Deep reinforcement learning for tuning active vibration control on a smart piezoelectric beam - Archive ouverte HAL
Article Dans Une Revue Journal of Intelligent Material Systems and Structures Année : 2024

Deep reinforcement learning for tuning active vibration control on a smart piezoelectric beam

Résumé

Piezoelectric transducers are used within smart structures to create functions such as energy harvesting, wave propagation or vibration control to prevent human discomfort, material fatigue, and instability. The design of the structure becomes more complex with shape optimization and the integration of multiple transducers. Most active vibration control strategies require the tuning of multiple parameters. In addition, the optimization of control methods has to consider experimental uncertainties and the global effect of local actuation. This paper presents the use of a Deep Reinforcement Learning (DRL) algorithm to tune a pseudo lead-lag controller on an experimental smart cantilever beam. The algorithm is trained to maximize a reward function that represents the objective of vibration mitigation. An experimental model is estimated from measurements to accelerate the DRL’s interaction with the environment. The paper compares DRL tuning strategies with [Formula: see text] and [Formula: see text] norm minimization approaches. It demonstrates the efficiency of DRL tuning by comparing the control performance of the different tuning methods on the model and experimental setup.
Fichier principal
Vignette du fichier
FEBVRE~1.PDF (24.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04770230 , version 1 (12-11-2024)

Identifiants

Citer

Maryne Febvre, Jonathan Rodriguez, Simon Chesne, Manuel Collet. Deep reinforcement learning for tuning active vibration control on a smart piezoelectric beam. Journal of Intelligent Material Systems and Structures, 2024, 35 (14), pp.1149-1165. ⟨10.1177/1045389X241260976⟩. ⟨hal-04770230⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More