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Investigating genotype by environment 
interaction for beef cattle fertility traits 
in commercial herds in northern Australia 
with multi‑trait analysis
James P. Copley1*   , Benjamin J. Hayes1, Elizabeth M. Ross1, Shannon Speight1,2, Geoffry Fordyce1, 
Benjamin J. Wood3 and Bailey N. Engle1,4 

Abstract 

Background  Genotype by environment interactions (GxE) affect a range of production traits in beef cattle. Quan-
tifying the effect of GxE in commercial and multi-breed herds is challenging due to unknown genetic linkage 
between animals across environment levels. The primary aim of this study was to use multi-trait models to investi-
gate GxE for three heifer fertility traits, corpus luteum (CL) presence, first pregnancy and second pregnancy, in a large 
tropical beef multibreed dataset (n = 21,037). Environmental levels were defined by two different descriptors, 
burden of heat load (temperature humidity index, THI) and nutritional availability (based on mean average daily 
gain for the herd, ADWG). To separate the effects of genetic linkage and real GxE across the environments, 1000 
replicates of a simulated phenotype were generated by simulating QTL effects with no GxE onto real marker geno-
types from the population, to determine the genetic correlations that could be expected across environments due 
to the existing genetic linkage only. Correlations from the real phenotypes were then compared to the empirical 
distribution under the null hypothesis from the simulated data. By adopting this approach, this study attempted 
to establish if low genetic correlations between environmental levels were due to GxE or insufficient genetic linkage 
between animals in each environmental level.

Results  The correlations (being less than <0.8) for the real phenotypes were indicative of GxE for CL presence 
between ADWG environmental levels and in pregnancy traits. However, none of the correlations for CL pres-
ence or first pregnancy between ADWG levels were below the 5th percentile value for the empirical distribution 
under the null hypothesis from the simulated data. Only one statistically significant (P < 0.05) indication of GxE for first 
pregnancy was found between THI environmental levels, where rg = 0.28 and 5th percentile value = 0.29, and this 
result was marginal.

Conclusions  Only one case of statistically significant GxE for fertility traits was detected for first pregnancy 
between THI environmental levels 2 and 3. Other initial indications of GxE that were observed from the real pheno-
types did not prove significant when compared to an empirical null distribution from simulated phenotypes. The lack 
of compelling evidence of GxE indicates that direct selection for fertility traits can be made accurately, using a single 
evaluation, regardless of environment.
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Background
Beef production in tropical pastoral systems, such as 
northern Australia, takes place in environments ranging 
from hot, dry and arid to those with very high rainfall and 
humidity. Given the diversity of environments in tropi-
cal pastoral systems, there is value investigating whether 
genotype by environment interaction (GxE) could be con-
sidered in genetic evaluations to improve the accuracy of 
selection in a target environment. In the presence of GxE, 
genotypes will respond to environmental variation differ-
ently [1–3]. GxE is important for all breeding objectives 
but particularly for fertility traits, as these traits are key 
drivers of profitability in tropical beef enterprises and are 
affected by heat and nutritional stress [4, 5]. If ignored it 
may decrease the accuracy of estimated breeding values, 
but when accounted for, GxE can be used positively as 
it provides a source of genetic variation [6, 7]. This can 
affect targeted selection in two ways: re-ranking and re-
scaling of breeding values across environments [2, 6, 8]. 
Re-scaling of breeding values from one environment to 
another means that while the estimates of genetic merit 
of individual animals may change, the overall ranking of 
animals is not affected [1, 3, 9]. Re-ranking occurs when 
the relative genetic merit of individuals changes from one 
environment to the other [3, 6]. The latter creates a prob-
lem for livestock production systems where stud breeders 
are supplying the commercial sectors. If stud bulls, for 
example, are selected under a vastly different environ-
ment compared to the commercial environment where 
they will be used, the progeny may be sub-optimal for 
that commercial environment. This would be particularly 
important where animals are spread over large geograph-
ical regions with very different environments.

A common method to estimate GxE is to consider the 
same trait measured in different environments as two 
different traits [3, 6, 10]. In this multi-trait approach, 
a low correlation (<0.8), between the same trait meas-
ured in two separate environments is indicative of GxE 
[3, 9]. Multi-trait models have been used successfully to 
examine GxE interaction in numerous studies [2, 10–16]. 
If the genetic correlation is <0.8, then it is beneficial to 
a breeding program to actually split selection according 
to environments, resulting in a faster rate of genetic gain 
[17]. However, GxE is often not considered when calcu-
lating breeding values, as it is challenging to detect and 
measure outside of carefully designed studies that often 
balance the progeny of sires across different environ-
ments [2, 6, 18]. GxE will often be estimated from data 
collected in small, intensively recorded herds where the 
inter-herd genetic linkage is known and understood 
from the pedigree [2, 8, 14, 19]. Sufficient linkage, where 
the same or closely related genotype is present in mul-
tiple environments, is critical to successfully conduct 

GxE investigations [20]. Calculating the genetic correla-
tion between environments with insufficient linkage will 
result in lower correlations (<0.8) and this can potentially 
overestimate the true GxE [3]. The lower genetic correla-
tion between environments in the multivariate approach 
can arise either from inadequate genetic linkage between 
environments, actual GxE between environments, or a 
combination of both.

The absence of reliable estimates for the magnitude of 
linkage between herds has limited the utility of the multi-
trait approach when applied to commercial beef datasets. 
In extensive Australian pastoral systems, it is quite nor-
mal for parentage or pedigree to be entirely unknown 
[5]. Using pedigree information to estimate GxE relies 
on the progeny of multiple sires being represented across 
the different environments. Using genomic information 
to estimate GxE is potentially a solution for situations 
where pedigree is unavailable and may have more power 
to detect GxE [7]. This is because the requirement in a 
genomic analysis is for chromosome segments or single 
nucleotide polymorphism (SNP) alleles to be replicated 
across environments, as opposed to progeny in a pedi-
gree analysis [3].

The primary objective of this study was to investigate 
the presence of GxE interactions in a large, unstruc-
tured, industry-derived, beef cattle dataset for female 
fertility. We hypothesized that, given the significant envi-
ronmental challenges across a range of environments 
in the data set, GxE interaction between female fertility 
and both feed availability and/or prolonged heat expo-
sure would be observed. We took a multi-trait approach 
to assessing the potential for GxE. To disentangle the 
effects of genetic linkage from true GxE on the estimates 
of genetic correlations between environments, we simu-
lated 1000 replicates of a quantitative trait under the null 
hypothesis of no GxE between the environments, using 
the true genotypes of the test population to capture the 
genetic linkage between environments. Estimates for 
GxE, as measured by genetic correlation from the real 
phenotypes and genotypes, were then compared to an 
empirical distribution of correlation estimates from the 
simulated data. Correlation estimates from the real phe-
notypes that fell within the 5th percentile of the distribu-
tion were interpreted as statistically significantly different 
from unity (P < 0.05).

Methods
Phenotypes and project collaborators
The phenotypes and genotypes used in this study were 
collected as part of the Northern Beef Genomics pro-
ject [4, 15, 21]. This project collected 21,037 paired phe-
notypes and genotypes from animals managed under 
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diverse conditions from 54 commercial beef businesses 
representative of northern Australia (Fig. 1a).

Three fertility phenotypes, corpus luteum presence 
(CL presence), first pregnancy, and second pregnancy 
were recorded over a 3-year period. CL presence, the 
first trait recorded, was an ovarian ultrasound pro-
cedure conducted at approximately 600 days of age, a 
binary measure where; 1 = “pubertal” and 0 = “non-
pubertal” [21, 22]. First and second pregnancy were 
measured at approximately 2.5 years and 3.5 years of 
age, respectively. Testing was conducted via manual 
palpation or ultrasound examination by veterinarians 
and project collaborators at a time post-bull exposure 
that fit with the collaborator’s typical management 
schedule. Pregnancy was also modelled as a binary 
trait (1 = “pregnant”, 0 = “non-pregnant”) [4]. Through-
out the analysis, these binary traits were examined as 
continuous responses using mixed linear models, as 
has been extensively utilized in the literature [23–26]. 
Previous efforts to fit threshold and more complicated 
models to this dataset [4] revealed the advantages of 
the linear model approach for convergence and inter-
pretability, particularly in a multivariate model. Given 
the distribution of cases and controls is nearly balanced 
for each trait and the large sample size, a normal dis-
tribution is expected to approximate the binary trait. 
Finally, this approach provided continuity with other 
examinations of the dataset [4, 15].

In conjunction with fertility trait recording, addi-
tional covariates were recorded for each individual 
animal:

Weight
Animal liveweight (body weight) on the day of each fer-
tility trait recording at CL presence, first pregnancy and 
second pregnancy.

Hip height
Distance from the ground to the peak of the sacrum [4]. 
Hip Height was measured at the time of each fertility 
recording.

Body condition score (BCS)
Defined on a 1–5 scale with 1 being poor condition to 5 
being fat. BCS was evaluated at the time of each fertility 
trait recording.

These three covariates were fit in the multi-trait analy-
ses. These covariates have previously been tested for sig-
nificance to the traits by [4].

Environmental descriptors
The environmental descriptors were based on nutritional 
availability, represented here as average daily weight gain 
(ADWG) of the herd, and cumulative heat load experi-
enced beyond a defined temperature-humidity index 
(THI) threshold of 65 [4, 16, 27]:

ADWG was calculated for each individual animal based 
on the liveweight records from consecutive fertility meas-
urements, CL presence to first pregnancy (typically 6 to 
12 months and usually including one annual growing sea-
son) and first pregnancy to second pregnancy (typically 
1 year) [4]. A limitation of this environmental descriptor 
was inconsistency of the timing between trait recordings, 
however, the lack of more precise nutritional informa-
tion or additional liveweight records meant that adopting 
ADWG was the only viable nutritional descriptor in this 
complex industry dataset. The ADWG of each individual 
animal (kg/day), from CL presence to first pregnancy and 
from first pregnancy to second pregnancy, was used to 
calculate the phenotypic mean ADWG of each contem-
porary group. Contemporary groups were defined as 
combinations of farm/collaborator and year. Based on 
the mean ADWG value, each contemporary group was 
then assigned into quartiles from 1 (lowest ADWG) to 4 
(highest ADWG).

Another limitation of this method was that no live-
weight records were made before CL presence recording. 
While liveweight was always recorded at CL presence, 
it was not recorded prior to this because CL presence 

THI = 0.8 ∗ T+ ((RH ∗ 0.01) ∗ (T− 14.4))+ 46.4.

Fig. 1  Project collaborators and environmental levels. a Map 
showing the locations of the 54 collaborating herds; b Locations 
colour-coded according to Average Daily Weight Gain environmental 
levels, 1 = harshest, 4 = most favourable; c Locations colour-coded 
according to Temperature Humidity Index environmental levels, 1 = 
harshest, 3 = most favourable
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recording was the first time that the project had access 
to the animals. Consequently, ADWG could not be cal-
culated for the time-period preceding CL presence 
recording and environmental levels for this trait could 
not be defined directly. As an alternative, the CL pres-
ence records were ‘binned’, by contemporary group, into 
the same environmental levels as for first pregnancy. This 
effectively assigned animals to a quartile representing 
their ‘future’ performance. The use of future ADWG per-
formance, while lacking precision, was still indicative of 
nutritional availability for the respective herd. It must be 
noted that contemporary groups of animals only changed 
ADWG environmental levels seven times, from a total of 
80 contemporary groups, from first to second pregnancy. 
These seven contemporary groups represented a total 
of 497 animals. Thus, whilst the use of future ADWG 
performance to run a GxE analysis for CL presence was 
not perfect, it was the best solution available within the 
industry dataset. The ADWG levels for second preg-
nancy were defined from the weight gain from first to 
second pregnancy.

Days over a THI threshold was defined on an indi-
vidual animal basis, representing chronic heat load dur-
ing critical reproductive timepoints. The descriptor was 
the number of days where the THI threshold of 65 was 
exceeded within the 120-day period surrounding (60 days 
prior and 60 days post) (1) trait recording for CL pres-
ence, or (2) conception dates, in the case of both first and 
second pregnancies [4]. Despite the low threshold, this 
THI was selected as a proxy for relative environmental 
harshness. The temperature and humidity data for THI 
calculation [4] was obtained with the NASAPOWER 
package in R v3.5.4; the data was interpolated from direct 
weather observations to a 0.5 by 0.5 degree grid of lati-
tude and longitude [28]. The full explanation of THI as an 
environmental descriptor is available from [4]. The same 
procedure described for allocating ADWG quartiles was 
followed here to disperse animals into terciles with 1 
(longest exposure to heat load) to 3 (shortest exposure to 
heat load) based on the mean within each contemporary 
group. Three rather than four levels were selected for 
characterizing THI due to insufficient environmental dif-
ferentiation between quartile levels.

Genotypes
All animals were genotyped on 35K GGP tropBeef SNP 
array (Neogen Australasia, Ipswich, QLD), which was spe-
cifically developed for use on tropical and tropical compos-
ite breeds to reduce ascertainment bias. Genotypes with 
GC score less than 0.6 were set to missing. Genotypes were 
imputed up to 709,768 SNPs (Bovine HD array) using the 
FImpute software [29] and a panel of 3,140 cattle of rel-
evant breeds genotyped for the Bovine HD array [15]. A 

principal component analysis (PCA) was conducted using 
GCTA, six principal components were calculated and 
then plotted using ggplot2 in R 4.2.2 [30, 31]. Estimates of 
genetic distance, Fst, were made as pairwise comparisons 
between sub-populations, in this case the different envi-
ronmental levels. These were estimated in GCTA [30, 32]. 
The Fst analysis was conducted as a preliminary examina-
tion of genetic linkage between environmental levels.

Genomic covariates
Breed composition, heterozygosity, and Bos indicus con-
tent were calculated from the genotypes. Breed propor-
tion aimed to capture the genetic composition of each 
animal in relation to 14 breeds common in northern 
Australia and represented in the dataset: Angus, Belmont 
Red, Brahman, Charolais, Droughtmaster, Hereford, 
Limousin, Murray Gray, Santa Gertrudis, Shorthorn, 
Wagyu, Boran, Senepol and Tuli. Individual breed pro-
portions were estimated using a separate data set com-
prised of purebred cattle from the 14 breeds [15]. SNP 
effects for breed composition were estimated using a 
genomic best linear unbiased prediction model, where 
the phenotype was 1 if the animal was of that breed and 0 
if not [15, 33]. The effects of each SNP for the proportion 
of each breed were then derived by back-solving for the 
SNP effects [30], and the resulting prediction equations 
for each breed were used to estimate breed proportions 
in the dataset [15]. The breed composition for each of 14 
breeds was then included in the model. B. indicus per-
centage, or proportion of the genome estimated to be of 
B. indicus origin, was calculated using the same method 
as breed composition, the only difference being the use of 
a single, pure B. indicus reference dataset instead of one 
comprising of individual breeds [15]. Marker heterozygo-
sity for each animal was fitted as a covariate to account 
for heterosis [15] and ranged from 0.25 (purebred) to 0.5 
(F1 cross) [4, 15, 21]. Breed proportions, B. indicus con-
tent, and heterozygosity were previously calculated by 
Hayes et al. [15] for this dataset and were included in the 
multi-trait model as covariates.

Heritability
Heritability was first estimated using a univariate model, 
ignoring environment, to establish the baseline herit-
ability for each trait. Heritability was then re-estimated 
within each environmental level. Estimation in all cases 
was done using the model:

In the equation, y = vector of phenotypes (CL pres-
ence, first pregnancy, or second pregnancy), X = design 
matrix allocating phenotypes to fixed effects, β = vector 
of fixed effects, including weight, hip height, BCS, 14 

y = Xβ+ Zµ+ e.
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breed composition vectors, heterozygosity, and percent-
age B. indicus as covariates and contemporary group; Z 
= design matrix allocating records to animal effects; u = 
vector of random additive genetic animal effects, one for 
each animal, distributed N (0,Gσ2u) ; and, e = vector of 
residual errors, distributed as N (0, Iσ2e) . The G matrix is 
the genomic relationships among the animals, calculated 
from the SNP data [30]. Univariate REML in MTG2 was 
used to estimate the variance components and the herit-
ability for each trait [34].

As discussed by [60] G⦻T is not strictly a genetic 
covariance matrix (for reasons including that is the vari-
ance captured by SNP rather than the full additive genetic 
variance for this trait, and the fact that genotyped SNP 
may not have the same allele frequency distribution as 
casual variants), so that this approach is actually equiva-
lent to a Bayesian prior belief (rather than a classic mixed 
model for BLUP).

Genomic correlations
Assessing GxE was done by calculating the genomic 
correlation between the same trait in different environ-
mental levels, with each environmental level treated as a 
separate trait [1, 35], using the model:

where: yADWG(1−4) = vectors of fertility phenotypes 
within each environmental level, XADWG(1−4) = inci-
dence matrices for the fixed effects, βADWG(1−4)= vec-
tor of fixed effects, ZADWG(1−4) = incidence matrices for 
the random additive genetic animal effect, uADWG(1−4) 
= vectors containing random additive genetic effects, 
eADWG(1−4) = vectors of random residual effects.

The random effects uADWG(1−4) were distributed as 

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the residual variance of ADWG(1-4) and I is an identity 
matrix. The reverse diagonal of � contained all 0 values 
because no animals had repeated observations for the 
same trait in multiple environmental levels. This model 
was identical to that used for THI environmental levels, 

the only difference being the distribution of animals 
across three levels instead of four.

The off-diagonal values were also 0 as the covariances 
between animal and environmental effects and the resid-
ual covariances were assumed to be zero due to no animal 
was present in multiple environments [35]. The multivari-
ate analysis was performed using MTG2, fitting the same 
fixed and random effects previously described [34].

Simulated phenotypes
To determine the impact of shared genetic linkage on the 
estimates of genetic correlations between environments, 
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we simulated a data set under the null hypothesis of no 
GxE. The real, imputed genotypes from the population 
were used, and 1000 replicates of the simulated pheno-
types were produced as quantitative traits using genome-
wide complex trait analysis (GCTA) [30] by the simple 
additive genetic model y = Zu + e [30]. The simulated 
phenotypes were generated using all 709,768 SNPs as 
QTL and h2 was set as the estimated heritability of the 
real trait (CL presence, first and second pregnancy, 
respectively) [30]. This heritability was based on the her-
itability for CL presence from the real data, calculated 
above. The simulated phenotypes were transformed from 
a continuous to binary scale based on the distribution of 
the simulated phenotypes and the proportion of puber-
tal/non-pubertal or pregnant/non-pregnant in the real 
phenotype. GCTA does not have a facility to simulate 
binomial traits. Hence the transformation from continu-
ous to binary, based upon the distribution/proportion of 
the real traits, was necessary. For example, the propor-
tion for simulated CL presence was 43% reflecting the 
percentage of heifers that were pubertal at the time of 
trait recording, the simulated phenotypes were distrib-
uted to reflect this. These transformed simulated phe-
notypes were then analysed using the same multi-trait 
model as the real phenotypes, estimating the genetic cor-
relation between each environmental level 1000 times to 
generate an empirical null distribution. This distribution 
was then directly compared to the correlation between 
levels for the real phenotypes. GxE was deemed to be 
statistically significant if the correlations for the real phe-
notypes fell within the 5th percentile of the distribution 
of simulated correlations (P < 0.05). The heritability of 
the transformed phenotypes aligned closely to the esti-
mated heritability of the real traits (e.g. 0.15(0.02) for first 
pregnancy).

Results
Genetic linkage between environment levels for ADWG
A principal component analysis (PCA) of genetic linkage 
across the four ADWG environmental levels at first preg-
nancy (n = 13,549), found principal component 1 to be 
highly correlated to B. indicus content (r2 = 0.98) (Fig. 2a). 
The PCA suggests that while some clustering of genotypes 
does occur within environment levels, a large degree of 
overlap is also observed. Fig. 2b confirmed these findings, 
indicating cattle with higher B. indicus content were more 
concentrated in harsher environmental levels (1 and 2). 
Although higher heterozygosity was more concentrated in 
harsher environments, its overall distribution was similar 
for all four ADWG levels (Fig. 2c).

Average daily weight gain environmental levels
Both pregnancy and puberty generally increased as nutri-
tion improved with level (Table 1). This suggests that the 
quartiles were accurately reflecting a change in environ-
mental conditions. Heritability varied considerably when 
estimated from a univariate analysis within each environ-
mental level, although standard errors on these estimates 
were large (See Additional file 1: Table S1). The pairwise 
Fst results show the genetic variance within a subpopu-
lation, in this case between the environmental levels, in 
comparison to the total population. Low Fst values sug-
gested limited genetic differentiation between subpopu-
lations, which provided sufficient evidence to examine 
GxE. However, the lack of clear differentiation does not 
convey the degree of similarity between environmen-
tal levels, especially considering the diversity inherent 
within the dataset (See Additional file 1: Table S1).

Estimated genetic correlations between the ADWG 
environmental levels for the real and simulated pheno-
types were determined (Fig. 3, Additional file 1: Table S1). 
Genetic correlations of < 0.8, when taken in isolation, are 
typically indicative of GxE [17]. However, this analysis 
compared the correlation between the real phenotypes 
in each environment to the null distribution generated 
from the 1000 replicates of the simulated correlations. 
It was determined that GxE was only observed when the 
correlation for the real phenotypes was below the 0.05 
significance level of the null distribution. Based on this 
criterion, no statistically significant observations of GxE 
were made for fertility traits across the ADWG environ-
mental levels (Fig. 3).

Temperature humidity index environmental levels
The percentage of pubertal heifers declined in the reverse 
to the expected direction with heifers in the ‘harshest’ 
level indicating the highest percentage pubertal (Table 2). 
This trend may have been associated with B. indicus 
content, which was generally higher in harsher environ-
ments. However, any confounding impact of this trend 
was minimised by accounting for B. indicus content in 
the multi-trait model. This trend was less pronounced 
for first and second pregnancy where the response to 
the THI environmental gradient was ill-defined in either 
direction (particularly for environmental levels 1 and 2, 
more defined comparing 2 and 3) (Table 2). The heritabil-
ity of each trait was calculated within each environmental 
level subpopulation (See Additional file 2: Table S2).

The genetic linkage between environmental levels 
was initially examined via a pairwise Fst analysis. These 
results indicated a similar pattern observed across the 
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ADWG levels, where relative genetic distance was higher 
between environments at opposing ends of the envi-
ronmental spectrum (See Additional file  2: Table  S2). 

However, the pairwise Fst estimates were still universally 
low, indicating that subpopulations were not significantly 
differentiated from each other. A principal component 

Fig. 2  Genetic linkage across average daily weight gain (ADWG) levels within first pregnancy subset. a Principal component analysis coloured 
by environmental level; b Density plot showing distribution of Bos indicus content within each environmental level for first pregnancy subset; and c 
Density of heterozygosity content for first pregnancy subset
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analysis suggested that there was substantial genetic 
overlap between environmental levels (See Additional 
file 3: Figure S1).

In contrast to ADWG levels, genetic correlations 
between THI levels for CL presence were found to be 
high, almost universally >0.8, the only exception being 
the correlation between levels 1 and 2, an estimate that 
was within the standard error of the defined threshold of 
0.8 (Fig. 4, Additional file 2: Table S2). When the genetic 
correlations were compared to the null distribution of 
correlations from the simulated phenotypes, the only 
statistically significant result (P < 0.05) was for first preg-
nancy between levels 2 and 3 (Fig.  4). Notwithstanding 
this marginal example, no other significant (P < 0.05) evi-
dence of GxE was found for fertility traits between THI 
environmental levels.

Discussion
This study found no significant evidence of GxE for fer-
tility traits across ADWG environments and only limited 
evidence across THI environmental levels. The environ-
mental descriptors used to define the multi-trait model 
were designed to measure the chief challenges faced by 
breeding females in northern Australia, namely nutri-
tion deficiencies and exposure to high temperatures [5, 
36, 37]. Examining the genetic correlations for the real 
phenotypes in isolation may suggest some GxE (r < 0.8), 
however comparison to an empirical distribution derived 

from 1000 simulated phenotypes found that these indi-
cations are more likely an artefact of the genetic struc-
ture of the dataset, specifically lack of genetic linkage 
across environment levels. Therefore, our results serve 
to illustrate the difficulty of assessing GxE in such data-
sets. Prior studies examining GxE have been limited to 
smaller, intensively managed herds where genetic link-
age between environmental levels can be assured [3, 11]. 
Other studies in industry datasets have not focussed on 
fertility traits [20, 38]. The absence of significant GxE 
suggests that selection for the examined traits can be 
accurately carried out across a wide variety of environ-
ments for this population.

Heritability of fertility traits
The heritability for all three fertility traits was re-esti-
mated, as trait definitions differed slightly from those 
calculated by [15]. Our results for heritability were sim-
ilar to those reported by Corbet et  al. [22] of 0.18-0.32, 
found in sub-populations of different breeds, from the 
closely aligned trait of reproductive maturity score. The 
estimates made by Hayes et  al.[15] for corpus luteum 
score (0.25) and corpus luteum rate (0.22) also supported 
our results. Estimated genomic heritability of pregnancy 
traits were comparable to those reported by Corbet et al. 
[22] who investigated pregnancy rate in maiden Brahman 
heifers (0.15 (0.05)) and first lactation Brahman cows 
(0.17 (0.10)). Guarini et  al. [39] found heifer heritability 

Table 1  Information regarding success rates for CL presence, first pregnancy and second pregnancy overall and within environmental 
levels

a Corpus luteum (CL) presence, assessed by ultrasound at about 600 days of age, first pregnancy = first pregnancy test conducted at ~2.5 years of age, second 
pregnancy = second pregnancy test conducted at ~3.5 years of age.
b ADWG = average daily weight gain in kg/d for the entire cohort and within each environmental level.
c Positive (%) = This number reflects the percentage of animals that were pubertal at CL presence recording OR were pregnant at first/second pregnancy recording. 
Values expressed for whole cohort and within each environmental level.

Traita ADWG quartile n ADWG (kg/d)b Positive (%)c h2 (SE)

CL presence 11,801 0.42 47.21 0.30 (0.02)

Level 1 3641 0.20 44.96

Level 2 2658 0.33 45.74

Level 3 2706 0.46 46.32

Level 4 2796 0.68 52.08

First pregnancy 13,459 0.42 71.22 0.15 (0.02)

Level 1 2991 0.20 64.03

Level 2 3934 0.33 75.67

Level 3 3058 0.46 75.83

Level 4 3152 0.68 79.98

Second pregnancy 10,044 0 63.99 0.08 (0.02)

Level 1 1882 – 0.14 61.90

Level 2 2717 – 0.03 58.08

Level 3 3438 0.04 59.80

Level 4 1287 0.18 81.28
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of heifer rebreed rate, comparable to second pregnancy, 
to be 0.15 (0.02). Our estimates for second pregnancy 
were lower than those for second pregnancy rate in Brah-
man cows (0.35) found by [40]. Our results, especially for 
CL presence, demonstrate the value in identifying repro-
ductive traits which can be measured early in life and 

are moderately to highly heritable. Fertility traits can be 
difficult and expensive to measure, and low heritability 
generally undermines, or at least slows, the benefits of 
selecting for fertility. Traits like CL presence with moder-
ate to high heritability mean that selection decisions can 
be made early and with confidence.

Fig. 3  Genetic correlations between environmental levels for simulated and real phenotypes for average daily weight gain. Red = genomic 
correlation based on real phenotypes, blue = 5th Percentile values for simulation correlation distribution (P < 0.05). Genetic correlation for real 
phenotypes in bold on red line. a–f CL presence correlations for ADWG environmental levels a 1v2, b 1v3, c 2v3, d 1v4, e 2v4, f 3v4. g–l First 
Pregnancy correlations for ADWG environmental levels g 1v2, h 1v3, i 2v3, j 1v4, k 2v4, l 3v4. m–r Second Pregnancy correlations for ADWG 
environmental levels m 1v2, n 1v3, o 2v3, p 1v4, q 2v4, r 3v4
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Simulated phenotypes
The dataset used was typical of northern Australia, with 
a population with no pedigree information, unknown 
genetic linkage, and a multibreed heritage [15]. Recorded 
animals were bred under commercial conditions repre-
sentative of the environmental and economic realities 
of extensive grazing systems. These realities are seldom 
reflected in research herds and using an unstructured 
dataset from this production system poses significant 
challenges. The greatest challenge is that traditional pedi-
gree or parentage-based methods to ensure sufficient 
genetic linkage between environmental categories are 
unavailable. This has limited the utility of industry data-
sets for assessing GxE in the past and was overcome in 
this study by using SNP array genotypes. The benefits of 
exploiting SNP array genotypes in relation to GxE stud-
ies have previously been confirmed by Mulder [7]. When 
genotypes are used, the key requirement for the accurate 
estimation of GxE is that chromosome segments or SNP 
alleles are replicated across environments. We used sim-
ulations to assess the impact of the degree of replication 
of chromosome segments/SNP alleles in the data set by 
using the actual genotypes from the data set to estimate 
genetic correlations between environmental levels. The 
risk of over-estimating GxE has generally led to the con-
clusion that GxE can only be investigated within tightly 
controlled research herds where the family structure is 
known [10, 11, 41, 42]. The use of simulated phenotypes 
has been demonstrated as viable and our study utilised 
these simulations to create context around the multi-trait 
models in an industry dataset [43–45]. The use of the 

simulated phenotypes to create an empirical distribution 
of correlations created a population specific threshold 
for GxE, thus helping to distinguish true GxE from back-
ground genetic noise. The use of genomic data instead of 
pedigree information made this examination of GxE fea-
sible. However, whether this calibre of information will 
be available in commercial herds outside of a project like 
Northern Genomics remains to be seen.

Genotype x environment interactions
The results of this study found limited statistically signifi-
cant evidence of GxE for the three female fertility traits 
analysed. Limited supporting evidence for this result 
exists in the literature due to the relative novelty of our 
dataset and the traits examined. Many of the research 
populations previously assessed for GxE interaction 
are not representative of the commercial beef industry 
either in scale or in breed composition. The focus has 
largely been on temperate, B. taurus breeds in relatively 
moderate environments [11, 46–48]. These environ-
ments do not represent the stress faced by animals in 
northern Australia which ranges from dry arid condi-
tions to very high rain fall, high humidity environments. 
Some relevant studies examining weight traits for GxE 
in tropically adapted populations have been carried out; 
in these cases, sire re-ranking was observed and genetic 
correlations were found to decrease, indicating GxE, as 
the environments diverged [38, 49]. However, thorough 
examinations of fertility traits for GxE in similar popula-
tions, are less available. Santana et al. [35] detected some 
indications of GxE for male fertility traits in tropically 

Table 2  Descriptive statistics for CL presence, first pregnancy and second pregnancy overall and within environmental levels

a CL presence = ovarian ultrasound scan and 600 days of age, First pregnancy=first pregnancy test conducted at ~2.5 years of age, Second pregnancy=second 
pregnancy test conducted at ~3.5 years of age.
b n days THI >65 = number of days where daily peak temperature humidity index exceeded 65 in the 120 days prior to trait recording for CL presence and surrounding 
conception for first and second pregnancy.
c Positive (%) = This number is the percentage of animals that were pubertal at CL presence recording OR were pregnant at first/second pregnancy recording as a 
whole and also within each environmental level

Traita n n days THI > 65b Positive (%)c h2 (SE)

CL presence 21,037 79.6 43.37 0.27 (0.01)

L1 6740 115.0 48.39

L2 5483 86.8 44.12

L3 8814 38.7 38.67

First pregnancy 13,549 115.2 73.59 0.15 (0.02)

L1 4612 120.00 77.21

L2 4736 119.94 78.45

L3 4201 105.70 64.17

Second pregnancy 10,044 114.2 63.99 0.18 (0.02)

L1 2475 120.00 56.42

L2 2519 119.51 67.89

L3 5057 102.41 65.89
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adapted cattle under tropical conditions, but their study 
did not provide a comparison for female fertility traits.

The lack of evidence of GxE across ADWG of THI 
environmental levels indicates that, for fertility traits at 
least, genomic evaluation and selection do not need to 
be split according to environment [17]. It has been pre-
viously noted that the greatest potential for re-ranking 

occurs in moving from temperate or subtropical environ-
ments to less favourable conditions [6, 46]. If re-ranking 
was occurring for fertility traits, animals of the highest 
genetic merit for their respective environments would 
potentially not be identified and the results of targeted 
selection for fertility would be reduced. Our results sug-
gest, however, that this is not the case. Accurate selection 

Fig. 4  Genetic correlations between environmental levels for simulated and real phenotypes for temperature humidity index. Red = genomic 
correlation based on real phenotypes, blue = 5th Percentile values for simulation correlation distribution (P < 0.05). Genetic correlation for real 
phenotypes in bold on red line. a–c CL presence correlations for THI environmental levels a 1v2, b 1v3, c 2v3. d–f First Pregnancy correlations for THI 
environmental levels d 1v2, e 1v3, f 2v3. g, h Second Pregnancy correlations for THI environmental levels g 1v2, h 1v3, i 2v3
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to improve fertility is beneficial to the profitability of 
the northern beef industry [50]. The results of this study 
indicate that fertility traits may be accurately selected for 
in any environment without the need to use environment 
specific breeding values [17].

While the lack of GxE for fertility traits simplifies selec-
tion, it does not remove the requirement for cattle that 
are properly adapted to their environmental conditions. 
Heat stress has a well-proven effect on fertility outcomes, 
including the suppression of follicle stimulating hormone 
secretion from the pituitary gland, which slows or stops 
the reproductive cycle [51–54]. The effect of heat stress 
on fertility is most readily apparent in dairy breeds [19, 
55, 56] and Bos taurus beef cattle in tropical conditions 
[51, 57]. However, the effect of heat stress on both repro-
ductive outcome and oocyte survival was found to be less 
pronounced in B. indicus cows [51, 57]. Clearly then, the 
use of B. indicus cattle with some level of adaptation is 
still strongly recommended in the context of northern 
Australia, despite the lack of evidence for GxE in fertility 
traits in this study.

Potential drawbacks and future work
The unique nature of our study, applying a multivari-
ate GxE analysis to a diverse industry dataset, provided 
an excellent opportunity to leverage a commercial beef 
dataset to deliver relevant and applicable results directly 
back to the industry. However, the strength of the data 
as a reference dataset for commercial herds also created 
some significant challenges. The first key challenge was 
the lack of precision and consistency in the timings of 
trait recordings, potentially affecting the accuracy of the 
measurements of ADWG which were the cornerstone 
of the GxE analysis. The raw mean of ADWG data, as 
adopted in this study, acted as a proxy for environmental 
‘harshness’ where the exact reasons for reduced weight 
gain, such as disease or drought, were unknown. Animals 
had, at most, three weight records, thus the dataset was 
unable to capture weight gain at specific points of peak 
nutritional requirement, such as prior to joining. Addi-
tionally, the lack of weight records on animals prior to 
CL presence undermined the examination of GxE across 
ADWG levels for what was the most heritable trait with 
the highest number of records. Future work with this or 
related datasets could potentially collect and leverage 
weight records directly from project collaborators to help 
fill this gap.

Lack of precision was also an issue for the THI envi-
ronmental descriptors. Attempts to model acute heat 
stress events (e.g., THI > 79) in the same dataset using 

linear modelling were previously unsuccessful [4]. The 
heat load descriptors analysed here were developed from 
an interpolated dataset rather than direct measurements. 
Identifying critical time periods of acute heat stress has 
previously been done successfully in dairy cattle by Shi 
et al. [58] and in pigs by Freitas et al. [59]. Both of these 
studies sought to investigate GxE for fertility traits and 
potentially identify environmentally robust animals, how-
ever these studies were conducted on intensively man-
aged livestock where there was virtually unlimited access 
to the animals for trait recording [58, 59]. In the case of 
Shi et al. [58], measurements of temperature and humid-
ity information were made hourly and thus a precise 
comparison could be made between reproductive traits 
and environmental conditions. It was not possible to cap-
ture that level of detail in our study where, for example, 
conception or calving dates were based entirely on back 
or forward-dating from the pregnancy test date with the 
estimated foetal age [4, 21]. The heat load descriptors we 
adopted were not designed to capture this level of detail, 
rather, they were intended to function as proxies for the 
relative level of environmental harshness.

In spite of these potential drawbacks, our study pro-
vided a thorough examination of GxE for fertility traits 
in relation to the two most pressing challenges for cattle 
in northern Australia, high heat stress and nutritional 
availability. Additional precision, as is typically desired 
for GxE studies, simply was not achievable. The great-
est strength of this dataset remains its representation of 
the diverse breeds, management systems, environmental 
challenges and reproductive performance observed in 
northern Australia. Future efforts will explore utilizing a 
random regression reaction norm to study the presence 
of GxE in this population.

Conclusions
Limited significant indications of GxE for fertility traits in 
this population were found using a multi-trait approach 
for estimating GxE. Initial indications based only on 
genetic correlations estimated from real phenotypes 
proved to be biased when compared to an empirical null 
distribution of correlations derived from simulated phe-
notypes. Further work is required to probe the presence 
of GxE for fertility and production traits given the genetic 
structures present within this industry dataset. If sub-
stantiated, the absence of GxE across ADWG and THI 
environmental levels holds particular significance for 
genetic selection in northern Australia. It would allow for 
accurate and direct selection for fertility traits, regardless 
of environment.
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