Investigating genotype by environment interaction for beef cattle fertility traits in commercial herds in northern Australia with multi-trait analysis - Archive ouverte HAL
Article Dans Une Revue Genetics Selection Evolution Année : 2024

Investigating genotype by environment interaction for beef cattle fertility traits in commercial herds in northern Australia with multi-trait analysis

James P. Copley
Connectez-vous pour contacter l'auteur
Benjamin J. Hayes
  • Fonction : Auteur
Elizabeth M. Ross
  • Fonction : Auteur
Shannon Speight
  • Fonction : Auteur
Geoffry Fordyce
  • Fonction : Auteur
Benjamin J. Wood
  • Fonction : Auteur
Bailey N. Engle
  • Fonction : Auteur

Résumé

AbstractBackgroundGenotype by environment interactions (GxE) affect a range of production traits in beef cattle. Quantifying the effect of GxE in commercial and multi-breed herds is challenging due to unknown genetic linkage between animals across environment levels. The primary aim of this study was to use multi-trait models to investigate GxE for three heifer fertility traits, corpus luteum (CL) presence, first pregnancy and second pregnancy, in a large tropical beef multibreed dataset (n = 21,037). Environmental levels were defined by two different descriptors, burden of heat load (temperature humidity index, THI) and nutritional availability (based on mean average daily gain for the herd, ADWG). To separate the effects of genetic linkage and real GxE across the environments, 1000 replicates of a simulated phenotype were generated by simulating QTL effects with no GxE onto real marker genotypes from the population, to determine the genetic correlations that could be expected across environments due to the existing genetic linkage only. Correlations from the real phenotypes were then compared to the empirical distribution under the null hypothesis from the simulated data. By adopting this approach, this study attempted to establish if low genetic correlations between environmental levels were due to GxE or insufficient genetic linkage between animals in each environmental level.ResultsThe correlations (being less than <0.8) for the real phenotypes were indicative of GxE for CL presence between ADWG environmental levels and in pregnancy traits. However, none of the correlations for CL presence or first pregnancy between ADWG levels were below the 5th percentile value for the empirical distribution under the null hypothesis from the simulated data. Only one statistically significant (P < 0.05) indication of GxE for first pregnancy was found between THI environmental levels, where rg = 0.28 and 5th percentile value = 0.29, and this result was marginal.ConclusionsOnly one case of statistically significant GxE for fertility traits was detected for first pregnancy between THI environmental levels 2 and 3. Other initial indications of GxE that were observed from the real phenotypes did not prove significant when compared to an empirical null distribution from simulated phenotypes. The lack of compelling evidence of GxE indicates that direct selection for fertility traits can be made accurately, using a single evaluation, regardless of environment.
Fichier principal
Vignette du fichier
12711_2024_Article_936.pdf (1.54 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04764355 , version 1 (04-11-2024)

Identifiants

Citer

James P. Copley, Benjamin J. Hayes, Elizabeth M. Ross, Shannon Speight, Geoffry Fordyce, et al.. Investigating genotype by environment interaction for beef cattle fertility traits in commercial herds in northern Australia with multi-trait analysis. Genetics Selection Evolution, 2024, 56 (1), pp.70. ⟨10.1186/s12711-024-00936-0⟩. ⟨hal-04764355⟩
2 Consultations
4 Téléchargements

Altmetric

Partager

More