A vector almost-supermartingale convergence theorem and its applications - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

A vector almost-supermartingale convergence theorem and its applications

Résumé

The almost-supermartingale convergence theorem of Robbins and Siegmund (1971) is a fundamental tool for establishing the convergence of various stochastic iterative algorithms including system identification, adaptive control, and reinforcement learning. The theorem is stated for non-negative scalar valued stochastic processes. In this paper, we generalize the theorem to non-negative vector valued stochastic processes and provide two set of sufficient conditions for such processes to converge almost surely. We present several applications of vector almost-supermartingale convergence theorem, including convergence of autoregressive supermartingales, delayed supermartingales, and stochastic approximation with delayed updates.
Fichier principal
Vignette du fichier
Delayed_stochastic_approximation_supermartingale_VF.pdf (228.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04770089 , version 1 (06-11-2024)

Licence

Identifiants

  • HAL Id : hal-04770089 , version 1

Citer

Aditya Mahajan, Silviu-Iulian Niculescu, Mathukumalli Vidyasagar. A vector almost-supermartingale convergence theorem and its applications. CDC 2024 - Conference on Decision and Control, IEEE, Dec 2024, Milan, Italy. ⟨hal-04770089⟩
50 Consultations
0 Téléchargements

Partager

More