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Multi-Fidelity Ensemble Kalman Method with
Dynamic Mode Decomposition Surrogate
Pierre Mollo, Centre for Analysis, Scientific Computing and Applications

Introduction
An accurate description of the blood flow dynamic in local areas of interest is a key tool to explain emergence of certain abnormalities like stenosis. However, extraction
of the entire vascular network is in general inaccessible and the truncated part is encoded via Windkessel models. These models rely on many parameters which are
estimated by comparing the model with observations. This poster presents a systematic approach for this parameter estimation task using the Ensemble Kalman Method
(EnKM) with a surrogate model based on Dynamic Mode Decomposition (DMD).

Vascular model
In large scale vessels (∼ [mm]), the blood is considered as an incompressible ho-
mogeneous Newtonian fluid and the Navier-Stokes equations describe the dynamic.



∂u
∂t + (u · ∇)u− ν∆u = −∇p [0, T ]× Ω

∇ · u = 0 [0, T ]× Ω

u = 0 [0, T ]× Γwall

u = g [0, T ]× Γinlet

∇u · n− pn = −Pext,in [0, T ]× Γoutlet,i

Variables:
•u velocity field
• p pressure
• ν dyn. viscosity
•g input velocity

Windkessel model: A generic 4-components model (RCL) is used at each outlet,
coupled to the 2D model by the external pressure terms Pext,i at the outlets.
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where k denotes the time step and Qi the flow rate at outlet i.

Flow rate measurements are provided at inlet and outlets of the model:
• inlet meas. → input • outlets meas. → observation for control
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Rd = distal resistance
Rp = proximal resistance
C   = compliance
L   = inductance

Figure 1: Vascular model.

Parameter estimation
Parameter: •µ = {Rd,1, Rd,2, Rp,1, Rp,2, C1, C2, L1, L2} ∈ R8

+

•u(µ) = {u(1)(µ), . . . ,u(K)(µ)} the associated
velocity fields at the K time steps of interest.

Observations operator: Given a velocity field v, the flow rate at the outlet i defines
a linear observation operator:

Li(v) =

∫
Γoutlet,i

v · n ds, i = 1, 2

Problem formulation: Infer the parameter µ to fit the flow rate at the output i
according to a targeted flow rate y ∈ RK. The estimation parameter problem reads:

µ̂ = arg inf
µ
∥Li(u(µ))− y∥2, i = 1 or 2

EnKM: It is a robust way to perform parameter estimations based on distribution
functions generated using J particles, subject to artificial Gaussian noise N (0,Γ).
Each particle requires an evaluation of the Full Order Model (FOM) at each itera-
tion, leading to a computationally intensive task.

Data: µ = {µ1, . . . , µJ}, L, Γ
while ∥µ̂− µ∥2/∥µ̂∥2 > ε do

for j = 1 : J do
u(µ(j))← SOLVEFOM(µ(j))
G(µ(j))← L(u(µ(j)))

end for
µ, G ← 1

J

∑J
j=1 µ

(j), 1
J

∑J
j=1 G(µ(j))

C← 1
J

∑J
j=1 G(µ(j))G(µ(j))t − G Gt

D← 1
J

∑J
j=1 µ

(j)G(µ(j))t − µ Gt

for j = 1 : J do
ξ ← N (0,Γ)
µ(j)← µ(j)+DC−1(G(µ(j))−y(j)+ ξ)

end for
µ̂← 1

J

∑J
j=1 µ

(j)

end while

Algorithm 1: Ensemble Kalman Method
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The function SolveFOM can be replaced by a reduced model SolveROM.
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Reduced order model
DMD: It is an equation-free algorithm which provides an efficient way to express
dynamic data as a combination of spatial modes Φ, amplitudes α and time depen-
dent dynamics ξ.

...

ΦX  = [u(1) | u(2) |   … | u K( )] α ξ

Data DMD

≃

The DMD algorithm can be adapted to
deal with parameterized problems to pro-
vide a map between parameter inputs
and output of interest.

Data set:

Xm
n = [u(n)| . . . |u(m)]

Linear mapping assumption:

XK
2 = AXK−1

1

Then Φ and ξ are given by spectral
properties of A. Instead, DMD uses
a reduced matrix Ã such that:

XK
2 ≃ XK−1

1 Ã

Numerical results: single parameter variation
Surrogate model: Reduction using 24 time dependent snapshots, varying only L1.

True state

0.0 76.4 152.8 229.3 305.7

Velocity amplitude [mm3.s−1]

parametric DMD approx.
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Velocity amplitude [mm3.s−1]

Absolute error

0.000 0.418 0.836 1.255 1.673
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Parameter estimation: In EnKM+FOM, particles simulation run in parallel.

1.6 1.8 2.0 2.2

Time [s]

2200

2400

2600

F
lo

w
ra

te
[m
m

3
.s
−

1
]

Optimal fit: Lower outlet:

Model

Observation

EnKM + FOM EnKM + ROM
Error 3.4× 10−3

Time 10× 40min 10× 0.9s

Table 1: Results after 10 EnKM iterations.

Conclusion
• Promising preliminary results with single parameter variation.
• Need to take the model reduction bias in the EnKM algorithm.
• Possible extensions to filtering methods.


