Multi-Fidelity Ensemble Kalman Method with Dynamic Mode Decomposition Surrogate - Archive ouverte HAL
Poster De Conférence Année : 2023

Multi-Fidelity Ensemble Kalman Method with Dynamic Mode Decomposition Surrogate

Résumé

An accurate description of the blood flow dynamic in local areas of interest is a key tool to explain emergence of certain abnormalities like stenosis. However, extraction of the entire vascular network is in general inaccessible and the truncated part is encoded via Windkessel models. These models rely on many parameters which are estimated by comparing the model with observations. This poster presents a systematic approach for this parameter estimation task using the Ensemble Kalman Method (EnKM) with a surrogate model based on Dynamic Mode Decomposition (DMD).
Fichier principal
Vignette du fichier
POS___Multi_Fidelity_Ensemble_Kalman_Filter_with_Non_Intrusive_Surrogate_based_on_DMD.pdf (1.57 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04771818 , version 1 (07-11-2024)

Identifiants

  • HAL Id : hal-04771818 , version 1

Citer

Pierre Mollo. Multi-Fidelity Ensemble Kalman Method with Dynamic Mode Decomposition Surrogate. MORTech 2023, Nov 2023, Saclay, France, France. ⟨hal-04771818⟩
4 Consultations
4 Téléchargements

Partager

More