectral sequence computing Ext®(E, F) that was
described in Section B.1]

Since Hom(V, O¢) = 0, Ext'(O¢, V) = 0 by Proposition and all higher Ext’s are
zero, the first page E7'* of the spectral sequence looks as follows.

(3.9)

(—1)-po—
o

Eth(OC, Oc)
1 Hom(O¢, V) @
Ext'(V, V)

HOIH(OC, Oc)
0 D ;
Hom(V,V) V¥

—O

Ext'(V, O¢)

-1 0 1

The diagonal p 4+ ¢ = 0 corresponds to End(F) and the diagonal p + ¢ = 1 corresponds
to Ext'(E, E).

There is another way to construct the same spectral sequence. For a filtered vector
bundle £ O L D 0 consider the sheaf End(F) with the induced three term filtration on
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it, and this filtration gives a spectral sequence computing H*(C,&nd(E)) = Ext*(E, E).
Moreover, one can use the sheaf End(E), instead of End(F) to get the reduced spectral
sequence computing Ext*(E, E)q. Since End(E) = End(F)y @ O¢, the reduced spectral
sequence is the traceless part of the initial spectral sequence (3.9) and, moreover, it is a
direct summand in it.

Using Corollary 1] we can write the first page of the reduced spectral sequence as
follows.

(3.10)
1| Hom(Oc, V)
0 k—~—Ext{(V,00)
~1 0 1

The only non-trivial differential on the second page is a map
dy: (g — Ext'(V, Oc)/ ().
and this map is the same for both spectral sequences (3.9) and (3.10]).

Definition 3.2. The Feigin-Odesskii Poisson structure © on P = PExt'(V,0¢) at a
point (p) is defined as the differential dy on the second page of the constructed spectral

sequence (3.10):
* da
T ToP = (@)= = Ext!(V,0¢) /{¢) = T, P.

An explicit description of the differential dy provided in Section [B.1] leads to the fol-
lowing proposition.

Proposition 3.3. Let V' be a stable vector bundle of positive degree on C' and let ¢ €
Ext'(V,O¢) be a non-zero element. Then the Feigin—Odesskii Poisson structure 7 at the
point (@) € P can be expressed as

7r<,0 = MP(@? _790)7

where M P is the triple Massey product. Thus, our definition of the Feigin—Odesskii
Poisson structure coincides with the definition in [16, Lemma 2.1].

Note that it follows from Proposition that m, has degree 2 in ¢, and hence 7 is a
well-defined map of vector bundles T*P — TP on P.

Since the reduced spectral sequence converges to Ext®(E, F)y, it follows immediately
that

Ker(m,) = End(E)y,
Coker(r,) = Ext!(E, E)o.

As a corollary, we get a formula for rank from [16].
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Corollary 3.1. Let V' be a stable vector bundle of degree n > 0 on an elliptic curve C.
Let () € P be the point corresponding to a filtered vector bundle E D L D 0. Then the
rank of the Feigin—Odesskii Poisson structure m at this point equals to

rk 7, = n — dim End(F).
Proof. Since dim T3P =n — 1,
tkm, =n—1—dimKer(r,) =n —1— (dimEnd(F) — 1) =n — dim End(E).
O

Our construction of the Feigin-Odesskii Poisson structure is functorial in the following
sense. Let A be a commutative finitely generated k-algebra. Consider the Cartesian square

C x Spec A —L~ Spec A

”l | l”'

C 1 pt

and note that the flat base change implies that for locally free sheaves F, F' on C'
Ext®(p"E,p"F) = Ext*(E, F) @y, A. (3.11)

as A-modules. For a morphism ¢: Spec A — P the universal property of P gives a filtered
coherent sheaf £ > L D 0 on C x Spec A with E/E ~ p*V and L ~ p*Oc. Reproducing
the definition of the Feigin-Odesskii Poisson structure but for the A-linear case, we get a
spectral sequence of A-modules that computes Ext*(E, E)o. Tt follows from (3II) that
the first page looks as follows.

1 HOHl((Oc, V) ®k A A
0 A Ext'(V,0¢) @ A
~1 0 1

The nontrivial differential dy on the second page gives a morphism
t*(T*P) — t*(T'P)

of sheaves on Spec A. Globalizing, for any morphism ¢: U — P for any scheme U we get
the functorial map ¢*(T*P) — t*(T'P), which can be viewed as a functorial version of the
Feigin—Odesskii Poisson structure.
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3.4 Symplectic leaves of Feigin—Odesskii Poisson structures

As before, fix a stable vector bundle V' of degree n > 0 on an elliptic curve C' and consider
the moduli space P = P Ext'(V, O¢) of filtered vector bundles E O L D 0 with associated
quotients E/L ~ V| L ~ O¢. Then P is a disjoint union (as a set) of isomorphism classes
of E: we say that two filtered vector bundles £y D Ly D 0 and Es; D Ly D 0 are in the
same isomorphism class of E if vector bundles F; and F, are isomorphic. The following
essential property of Feigin—-Odesskii Poisson structures was initially stated in [6]. We
provide a simple proof for it.

Theorem 1. Connected components of isomorphism classes of E are symplectic leaves of
the Feigin—QOdesskii Poisson structure m on P.

Proof. Take a point (p) € P corresponding to a filtered vector bundle £ D L D 0. It
suffices to show that the tangent space to the isomorphism class of E at the point (p)
coincides with the image of m,: T2 P — T,,P. Indeed, it would imply that locally isomor-
phism classes of E are symplectic leaves of 7, and then symplectic leaves are connected
components of isomorphism classes of F.

From the filtration £ D L D 0 on E we get the spectral sequence (3.9]) that computes
Def(E) = Ext!(E, F). From this point of view deformations of E are represented by
2 X 2-matrices, and deformations of £ D L D 0 correspond to strictly upper triangular
matrices. Hence, the term Egl’0 of the spectral sequence (it corresponds to strictly upper
triangular matrices) can be identified with Def(E D L D 0) = T,,P = Ext'(V,0c)/{¢),
and the natural map

Def(E D L © 0) — Def(FE)

can be identified with the map
B, = Ext'(V,0¢)/(p) — Ext'(E, E)

given by convergence of the spectral sequence. Hence, the latter map sends a tangent
vector v € Ext'(V,0¢)/{¢) to the induced deformation of E. Since the kernel of this
map coincides with the image of the differential dy on the second page of the spectral
sequence and 7, is by definition equals to ds, it follows that the image of 7, consists of
the tangent vectors v € T, P that induce the trivial deformation of F, and this is exactly
the tangent space to the isomorphism class of E in P. O

4 Conormal Lie algebras

4.1 The intrinsic derivative and conormal Lie algebras

Following [5], we use the definition of conormal Lie algebras based on the intrinsic deriva-
tive. Let us first provide a general definition of the intrinsic derivative.

Let X be a smooth algebraic variety and 7: £ — F' be a morphism of vector bundles
on X. Fix a point z € X and a tangent vector v € T, X. We will define the intrinsic
derivative

Oym: Ker(m,) — Coker(m,),

where m,: E, — F}, is the map of fibers induced by 7. One can find a differential-geometric
definition of the intrinsic derivative in |14, 2]. The intrinsic derivative may be also defined
using the Atyiah class (see [12]) as follows. Given a morphism 7 as above, consider the
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two-term complex P* = (E = F). Its Atyiah class is an element of hypercohomology
Ext!'(P*, P* ® Q%). The intrinsic derivative is given by the endomorphism of the co-
homology of P*® induced by this class. The reader may try to express our subsequent
manipulation with intrinsic derivative in terms of the formalism of the Atiyah class.
Nevertheless, we will use another definition. Let t,: D — X be the morphism corre-

sponding to the tangent vector v € T, X. Restriction of 7 along ¢, gives a homomorphism
of free k[e]-modules

Tyt Ex — F’x,
where Ex =L, Z:} =tF, and 7, = ;7. Note that 7, is a deformation of 7, : E, — F},
ie.

Ty Qile] b = s

The definition is based on the intrinsic derivative functor D from the derived category
D(k[e]) to the category of graded k-vector spaces equipped with an endomorphism of
degree 1. The functor is defined by the formula

D =yp.(— ék[e} £), (4.1)

where § € Homp)(k, k[1]) corresponds to the extension

0 k—— kle] k 0,

and the functor p.: D(k[e]) — D(k) is induced by the morphism p': D — pt. More
accurately, given an object C'* of the category D(k[e]), i.e a complex of kle]-modules, we
take its tensor product with the morphism &: k — k[1] and then apply the functor p, to
get a map

L L
in the category D(k), which can be identified with the category of graded k-vector spaces

L
by the cohomology functor. So we obtain a graded vector space p,(C*® @y k) equipped
with a degree 1 endomorphism.

To define the intrinsic derivative of 7 consider the two term complex

C*=(C° = CY = (B, ™ F,)
and apply the intrinsic derivative functor D to it. Since E, and F, are flat,
L T
p;(C' Rk[e] k) = p;(C' Rkle] k)= H*(C* Rkle] k)= H*(E, = F,),

and we get a degree 1 endomorphism of this graded vector space. Thus, the intrinsic
derivative functor gives a map

Oy Ker(m,) — Coker (7).
Let us summarize the definition of the intrinsic derivative.

Definition 4.1. Let X be a smooth algebraic variety over k, m: E — F be a morphism
of vector bundles on X, and v € T, X be a tangent vector to X at a point x € X. The
intrinsic derivative

Oym: Ker(rm,) — Coker(7,)

1s defined as follows.
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1. Take the morphism t,: D — X corresponding to v € T, X. Consider k[e]-modules
E.=tF F, =t F and the map 7, = ;7 between them.

Tz

L .
2. Apply the intrinsic deriative functor D = p/.(— ® &) to the complex (E, — F,) to
get a degree 1 endomorphism of H*(E, *% F,), i.e a map

Oy Ker(m,) — Coker (7).

The following proposition gives a description of the intrinsic derivative which is well-
known in differential geometry.

Proposition 4.1. Let X be a smooth algebraic variety, w: E — F a morphism of vector
bundles on X, andv € T, X a tangent vector to X at a point x € X. Choose trivializations
of E and F in a neighborhood U of x and write m as a matriz I1 of functions on U. Then
the intrinsic deriwative O, is the composition

Ker(m,) Oum Coker(m,)
E,—F,

where v(Il) is the element-wise derivative of the matriz I1 along v, and left and right
vertical arrows are the natural embedding of the kernel and the natural projection onto the
cokernel, respectively.

Proof. Restricting 7 along the morphism D — X corresponding to the tangent vector v,
we get a map of free k[e]-modules given by the matrix I, + - v(II). The rest of the proof
is a straightforward calculation of the intrinsic derivative functor D applied to this map,
so we omit it. U

Now let us, following [5], formulate a definition of conormal Lie algebras of a Poisson
structures. Let m: T*X — T'X be a Poisson structure on a smooth algebraic variety X
and x € X be a point. Since 7, is skew-symmetric, the natural pairing

(— =) T XQT:X -k
induces a natural isomorphism
Coker(m,) = Ker(m,)".

The conormal Lie algebra is the vector space Ker(m,) equipped with a Lie bracket
that can be constructed as follows. For any tangent vector v € T, X consider the intrinsic

derivative
Oy Ker(m,) — Coker (7).

It is clear from Corollary [4.1] that J,7 is linear in v, so we get a map

or: TmX & Ker(ﬂ-x) — COkeI‘(ﬂ'm),
VR a— O,7(a).

Moreover, one can check that if v € Im(7,) then the map 0,7 is zero, so in fact we have

or: Coker(m,) ® Ker(m,) — Coker(m,).
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Using the isomorphism Coker(r,) = Ker(m,)* and dualizing, we get a map
Ker(m,) ® Ker(n,) — Ker(m,). (4.2)
This map is clearly skew-symmetric and, in fact, it is a Lie bracket on Ker(m,).

Definition 4.2. Let v € X be a point on a smooth Poisson variety (X, 7). The conormal
Lie algebra at x is the vector space Ker(m,) equipped with the constructed Lie bracket

“@2).

One of the reasons why conormal Lie algebras are important is the following obser-
vation. If a point x € X is contained in a symplectic leaf Z C X then Ker(m,) can be
identified with the conormal space (N;X), of Z, and then one can view the conormal Lie
bracket on Ker(r,) as a linearization of the Poisson structure 7 in a neighbourhood of Z.

4.2 Conormal Lie algebras of Feigin—Odesskii Poisson structures

Let V be a stable vector bundle of degree n > 0 on an elliptic curve C' and P =
P Ext'(V,O¢) be the moduli space of filtered vector bundles £ O L D 0 with fixed
associated quotients F/L ~V L ~ O¢.

Theorem 2. Let (¢) be a point of P corresponding to a filtered vector bundle E O L D 0.
Then the conormal Lie algebra of the Feigin—Odesskii Poisson structure 7 at the point (o)
is isomorphic to the Lie algebra End(FE)q of traceless endomorphisms of E.

The rest of the section consists of the proof of this theorem. We need to compute the
intrinsic derivative of m: T*P — T P. Let () € P be a point corresponding to a filtered
vector bundle £ D L D 0 on C and let v € T,,P be a tangent vector corresponding to a
deformation £ > L D 0. Recall from Section 4] that we have two Cartesian squares

CxD-L1-D CxD-L-D
R
c—L o pt, c—L o pt,

and by Definition [3.1], . )
"E=F, "L=1L,
E/L~p'V, L~pOc.

In order to compute the intrinsic derivative d,m we need to restrict = along the mor-
phism t,: D — P. The functorial description of 7 shows that 7, = ¢;7 is the differential
dy on _the second page of the spectral sequence of k[»{]—rpodules given by a filtration on
End(E, E)y. This spectral sequence computes Ext*(E, E)y = R*q. End(FE)y, and it has
the following first page.

(4.3)
1 Hom(O¢, V) ®y kle] k[e]
0 kle] Ext' (V. Oc) @ kle]
~1 0 1



If we take the tensor product of this spectral sequence with k, we will get the spectral
sequence (3.10) with 7, on the second page. Hence, differentials in the first and zeroth
rows of (.3)) are surjective and injective, respectively. The theorem will follow from two
lemmas.

Lemma 4.1. The second page of the described spectral sequence, i.e. the two term complex
with the differential dy, is quasi-isomorphic to Rq, End(E)o.

Proof. Let us for brevity write the two term complex on the second page as C° Te, O,
the second page looks as follows.

0 ct

-1 0 1

Note that the spectral sequence actually comes from a filtration on the complex Rq. End(E Jo-
If we apply the décalage construction [7, Exercise 5.4.3| two times, we will get another
filtration on Rq, End(FE)q such that the induced spectral sequence has the following zeroth

page.

2 Ct
o
1 CY
0
-1 0 1

Thus, we get a finite filtration on Rgq, End(E), such that all but one of the associated

quotients are trivial as objects of D(k[e]), and the only non-trivial quotient is quasi-
isomorphic to C° =% C'. One can easily deduce from this (e.g. by induction) that then

the whole complex Rgq, End(FE)q is quasi-isomorphic to C° Ze o O

Lemma 4.2. Let E be a deformation of a locally free sheaf E on C' corresponding to an
element T € Ext'(E,E). Then D(Rq.E) is the graded vector space H*(C, E) with the
degree 1 endomorphism

H*(C,E) 5 HTY(C, E).
Proof. Recall from Section 2.4] that

T =p.(E®q€): E— E[1] in D(C). (4.4)
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Moreover, since by Lemma 226, E is a locally free sheaf on C' x D, we can rewrite @)
using derived tensor product:

T = p(E® ¢*€): E — E[1] in D(C).

Then by the projection formula and flat base change property,

. . L _ L _ L
D(Rq.E) = p.((Rq.E) © §) = pl(Ra.(E ® ¢°€)) = Ra.(p(E ® ¢°€)) = R (T),
and this is exactly the endomorphism of H*(C, F) induced by T O

Now we are ready to finish the proof of Theorem [2l In order to compute the intrinsic
derivative of m we need to apply the intrinsic derivative functor to the second page of
the spectral sequence (4.3). Since by Lemma (1] the second page is quasi-isomorphic
to Rq, End(E)y and the functor D is well-defined on the derived category, we will apply
D to Rg. Snd(f?)o. Taking the traceless part of the third statement of Lemma 2.7, we
obtain that &nd(E)g is the deformation of End(E), corresponding to the element [—, T €
Ext!(&nd(E)o, End(E)o). Finally, by Lemma B2, D(Rq, End(E)y) gives the map

=4

HY(C,&nd(E)) —— H'(C,&nd(E)y).

Thus, the intrinsic derivative of the Feigin—Odesskii Poisson structure at the point corre-
sponding to a filtered vector bundle £ O L D 0 along the tangent vector corresponding
to a deformation £ D L D 0 is the map

End(E), =0 Ext!(E, E)o,

where T € Ext!(E, E) corresponds to the deformation E of E. Then the induced Lie
bracket on Ker(m,) = End(E), coincides with the natural commutator

End(E)o ® End(E), =% End(E),.

The proof of Theorem [2]is complete.
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