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Abstract

Piezoelectric transducers are used within smart structures to create functions such as energy har-
vesting, wave propagation or vibration control to prevent human discomfort, material fatigue, and
instability. The design of the structure becomes more complex with shape optimization and the inte-
gration of multiple transducers. Most active vibration control strategies require the tuning of multiple
parameters. In addition, the optimization of control methods has to consider experimental uncertain-
ties and the global effect of local actuation. This paper presents the use of a Deep Reinforcement
Learning (DRL) algorithm to tune a pseudo lead-lag controller on an experimental smart cantilever
beam. The algorithm is trained to maximize a reward function that represents the objective of vi-
bration mitigation. An experimental model is estimated from measurements to accelerate the DRL’s
interaction with the environment. The paper compares DRL tuning strategies with H2 and H∞ norm
minimization approaches. It demonstrates the efficiency of DRL tuning by comparing the control
performance of the different tuning methods on the model and experimental setup.
Keywords: Active Control, Vibration Control, Feedback Control, Machine Learning, Neural Network,

Cantilever Beam, Metamaterial, Parameter Estimation, Smart Structures, Piezoelectric
Transducer

1. INTRODUCTION

Since the discovery of the piezoelectric effect by the Curie brothers in the 19th century (Curie (1984)), piezoelectric
materials have found diverse applications. They are employed in various roles, from sensors for monitoring to actuators
for controlling structural vibrations. The control of vibrations is paramount for ensuring the safety, functionality, and
longevity of structures from bridges to space engines, as well as for preserving the comfort and well-being of individuals
within and around these structures. In contemporary applications, sensors and actuators can be integrated directly
into structures using multi-physical materials often referred to as ”smart” materials, thereby imbuing structures with
additional functionalities. As part of smart materials, piezoelectric transducers transfer mechanical energy into electri-
cal energy with a reciprocity effect (M.G.Lippmann (1881)) capable of acting as actuators or sensors and contributing
to the creation of a smart structures capable of autonomous control.
In the context of vibration control applications, various active methods have been developed that involve integrating

smart materials directly into structures: PID control (Ziegler and Nichols (2022), Khot et al. (2011), Jovanović et al.
(2013)), optimal control (Foutsitzi et al. (2003), Stavroulakis et al. (2005)) and robust control (Tani et al. (1995),
Doyle et al. (1989), Rodriguez et al. (2022)). In general, these applications consider a limited amount of transducers.
However, optimizing all control parameters becomes increasingly challenging as the system’s dimensions and complexity
grow, particularly when accounting for physical uncertainties.
To address this issue, researchers have recently explored intelligent control (Li et al. (2009)) in light of advancements

in computational hardware. Intelligent control defines both fuzzy logic and artificial intelligence control. Fuzzy logic is
a control strategy based on heuristic decision rules with ”if then” structure, which is a generalization of boolean logic
operators. Fuzzy rules are processed in parallel and in real-time and the operation should be fast enough to compute
the output in one sampling period. In order to maintain the real time efficiency of the method in experimental
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conditions, the number of fuzzy rules must be limited (Kwak and Sciulli (1996)) since the algorithm has to chose at
each time step the suitable controller.
Artificial intelligence-based control aims to replicate the human brain by utilizing a Neural Network (NN) repre-

sentation (Rosenblatt (1958)). Lee.G (Lee (1996)) introduced the use of NNs on a smart cantilever beam experiment
for system identification, system state estimation or vibration control with the so-called Artificial Neural Network
(ANN) controller. Jha and Rower (Jha and Rower (2002)) conducted an experiment on a smart cantilever beam to
test the usage of an ANN controller and its robustness against parametric uncertainties with multiple disturbance
signals. ANNs are also utilized as predictive models for feed-forward control to compensate for the hysteresis behav-
ior of piezoelectric elements (Liang et al. (2019)) or to attenuate disturbances on a cantilever beam (D.Snyder and
Tanaka (1995)) and other smart composite structures (Smyser and Chandrashekhara (1997), Mohit et al. (2015)).The
works highlight a lack of consistency and predictability in performance due to the use of neural network controllers
that are trained offline using Supervised Learning with a restrictive database, simulated by a model or measured on
experimental setups.
According to recent advancements in Artificial Intelligence algorithms (Cardon et al. (2018)) and hardware technology

(Lee (2021)), new Machine Learning methodologies using NNs can be used to control systems. Considering Multiple
Input Multiple Output (MIMO) systems, Unmanned Aerial Vehicles (UAV) have been recently controlled using NNs
trained with Reinforcement Learning (RL) algorithm without the need for a database. RL controllers relevance
compared to PID controller has been proven experimentally on trajectory tacking experiment on UAV (Koch et al.
(2019)). The performance of RL controllers is dependent on the definition of the observation space, as demonstrated
in the lift control experiment of a fixed-wing vehicle by (Guerra-Langan et al. (2022)). In this experiment, various RL
controllers are compared to a manually tuned PID controller. The RL algorithms are trained on a model which does
not take into account noise and experimental uncertainties. Alternatively, training the RL on an experimental setup
can be time-consuming depending on the complexity of the system, as shown in (Haughn et al. (2024)).
Qiu et al. (2021) use a Reinforcement Learning (RL) controller to control a plate equipped with 5 piezoelectric

transducers (4 for actuation and 1 for measurement) and minimize its response to sinusoidal excitation at resonant
frequencies. Simulation results show that the RL controller is faster than a classical PD controller in damping the modal
response. However, with the experimental setup, the RL controller has slower performance for transient vibrations but
achieves similar performance after a few periods, depending on the frequency. All of these studies use RL to provide
the time-domain control signal.
More recent works have also used RL to set controller parameters. For example, Khalatbarisoltani (2019) works

with an active mass drive (AMD) system on structures stressed with seismic events. Reinforcement learning is used
with online tuning to determine the gains of a fuzzy PD controller. Experimental tests allow to prove successful am-
plitude attenuation of the structural response amplitude in response to seismic perturbations. Pisarski and Jankowski
(2022) develop a switching control policy on a numerical Euler Bernoulli model of a multi-sensor beam monitor with
semi-active control. A reinforcement learning method based on structure cost function minimization is implemented to
adjust the controller parameters. By comparing with other methods, the results show the validation of the RL-based
semi-active control method for transient vibration mitigation on a numerical model. Panda et al. (2024) propose
to use Reinforcement Learning algorithm with policy gradient based method to tune a P and a PI controller. The
method’s efficiency is illustrated on two numerical cases considering harmonic excitations: a quarter car model with
active suspension system and an 8-story benchmark building. According to the research cited above, Reinforcement
Learning strategies have two main uses: as a controller that generates the control signal directly in the time domain,
or to adjust the parameters of an existing controller.

In line with the recent literature, this article explores the use of RL algorithms to adjust controller parameters
and mitigate different perturbation signals on an experimental smart cantilever. The purpose is to introduce the
Deep Reinforcement Learning (DRL) tool to an active vibration control problem, starting with a structure with two
piezoelectric transducers.
The DRL optimization will be linked to the cantilever beam by defining its Environment, State, Action and Reward

functions based on vibration domain metrics. Here, the Neural Network (NN) is used to tune the three parameters
of a pseudo lead lag controller. Hence, the computation of the NN output is only necessary during the training.
Deep Neural Networks (DNN) are able to relate efficiently inputs and outputs considering high dimension MIMO
systems (Nguyen et al. (2023)). Using this method in a vibration control problem can be useful to design distributive
control considering piezoelectric transducers within a network. The Trust Region Policy Optimization (TRPO) for
NN guarantees monotonous improvements during training (Schulman et al. (2015)), thus staying close to the stability
domain of the controlled structure. A pseudo lead lag control architecture is justified since spillover instabilities can
occur due to residual modes (Preumont (2018)) close to the controller target bandwidth. It can be solved by using
optimal sensor placement (Khushnood et al. (2016)), and increasing the order of the controller (Jovanović et al. (2014)).
Compared to simple derivative feedback (Febvre et al. (2023)), the use of a pseudo lead-lag controller allows to reduce
the spillover effect in the tuning process. To decrease NN training time, a model of the experimental setup is built
from measurements with poles and zeros estimation. Using a model during the training process avoids waiting for the
acquisition time on the real structure.
Controllers are also tuned using H2 and H∞ norm minimization, which serves as the reference controller. The

performance of the controllers is tested on the model and measured in the experimental setup. Comparison of DRL
with norm minimization demonstrates the efficiency and reliability of the DRL method in tuning a stable lead-lag



3

controller for a smart cantilever beam.

2. METHODOLOGIES

In the following section, a control strategy is implemented on a smart structure with one piezoelectric actuator and
two sensors. This section introduces tuning concepts based on norm minimization and Deep Reinforcement Learning.

2.1. Control Strategy

A feedback control law C(s) is implemented on the system G(s) which is the smart structure to be controlled, as
defined in the block diagram Figure 1. In this architecture, r = 0 is the target signal, e the error, vd the disturbance,
vc the command, v the input actuation signal of the system G(s) = [G1(s);G2(s)] and [x1;x2] the respective system
outputs. Both the input disturbance and the control signals are applied to the system through one channel v.

+
−

+
+

C(s) G(s)
r = 0 e vc

vd

v
x1

x2

Fig. 1.—: Control loop block diagram

A parametric approach is performed to tune the control law parameters with criterion minimization based on the
closed-loop transfer functions Gc,1(s) and Gc,2(s), such as:

Gc,1(s) =
G1(s)

1 +G1(s)C(s)
Gc,2(s) =

G2(s)

1 +G1(s)C(s)
(1)

The first criterion chosen for the minimization is based on the H2 norm of the closed-loop transfer function restricted
to a finite frequency band, such as:

∥Gc,q(jω)∥2=
√

1

2π

∫ ω2

ω1

Gc,q(jω)2dω (2)

with j ∈ C the imaginary variable and ω the frequency in [rad/sec] and q ∈ [1; 2].
The second criterion is defined with the H∞ norm in the case of linear systems within the same frequency band, such
as:

∥Gc,q(jω)∥∞= max(Gc,q(jω)) (3)

Different disturbance signals have to be considered to obtain equivalent metrics in the time domain. The first
disturbance signal vd1(t) is a random noise Rnd(t) with a sample frequency Fs in Hz and a second-order filter with a
cutoff frequency Fc in Hz such as:

vd1(t) = Rnd(t) ∗ L−1{
(

2πFc

s+ 2πFc

)2

} (4)

with L−1 the inverse Laplace transform and ∗ being the temporal convolution. The root mean square of the system
outputs, disturbed by this band-limited noise signal, represents the H2 norm in the time domain.
The second signal vd2(t) is a chirp with a sample frequency Fs starting from f0 to f1 in Hz at time tf in seconds, such
as:

vd2(t) = Vd2sin(ϕ(t)) (5)

f(t) =
1

2π

dϕ(t)

dt
= fo +

(f1 − f0)

tf
t (6)

with ϕ(t) the phase considering ϕ(0) = 0 and Vd2 ∈ R the constant amplitude. The maximum absolute value of the
system outputs, disturbed by this chirp signal, is representative of H∞ norm in the time domain. In the result section,
the metrics are used to compare controlled results.

2.2. Deep Reinforcement Learning Algorithm

Reinforcement Learning (RL) methods (Sutton and Barto (1992)) are Machine Learning approaches without any
database requirement. During the training, the algorithm learns on a defined environment with a trial-error process
by trying to improve a defined Reward R as displayed in Figure 2. The training is managed by an Agent who takes
as input, the States S from the environment and chooses the Actions Ac to run accordingly. As part of RL, Markov
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Decision process with policy based method defines the Agent with two NN, an Actor with a conditional function π
and it’s parameters Ac, S and θ and a Critic function V and it’s parameters S and ψ. The θ and ψ variables define
NN parameters.

Observation : S

Agent

Actor : π(Ac|S, θ) Critic : V (S, ϕ)

Environment

Reward : R Action : Ac

Fig. 2.—: Reinforcement Learning algorithm: scheme

Deep Reinforcement Learning strategy uses Neural Networks (NNs) in the Agent as a non-linear function to optimize
according to the reward definition. Made by assembling perceptrons (Rosenblatt (1958)), NNs are defined with layers
differentiated into three parts: the input layer with Ni ∈ N input neurons, the hidden layers with Nhu ∈ N hidden
neurons per layer and Nl ∈ N layers and the output layer with No ∈ N number of neurons. Figure 3 is a schematic
representation of a NN.
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Fig. 3.—: Neural Network schematic representation

Each layer l ∈ N is composed of independent neurons defined with a bias b(l) ∈ R and an activation function

f
(l)
a ∈ Rnl−1 −→ Rnl . The connection between neurons in one layer and another is determined by a weighting

parameter denoted as w(l) ∈ R. The output value a
(l)
nl ∈ R of the neuron nl ∈ N in the layer l is computed such as:

(7)
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A(l) = f (l)a (W(l)A(l−1) +B(l)) (8)

with A(l) ∈ Rnl the output vector of the layer l, nl ∈ N the number of neurons in the layer l, W(l) ∈ Rnl×nl−1

the weight matrix between the layers l − 1 and l, B(l) ∈ Rnl the bias vector of the layer l. The NN parameters
to adjust in the training process are the bias and the weights of each layer. The Trust Region Policy Optimization
(TRPO) (Schulman et al. (2015)) is used to train these Neural Networks. The agent defines the action to run on the
environment according to a policy and a model based on the environment. The policy is stored in a NN named the
Actor π. It indicates which actions A to run on the environment according to the observations S, such as:

(9)π(A|S, θ) =
{
Ui={1:No

2 } = µ = tanh(a
(Nl+1)
i )

Ui={No
2 +1:No} = σ = tanh(ln(1 + exp(a

(Nl+1)
i )))

With θ the Actor’s NN weights and bias, µ the mean and σ the standard deviation of the Gaussian probability
distribution for each continuous action.
This model-based method builds a representation of the environment with a NN named the Critic V . It gives an
estimation of an expected reward RV ∈ R according to the observations S from the environment, such as:

V (S, ψ) = RV (10)

with ψ the critic’s NN weights and bias. For both Critic and Actor NNs, a ReLU (Fukushima (1969)) function fa is
chosen for neurons activation function, such as:

fa(y) =

{
y y ≥ 0
0 y < 0 , y ∈ R (11)

Main outlines of the TRPO algorithm updating process of ψ and θ are described in Algorithm 1:

Algorithm 1 TRPO Algorithm

Require: N ≥ 0; Rmax ▷ End training conditions
while t ≤ N do or Rt ≤ Rmax

Ac ← 0 ▷ Initial Action
S0 ← Env(Ac) ▷ Get Environment State
RV ← V (S0, ψ) ▷ Compute Critic output
Ac ← π(Ac|S0, θ) ▷ Compute Actor output
R← Env(Ac) ▷ Get Environment Reward
θnew ← min(Lossπ(θ)) ▷ Minimize Critic Loss
ψnew ← min(LossV (ψ)) ▷ Minimize Actor Loss
θ ← θnew ▷ Update Critic parameters
ψ ← ψnew ▷ Update Actor parameters
t← t+ 1

end while
Ac ← Actor(S0) ▷ Get end training Action

The agent’s training is defined by two constraints: N ∈ N , specifying the maximum number of episodes, and
Rmax ∈ R indicating the maximum reward target to be achieved. An Episode starts with the environment’s initial
state S0 = Env(Ac) defined here such as Ac = 0. The Critic estimates the expected reward RV based on this initial
state and the Actor chooses an Action Ac. The action is applied to the environment and Reward R can be computed to
update θ and ψ parameters with Critic and Actor loss functions minimization using a line search algorithm (Nocedal
and Wright (1999)) such as:

LossV (ψ) = (R+ γV (S, ψ)− V (S, ψ))2 (12)

(13)Lossπ(θ) = −π(A|S, θnew)
π(A|S, θ) (R+ γV (S, ψ)) + w

1

2

P∑
k=1

ln(2π. exp(1).σ2
k)

with P = NO/2 ∈ N the number of output actions, w ∈ R the Enthropy Loss Weigth, γ ∈ R the Discount Factor,
σk ∈ R the standard deviation of the Gaussian probability distribution for each continuous action k ∈ N and exp()
the exponential function.
This method adjusts NNs according to the case of vibration mitigation considering continuous actions cases. It is
not necessary to define all possible actions, only the boundaries between the maximum and minimum values, which
allows for a large number of output actions without enumerating all the combinations. This results in smaller NNs,
reducing the necessary training time. Other policy gradient methods could also be used in this application case but
TRPO is chosen for its robustness. Although it requires more computation than its simplified version Proximal Policy
Optimization (PPO) (Schulman et al. (2017)), TRPO updates its policy within a trust region close to the current, thus
avoiding drops in performance in most cases. DRL Observation, Action and Reward needs to be defined according to
the vibration mitigation objective on the smart structure. This paper explores into the design of DRL components
according to this application.
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3. EXPERIMENTAL SETUP

This section first presents the setup used to perform the experimental implementation of the previously described
methodology. Since the DRL training process needs multiple interactions with the environment, a model of the
structure response is created to reduce the training time for the control optimization. Then, DRL elements are defined
in order to tune a pseudo lead-lag controller that minimizes the vibrations of the selected smart cantilever beam.

3.1. Setup Definition

The experimental setup is a cantilever beam with two collocated piezoelectric patches close to the clamped end as
displayed in Figure 4. The beam has length Lb, width Wb, and thickness Tb. The two collocated piezoelectric elements
are attached to the beam at a distance Dp from the supported end. The piezoelectric transducers dimensions are
length Lp, width Wp, and thickness Tp. All dimensions are summarized in Table.1.

Ԧ𝑥
Ԧ𝑦

Ԧ𝑧

𝑇𝑏

Fig. 4.—: Experimental beam with reference dimensions

TABLE 1: Experimental setup Dimensions

Dimensions Materials

Name Value Unit
Lb 150 [mm]

Beam Wb 52 [mm] Aluminium
Tb 3 [mm]
Dp 3 [mm]
Lp 50 [mm]

Piezoelectric Wp 50 [mm] Pz26
Patch Tp 1 [mm]

One piezoelectric transducer is set as an actuator with v as the input signal and the other as a sensor monitoring
an image of the beam bending curvature x1. A laser is used to monitor the displacement of the free beam end x2. All
devices used to run the experiment are described in Figure 5 and all the hardware information are given in appendix
A 8.

3.2. Experimental Model

The DRL algorithm has to be trained by multiple interactions with the environment to be confident in the parameter
tuning of the control law according to the Reward definition. An episode run on the experimental setup is achieved in
1 minute, while it takes only 1 second with the model. Furthermore, tuning parameters that lead to instabilities do
not need to be tested on the real structure.
The experimental model is built from the measurements. A band-limited white noise v(t) defined in Equation 4 is
used as an input for the identification process and is applied to the actuator transducer with a noise power equal to
0.1, a sampling frequency Fs = 10 kHz, and a second order filter considering a cut-off frequency Fc = 1000 Hz.
The measured signals x1 and x2 allow the identification of two Single Input Single Output (SISO) systems G1 and G2

defined by the following transfer functions: [
X1(s)

X2(s)

]
=

[
G1(s)

G2(s)

]
V (s) (14)
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Fig. 6.—: (blue line) Bode diagram with transfert function estimated from measurements and (red line) the identified
model between 0-31400 [rad/sec]: (6a) G1 and (6b) G2 with (6c-6d) their corresponding spectral coherence

With X1(s), X2(s) and V (s) the Laplace transform of x1, x2 and v respectively.

To build the experimental model from the measured frequency response functions, poles and zeros estimation is
chosen, such as:

Gi={1;2}(s) =
κ

sn0

Πnz
iz=1(1− z−1

iz
s)

Π
np

ip=1(1− p−1
ip
s)

(15)

with κ ∈ R a constant gain, n0 ∈ Z is the number of null poles (integrator if n0 > 0, derivative if n0 < 0), zi ∈ C
zeros and pi ∈ C poles of the system, nz ∈ N the number of zeros and np ∈ N the number of poles, Gi must be proper
(np + no ≥ nz).

The numerical transfer function for G1 includes 12 poles and 10 zeros, while that for G2 includes 7 poles and 6 zeros,
covering a frequency range of 10 to 5000 Hz. It is important to consider the spillover effect for higher frequencies, even
if the input disturbance is below 1000 Hz. The transfer functions obtained from experimental measurements and the
identified model are shown in Figures 6a and 6b. Within this frequency range, the piezoelectric sensor can observe
four modes, but the laser can only detect two.
The spectral coherence between the two piezoelectric transducers, as shown in Figure 6c, is close to one within the

desired frequency bandwidth. Between the piezoelectric actuator and the laser, the spectral coherence shown in Figure
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6d is high only at frequencies close to the natural frequencies of the beam. A pair of zeros is added at 660 Hz to fit
the experimental case even if it cannot be clearly identified on the measured frequency response function due to noise
and laser sensitivity. To reduce this noise, the input power of the disturbance has been increased until saturation due
to the acquisition system voltage limitations.
To ensure the model fits the experimental setup, the output signals of the model and the experiment need to be as

close as possible. Figure 7 displays the time signals from the sensors in the case of band-limited white noise disturbance,
with identical inputs for both the experiment and the identified system.
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Fig. 7.—: Time measurements (blue line) from the experimental setup and (red dashed line) identified model during
25 sec and between seconds 4.5 and 4.6: piezoelectric (7a-7c) and laser (7b-7d) sensors

The normalized RMS error between the model output and the experimental structure is 0.11 for x1 and 0.28 for x2.
This difference is due to measurements and transfer function estimations but it is negligible for the purpose of this
work. Therefore, it can be concluded that the model response tendency fits the experimental behavior.

3.3. Reference control law tuning

The control objective is to minimize the free-beam end vibrations x2 with two approaches, considering band limited
noise vd1 (Fs = 10000Hz and Fc = 1000Hz) or chirp vd2 (f0 = 10Hz to f1 = 5000Hz tf = 30sec) disturbance in order
to compared with H2 and H∞ norm minimization. The feedback control is implemented between the two piezoelectric
elements of the beam.
To improve stability and damping on the structure, the chosen control law C(s) is a first order pseudo lead-lag
compensator with three parameters to tune, such as:

C(s) = Kc
s− z0
s− p0

(16)

with Kc ∈ R the gain, z0 ∈ R and p0 ∈ R the pseudo lead-lag values. The objective of this control law is to minimize
the vibrations at the free-beam end x2, by using the pseudo lead compensator to increase the stability and the lag to
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reduce the steady state error. To do so, the three parameters of the control law need to be properly tuned.

3.4. DRL for control vibration

The presented pseudo lead-lag control law (16) is now tuned using the DRL algorithm and a TRPO optimization
method for NN training. To apply the DRL method to a vibration control problem, interactions between the algorithm
and environment, driven by Observations, Actions, and Rewards, must be defined.
The environment is defined by the transfer functions G1 and G2, estimated from the experimental setup. The agent

only requires a single interaction with the environment before adjusting its policy by updating both the Critic and the
Actor neural networks, given the consistent nature of the structural properties that remain unchanged over time and
across episodes. The control law applied to the system is also considered part of the environment and its parameters
are the actions chosen by the Actor.
Constraining Action boundaries to the Actor helps to decrease the NN training time since it has to search for a value

within a bounded domain. The pseudo lead and the lag coefficients boundaries are defined according to the sample
frequency Fs of the signal and the Shannon criterion, such as z0 ∈ [−Fsπ;Fsπ] and p0 ∈ [−Fsπ;Fsπ]. The controller
gain Kc boundaries are chosen in close proximity to the system’s stability region, which can be determined through
root locus computation. Stability is ensured when the real part of the poles is negative. As an example, Figure 8
displays the root locus of the closed-loop transfer function model Gc,1 between the piezoelectric actuator and sensor
with a pseudo lead-lag controller, where z0 = 0 and p0 = 6280, based on the identified poles and zeros. To compare
with the experiment, poles and zeros are identified from measurements using the same controller and Kc variations
from Kcmin

= −0.04 to Kcmax
= 0.5.
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Fig. 8.—: Root locus from identified controlled model G1C(s) open loop with (8a) z0 = 0 and p0 = 6280 and (8b) a
zoom around the two first poles and (×) poles estimated from measurement on the experimental setup when control
is on for different values of Kc from (× dark red) Kcmin

= −0.04 to (× dark blue) Kcmax
= 0.5

With these z0 and p0 pseudo lead-lag parameters, stability is guaranteed for Kc < 0.6. However, experimental
measurements show that the system becomes unstable when Kc > 0.5. The model overestimates the range of Kc

values that lead to a stable system. Additionally, it does not consider instability coming from the second pole and
creates a fictive zero with a negative real part in the high frequencies above the range of interest. Considering different
pseudo lead-lag controllers, the system instability occurs for different values of Kc. In order to include all gains leading
to a stable system, the pseudo lead-lag boundaries are set with Kc ∈ [−1; 1].
The sensors on the defined system provide time data observations from the environment. In the context of vibration

mitigation, it is not necessary to forecast time data because using each time value of the signal will not accurately
represent the system’s overall behavior. Optimization of the system will not occur at each time step. Alternatively,
significant metrics can be employed to define environmental observations, such as the root mean square (RMS) of the
system’s output values when the disturbance signal is vd1, such as:[

S1

S2

]
vd1

=

[
rms(x1)

rms(x2)

]
(17)
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Considering the chirp disturbance signal vd2 as input, the maximum of the system’s output time values are used as
Observations: [

S1

S2

]
vd2

=

[
max(|x1|)
max(|x2|)

]
(18)

These metrics allow to reduce the amount of data input into the agent without losing the meaning of the information
on state of the vibrating system. They correpond to H2 and H∞ norms.

The objective of vibration mitigation is given to the DRL algorithm through a definition of the Reward function.
DRL algorithm adapts its policy in order to increase a numerical Reward which is computed based on the environment
behavior after applying the chosen control parameters. For vibration minimization, rewards are defined according to
the two cases studied. Considering the input disturbance vd1, reward R1 ∈ R inspired by the H2 norm definition in
the time domain is defined such as:

R1 = 20× log10

(
rms(x2off (t))

rms(x2on(t))
+
rms(x1off (t))

rms(x1on(t))

)
(19)

with [x1off ;x2off ] output time signals when the system is not controlled and [x1on;x2on] output time signals when
the system is controlled.
Based on H∞ norm definition in the time domain, with the chirp input disturbance vd2, Reward R2 ∈ R is defined

as:

R2 = 20× log10

(
max(|x2off (t)|)
max(|x2on(t)|)

+
max(|x1off (t)|)
max(|x1on(t)|)

)
(20)

To fit the experimental setup, two conditions are added to the previous Rewards. The first condition constrains the
piezoelectric sensor to an output voltage between −10V and 10V according to the constraint of the acquisition system.
The second condition is a restriction on the gain margin which must be less than 5dB. For all of these cases, Rewards
are set to R1,2 = −1 if the aforementioned conditions are not satisfied. Figure 9 shows the variation of R1 and R2

with the gain Kc for different values of (z0,p0) tested on the model and a time signal lasting 30 seconds for vd1 and 60
seconds for vd2.
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Fig. 9.—: (green line) Reward R1 and (orange line) R2 variations with Kc for different pseudo lead-lag filter z0 and
p0 combinations : (×) z0 = 6280, p0 = −6280; (+) z0 = −31400, p0 = −6280; (△) z0 = 31400, p0 = −12560 and (∗)
z0 = −6280, p0 = −21980 tested on the model

Figure 9 reveals the instability of the system when the reward begins to decrease. As the system approaches
instability, x1 progressively increases with Kc until it diverges. The Reward definitions introduce knowledge of control
instability to the Reinforcement Learning algorithm by using a penalty value. The curves of R2 are less smooth than
those of R1. This phenomenon is a result of the reward definition that considers the maximum amplitudes of the
time signals and the velocity of the chirps. If the chirp velocity is different, the change in slope will occur at different
values of Kc. The energy is concentrated on each frequency contained in the chirp signal, and the movement toward
instability could affect other frequencies that are not excited. This effect is observed when the system is truly unstable.
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Now that interactions between environment and algorithm have been defined within the specific frame of vibration
mitigation through Observation metrics choice, Action range limitations, and Reward function definitions, the next
section presents the final experimental results.

4. RESULTS

In the following section, the control law tuning is performed by training DRL agents with the two defined disturbance
signals vd1 and vd2. Besides, parametric minimization based on H2 and H∞ norms are run as references to tune
controllers. Finally, both approaches are compared in terms of controller performances.

4.1. Parametric norm minimization

A parametric approach is performed on the model, running through a range of potential values for the control
parameters Kc, z0, and p0 within predefined boundaries, with the objective of minimizing the H2 and H∞ norm on
Gc,1 and Gc,2. Parametric estimation allows to cover all possible solution domains to identify the irregularities and
instabilities of the system. The controller parameters tuned and presented in Tables 3 and 4 are used as references for
comparison with the DRL tuning method.

4.2. Deep Reinforcement Learning Training

The Critic and Actor NNs dimensions used for this case are specified in Table 2. The dimensions of the NNs have
been manually adjusted and will be justified in the discussion section. Appendix B 9 presents all the hyperparameters
of the TRPO training.

TABLE 2: Actor and Critic Neural Network definition

Number of Neurons

Layer Name Actor Critic
Input Ni 2 2

Hidden Layer 1 Nhu 25 25
Hidden Layer 2 Nhu 25 25
Hidden Layer 3 Nhu 25 25
Hidden Layer 4 Nhu 25 25

Output No 2 1

To ensure consistency of the method, 10 Agents are trained on the model for the two disturbance cases. Each Agent
is initialized with random weights and bias for the input and hidden layers. The TRPO NN optimization method
requires starting within a trust region when the structure is stable. One known stable solution is the passive system
(Kc = 0). To guarantee this constraint, the Actor NN outputs are initialized with output layers weights and bias set
to zero.

Algorithms run until convergence of all agents is guaranteed to be close to the maximum reward. Figures 10 and
11 show the average reward variation through Episodes. For comparison, two indicative rewards are added to the
figures: the reward for the uncontrolled structure and the reward for the structure with the reference controller tuned
using parametric norm minimization. The figures show an overall tendency for rewards to increase with episodes,
starting from a reward close to the uncontrolled case and moving above the referenced control case. Due to the reward
definition, the NN initialization and a part of randomness in the NN training process, the final maximum Reward
reached after at the end of the training can vary. Also, the training progress is not exactly the same for all the Actors.
Considering the disturbance case with vd1, downward variations can be observed during the training.
These variations can be explained by two main causes. First, little variations of the control parameters can turn the

system from stable to unstable due to the reward definition or proximity to the unstable zone with loss of damping.
Second, over-fitting in the training can occur since the maximum reward has already been reached and every other
tuning can only lead to lower rewards. This over-fitting hypothesis is justified since the average reward stops increasing
after 10000 episodes. Regarding the chirp disturbance vd2, the average reward tendency is linear after 2000 Episodes
and there are fewer downward variations. As shown in Figure 9, the training reaches a maximum expected reward of
approximately 20.
Table 3 and 4 show the DRL control law tuning after 20000 and 30000 Episodes respectively. Table 3 shows that
all 10 training sessions lead to a reward above the parametric one. However, two of the sessions (Training number 7
and 10) led to a different controller design and a lower reward compared to the others. This phenomenon highlights
a limitation of the DRL method as it may only reach a local maximum. This limitation is also evident in table 4 for
training number 1. In this case, the reward range at the end of the DRL training is closer to the reward corresponding
to the parametric controller applied to the structure. Based on the reward definition, DRL tuning yields better
performance on average than parametric norm minimization tuning for the two tested input signal disturbances on
the modeled beam. In the next section, the mitigation performance of the tuned controllers will be examined.
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TABLE 3: Training Results after 20000 Episodes and control law values and performances on model: vd1 case.

Tuning Method R1 RV 1 |R1 −RV 1| Kcopt z0opt p0opt RMS(x1) RMS(x2) ∥Gc,1∥2 ∥Gc,2∥2
Control off 6.02 - - 0 0 0 1.9626 0.0306 4.21 0.0346

Parametric
min(∥H∥2) 10.59 - - 0.16 6280 -9425 1.89 0.0130 3.01 0.0142

Training DRL
1 11.46 11.31 0.15 0.21 5255 -6231 1.52 0.0125 2.63 0.0138
2 11.49 10.96 0.53 0.23 5332 -6257 1.55 0.0123 2.69 0.0135
3 11.41 11.14 0.28 0.27 5004 -5902 1.66 0.0121 2.85 0.0134
4 11.46 10.89 0.57 0.26 5266 -6232 1.61 0.0122 2.78 0.0134
5 11.50 11.34 0.15 0.25 5202 -6118 1.58 0.0122 2.76 0.0134
6 11.50 11.36 0.14 0.23 5269 -6237 1.55 0.0123 2.68 0.0136
7 11.20 11.21 0.01 0.07 7488 -2580 1.62 0.0127 2.91 0.0140
8 11.50 11.49 0.01 0.24 4960 -5852 1.59 0.0121 2.76 0.0135
9 11.51 11.02 0.49 0.23 5106 -6019 1.56 0.0122 2.70 0.0135
10 11.23 11.22 0.01 0.10 6345 -3407 1.63 0.0125 2.83 0.0139

Mean 11.43 11.19 0.23 0.21 5523 -5484 1.59 0.0123 2.76 0.0136
Std 0.11 0.18 0.21 0.06 751 1266 0.04 0.0002 0.08 0.0002
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Fig. 10.—: Training on model with disturbance vd1: (dark blue) Mean Reward over all training, (light blue) the
corresponding standard deviation area at each Episode Step, (green - -) the equivalent reward when the control is off
and (red .-) the equivalent reward with H2 norm minimisation controller parameters.
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TABLE 4: Training Results after 30000 Episodes and control law values and performances on model: vd2 case.

Tuning Method R2 RV 2 |R1 −RV 1| Kcopt z0opt p0opt MAX(x1) MAX(x2) ∥Gc,1∥∞ ∥Gc,2∥∞
Control off 6.02 - - 0 0 0 6.7258 0.1193 43.10 0.999

Parametric
min(∥H∥∞) 20.35 - - 0.270 6280 -6280 2.5796 0.0153 16.46 0.0757

Training DRL
1 20.34 20.23 0.11 0.18 11602 -9422 1.54 0.020 7.72 0.096
2 20.50 20.41 0.08 0.19 10263 -9663 1.39 0.021 6.97 0.101
3 20.51 19.58 0.92 0.20 9997 -9579 1.41 0.020 7.08 0.101
4 20.49 18.94 1.55 0.20 10159 -9608 1.42 0.020 7.12 0.101
5 20.50 19.35 1.14 0.20 10213 -9684 1.40 0.021 6.99 0.103
6 20.50 20.46 0.04 0.20 10049 -9498 1.42 0.020 7.13 0.101
7 20.50 19.38 1.12 0.20 10003 -9592 1.44 0.020 7.19 0.100
8 20.49 20.51 0.02 0.20 10291 -9682 1.40 0.021 7.02 0.103
9 20.40 19.28 1.12 0.20 10809 -9802 1.58 0.019 7.89 0.094
10 20.39 19.27 1.12 0.20 10709 -9702 1.57 0.020 7.67 0.092

Mean 20.46 19.74 0.72 0.20 10420 -9633 1.46 0.020 7.30 0.099
Std 0.06 0.56 0.56 0.007 484 115 0.07 0.0005 0.36 0.003
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Fig. 11.—: Training on model with chirp disturbance vd2: (dark blue) Mean Reward over all training, (light blue) the
corresponding standard deviation area at each Episode Step, (green - -) the equivalent reward when the control is off
and (red .-) the equivalent reward with H∞ norm minimisation controller parameters.



14

4.3. Control performances

The model and experimental structure were subjected to previously tuned controllers to assess their effectiveness
in reducing vibration, using significant metrics. An indicative reward was computed from the measured data. The
performances of each DRL-tuned controller were compared with the control off and the parametric-tuned controller
in Tables 5 and 6. performance of the controller on the model is presented in Tables 3 and 4.
The DRL and parametric methods give different controller tunings, both of which significantly reduce vibration.

Mean values are given to highlight the consistency in terms of control performance given by the DRL tuning method,
proving its reliability and consistency.
Figures 12 and 13 show the effect of the controllers on the frequency response of the modeled and experimental

system. These figures show differences between the modeled behavior of the controller and the experimental response
of the system, especially at high frequencies.
Considering the vd1 disturbance for all DRL tuned controllers, the vibration damping performances in the time

domain are very close as observed for rms(x1) and rms(x2). They give better damping than parametric tuning for
both model and experiment. Within the frequency domain, the differences are more visible. All natural frequencies of
the system are damped with all tuned controllers. The difference in controller tuning may be due to the parametric
definition of the set of sampled values used for norm minimization. Therefore, multiple controllers lead to close
vibration reduction performances and DRL tuned controllers are more effective than the parametric controller for
both model and experimental.
For a chirp vd2 disturbance, the DRL tuned controller gives better attenuation than the parametric tuned controller

on the model but not on the experiment. In fact, max(x1) and max(x2) are lower on the model for the DRL tuned
controller compared to the parametric tuned controller, and the contrary occurs on the experimental measurements.
These differences are explained by the model underestimating the effect of high frequencies and the static gain of
the experimental structure. Also, the reward at the end of DRL training is close to the parametric tuned controller.
This explains why the damping performances of the two tuned controllers are close. Nevertheless, the DRL-tuned
controllers show a significant reduction in structural vibrations. The tuned controllers for Case 1 and Case 2 are not
the same. This proves the efficiency of the method to tune a controller adapted to different input disturbances.
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TABLE 5: Case 1: Pseudo Lead-Lag Control Law values and performances measured on the experimental setup

Tuning Method Tuned Values Time Metric Norm Experimental
Reward

Case 1: Noise vd1 Kc z0 p0 RMS(x1) RMS(x2) ∥Gc,1∥2 ∥Gc,2∥2 R1
None 0 - - 1.9400 0.0393 874.3132 8.7597 6.0206
∥H∥2 0.160 6280 -9425 1.6436 0.0234 568.4795 4.5092 9.1268
DRL 1 0.21 5255 -6231 1.38 0.017 540 3.59 11.33
DRL 2 0.23 5332 -6257 1.42 0.017 554 3.49 11.22
DRL 3 0.27 5004 -5902 1.48 0.017 579 3.32 11.25
DRL 4 0.26 5266 -6232 1.48 0.017 584 3.35 11.15
DRL 5 0.25 5202 -6118 1.45 0.017 569 3.36 11.14
DRL 6 0.23 5269 -6237 1.42 0.021 553 3.48 10.19
DRL 7 0.07 7488 -2580 1.46 0.018 587 3.41 10.98
DRL 8 0.24 4960 -5852 1.41 0.018 552 3.37 11.11
DRL 9 0.23 5106 -6019 1.41 0.019 549 3.42 10.86
DRL 10 0.10 6345 -3407 1.42 0.019 556 3.46 10.87
DRL Mean 0.21 5523 -5484 1.43 0.018 562 3.43 11.01
DRL Std 0.06 751 1266 0.03 0.001 16 0.08 0.33
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Fig. 12.—: Case vd1: (green - -) system passive response (red .-) system controlled response with parametric H2 norm
minimisation and (dark blue) mean and (light blue) standard deviation over all responses of the system controlled
response with DRL tuned controller: model Fig.12a and experiment Fig.12c Gc,1 bode diagram and model Fig.12b
and experiment Fig.12d Gc,2 bode diagram.
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TABLE 6: Case 2: Pseudo Lead-Lag Control Law values and performances measured on the experimental setup

Tuning Method Tuned Values Time Metric Norm Experimental
Reward

Case 2: Chirp vd2 Kc z0 p0 MAX(x1) MAX(x2) ∥Gc,1∥∞ ∥Gc,2∥∞ R2

None 0 - - 7.25 0.067 42.42 1.13 6.02
∥H|inf 0.27 6280 -6280 2.23 0.043 9.10 0.10 13.62
DRL 1 0.18 11602 -9422 3.30 0.043 11.46 0.14 11.49
DRL 2 0.19 10263 -9663 3.74 0.057 13.11 0.14 9.88
DRL 3 0.20 9997 -9579 4.41 0.040 15.62 0.14 10.43
DRL 4 0.20 10159 -9608 4.67 0.047 16.71 0.13 9.50
DRL 5 0.20 10213 -9684 5.01 0.058 18.06 0.13 8.27
DRL 6 0.20 10049 -9498 4.25 0.069 14.98 0.14 8.57
DRL 7 0.20 10003 -9592 4.47 0.065 15.86 0.13 8.46
DRL 8 0.20 10291 -9682 5.12 0.062 18.62 0.13 7.95
DRL 9 0.20 10809 -9802 5.94 0.053 24.25 0.13 7.94
DRL 10 0.20 10709 -9702 5.54 0.057 21.07 0.13 7.93
DRL Mean 0.20 10420 -9633 4.65 0.055 16.97 0.13 9.04
DRL Sdt 0.01 484 115 0.80 0.01 3.74 0.01 1.23
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Fig. 13.—: Case vd2: (green - -) system passive response (red .-) system controlled response with parametric H∞ norm
minimisation and (dark blue) mean and (light blue) standard deviation over all responses of the system controlled
response with DRL tuned controller: model Fig.13a and experiment Fig.13c Gc,1 bode diagram and model Fig.13b
and experiment Fig.13d Gc,2 bode diagram.
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5. DISCUSSION

Using a Deep Reinforcement Learning algorithm to tune a control law requires expertise in both Machine Learning
and vibration control domains. This section discusses the implementation, usage, and performance of the method for
vibration mitigation.
Reinforcement Learning algorithms require a lot of computations with a trial-error process to train Neural Networks.

For experimental vibration control applications, these multiple tests are time-consuming considering the acquisition
time and the NNs updating process. Moreover, poorly designed and unmastered neural networks can result in closed-
loop instability and electrical issues, requiring human intervention to shut down the system. To ensure the efficiency
of a DRL-tuned controller, it is more convenient to use an experimental model for running multiple trainings on a
powerful hardware computation unit. The model must be as close as possible to the experiment.
The dimensions of Agent Neural Networks must be set according to the problem being solved. Overestimating the

NNs dimension can result in null weights and biases, redundant neurons, and increased computation time to update
all parameters. Underestimating the dimensions of the neural networks can cause them to struggle to learn properly
due to limited memory capacity, increasing the risk of never converging. Researchers are attempting to address this
issue by studying how neural networks learn through episodes (Jaunet et al. (2020)) and how their design impacts this
process (Friedland et al. (2018)) considering the influence of the activation function, the number of layers, the number
of neurons per layer, the input metrics and the training parameters.
Observations, actions, and rewards define the links between the environment and agent. Meaningful metrics should

be used to define observations and actions according to the vibration mitigation objective. It is recommended to
normalize the data inputs and outputs when the minimum and maximum values are known to prevent neural network
divergence. In this experiment on controlling vibrations, we can estimate action limitations based on system stability.
This reduces the domain of parameter exploration and increases training speed.
Depending on the initialization of the neural network, divergence during the training process may occur. Applying

the same algorithm can result in diverse outcomes after an equivalent number of training iterations. This highlights
the impact of randomness on both computation time and achieved results. The randomness of the training process is
determined by the numerical seed. It is recommended to train multiple neural networks in case of random initialization
and to continue training until the highest reward is achieved. When using TRPO, it is mandatory to initialize the
neural network with a stable solution for the closed-loop since the algorithm searches for a solution by expanding the
search space around a starting point, which is known as stable.
The hyperparameters of the algorithm govern the training process. For example, increasing the weight of entropy

loss will promote exploration and can avoid staying at local minima. The best tuning for these parameters may
change according to the environment, but using the default parameters will fit in many cases. For this cantilever beam
experiment, only one interaction with the environment per episode is necessary before updating the Agent parameters
according to the Reward. The environment definition remains constant throughout the experiment.
At the end of the training, the DRL method will find a solution, but there is no guarantee that it will reach the

optimal solution. It can converge to a local minimum because of overfitting or because the agent needs more episodes
to learn. Although this is not the case in this experiment, the end of the training process can be defined by a minimum
reward value to reach according to a control performance metric. In this context, the objective is not to find the
optimal tuning for a controller, but rather to allow for a trade-off between computation time and control performance.
Utilizing DRL to tune a controller enables the creation of an efficient and automatically tuned controller.
The DRL relies on reward definitions to fine-tune the controller. The tuned controllers are not identical because

of the reward and the input disturbance signal definition. H∞ norm is more robust by considering all frequencies
minimization. Since the maximum magnitude frequency changes according to the control parameters, the tuned
controller has larger stability margins than the H2 norm based method. For both disturbances applied to the structure,
the tuned control laws present zeros with positive real parts but do not lead to closed-loop instabilities. The use of
zeros in the closed-loop transfer function ensures a phase close to 90 at the system’s first natural frequency. The tuned
controllers tend to soften the system at low frequencies by decreasing the static stiffness. This critical point must be
considered to avoid system instability.

6. CONCLUSION

As a first step, the DRL approach successfully tunes a three-parameter control law for vibration reduction on an
experimental smart cantilever beam. Two input disturbance signals, namely noise vd1 and chirp vd2 are used to train
the DRL algorithm, leading to different controllers. The DRL tuned controllers are adapted to the input disturbance
signals and ensure efficient vibration reduction. When compared to a parametric controller tuning approach that uses
norm minimization, the DRL method’s efficiency is proven in both disturbance cases.

The training process for DRL can be time-consuming and computationally expensive, depending on the system’s
complexity. DRL guarantees to find a solution, but it may only reach a local maximum. The definitions of the DRL
elements (environment, observation, reward and action) must be properly defined according to the mitigation objec-
tive. In this article, the environment consists of the smart cantilever beam controlled by a pseudo lead-lag controller
whose parameters define the DRL actions. Observations are defined by the RMS or maximum temporal response of
the structure in coherence with the input disturbance definition. The reward definition is designed to balance between
control performance and structure stability.
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The experimental setup was modeled to enable multiple tests to be conducted in a short period of time and to fine-
tune algorithm and neural network hyper-parameters. By using the model, the DRL algorithm was able to produce
the results presented in this article in just a few hours, whereas running the algorithm on the actual experiment would
have taken weeks. It is important to note that the model used must closely match the experimental system to ensure
efficient tuning of the controller.

Further research is needed to investigate the robustness of DRL to environmental changes. Additionally, DRL should
also be tested in more complex systems that include varying states, multiple piezoelectric transducers in a network,
and distributive control laws to tune.
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8. APPENDIX A: EXPERIMENTAL DEVICES REFERENCES

Table 7 references all devices used for this experiment.

TABLE 7: Experimental Devices

Device Brand Reference Sensitivity Measuring Range

Laser Micro-Epsilon LD1607-2 10V/mm 2mm
Acquisition System DSPACE DS1104 - +/-10V

HMI DSPACE ControlDesk 7.6 - -
Conditionner Amplifier BK Type 2626 1pC/V -

9. APPENDIX B: EXPERIMENTAL ALGORITHM PARAMETERS

Table 8 resumes the algorithm parameters set during the training. In this study, the agent only interacted once with
the environment before changing the policy.

TABLE 8: Algorithm Characteristics

Name Symbol Value

Experience Horizon N 1
Mini Batch Size M 1

Entropy Loss Weigth w 0.01
Number of Epoch k 3

Average Estimate Method ”gae”
GAE Factor λ 0.95

Conjugate Gradient Damping δg 0.1
KL-Divergence Limit δ 0.01

Number Iteration Conjugate
Gradient

NCg 10

Number Iteration Line Search n 10
Conjugate Gradient Residual

Tolerance
Cgr 1e-8

Normalized Advantage
Method

”none”

Advantage Normalizing
Window

Na -

Learning Rate LR 0.01
Gradient Threshold Nth inf

Gradient Threshold Method ”l2norm”
L2RegularizationFactor l2 1e-4
Training Algorithm ”adam”

Sample Time ts 1 (Event Base)
Dicount Factor γ 0.99
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S. N. Stupar, A. S. Petrović, and L. Wei, FME Transaction
42, 329 (2014).

M. Febvre, J. Rodriguez, S. Chesne, and M. Collet (2023) p.
V001T04A001.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction (Springer US, Boston, MA, 1992) pp. 1–3.

K. Fukushima, IEEE Transactions on Systems Science and
Cybernetics 5, 322 (1969).

J. Nocedal and S. J. Wright, eds., “Line search methods,” in
Numerical Optimization (Springer New York, New York, NY,
1999) pp. 34–63.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, ArXiv (2017), https://arxiv.org/abs/1707.06347.

T. Jaunet, R. Vuillemot, and C. Wolf, Computer Graphics
Forum 39, 49 (2020).

G. Friedland, M. M. Krell, and A. Metere, “A practical approach
to sizing neural networks,” (2018)

https://gallica.bnf.fr/ark:/12148/bpt6k2282p/f9.item.zoom
https://gallica.bnf.fr/ark:/12148/bpt6k2282p/f9.item.zoom
https://gallica.bnf.fr/ark:/12148/bpt6k348640/f568.item
https://gallica.bnf.fr/ark:/12148/bpt6k348640/f568.item
http://dx.doi.org/10.1115/1.4019264
http://dx.doi.org/10.1115/1.4019264
http://dx.doi.org/10.1177/1077546311406307
http://dx.doi.org/10.1177/1077546311406307
http://dx.doi.org/10.1088/0964-1726/22/11/115038
http://dx.doi.org/10.1088/0964-1726/22/11/115038
http://dx.doi.org/10.1109/PHYCON.2003.1236806
http://dx.doi.org/10.1109/PHYCON.2003.1236806
http://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2005.03.024
http://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2005.03.024
http://dx.doi.org/10.1177/1045389x9500600309
http://dx.doi.org/10.1177/1045389x9500600309
http://dx.doi.org/10.1109/9.29425
http://dx.doi.org/10.1109/9.29425
http://dx.doi.org/10.1115/1.4053358
http://dx.doi.org/10.1115/1.4053358
http://dx.doi.org/10.1002/stc.356
http://dx.doi.org/10.1002/stc.356
http://dx.doi.org/10.1006/jsvi.1996.0104
http://dx.doi.org/10.1006/jsvi.1996.0104
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1016/0094-5765(96)00053-7
http://dx.doi.org/10.1088/0964-1726/11/1/313
http://dx.doi.org/10.1177/0020294019866846
http://dx.doi.org/10.1177/0020294019866846
http://dx.doi.org/10.1109/72.392246
http://dx.doi.org/10.1088/0964-1726/6/2/007
http://dx.doi.org/10.1088/0964-1726/6/2/007
http://dx.doi.org/10.1155/2015/137068
http://dx.doi.org/10.1155/2015/137068
http://dx.doi.org/10.3917/res.211.0173
http://dx.doi.org/10.3917/res.211.0173
http://dx.doi.org/https://doi.org/10.1016/bs.adcom.2020.11.001
http://dx.doi.org/https://doi.org/10.1016/bs.adcom.2020.11.001
http://dx.doi.org/10.1145/3301273
http://dx.doi.org/10.1145/3301273
http://dx.doi.org/10.2514/6.2022-0966
http://dx.doi.org/10.2514/6.2022-0966
http://dx.doi.org/10.1038/s44172-024-00201-8
http://dx.doi.org/10.1038/s44172-024-00201-8
http://dx.doi.org/10.1016/j.ast.2021.107056
http://dx.doi.org/10.1016/j.ast.2021.107056
http://dx.doi.org/10.1002/stc.2298
http://dx.doi.org/DOI: 10.1111/mice.12920
http://dx.doi.org/DOI: 10.1111/mice.12920
http://dx.doi.org/https://doi.org/10.1016/j.compstruc.2023.107183
http://dx.doi.org/10.1109/mwc.013.2100652
http://dx.doi.org/10.1109/mwc.013.2100652
http://dx.doi.org/10.1007/978-3-319-72296-2_11
http://dx.doi.org/10.1007/978-3-319-72296-2_11
http://dx.doi.org/10.1177/1077546316661471
http://dx.doi.org/10.1177/1077546316661471
http://dx.doi.org/10.5937/fmet1404329j
http://dx.doi.org/10.5937/fmet1404329j
http://dx.doi.org/10.1007/978-1-4615-3618-5_1
http://dx.doi.org/10.1007/978-1-4615-3618-5_1
http://dx.doi.org/10.1109/tssc.1969.300225
http://dx.doi.org/10.1109/tssc.1969.300225
http://dx.doi.org/10.1007/0-387-22742-3_3
http://dx.doi.org/https://arxiv.org/abs/1707.06347
http://dx.doi.org/10.1111/cgf.13962
http://dx.doi.org/10.1111/cgf.13962
http://dx.doi.org/10.2172/1476219
http://dx.doi.org/10.2172/1476219

	Abstract
	Introduction
	Methodologies
	Control Strategy
	Deep Reinforcement Learning Algorithm

	Experimental Setup
	Setup Definition
	Experimental Model
	Reference control law tuning
	DRL for control vibration

	Results
	Parametric norm minimization
	Deep Reinforcement Learning Training
	Control performances

	Discussion
	Conclusion
	Acknowledgement
	Appendix A: Experimental Devices References 
	Appendix B: Experimental Algorithm Parameters 

