Iterative Dataset Filtering for Weakly Supervised Segmentation of Depth Images - Archive ouverte HAL
Poster De Conférence Année : 2019

Iterative Dataset Filtering for Weakly Supervised Segmentation of Depth Images

Résumé

In this paper, we propose an approach for segmentation of challenging depth images. We first use a semi-automatic segmentation algorithm that only takes a user-defined rectangular area as an input. The quality of the segmentation is very heterogeneous at this stage, and unsufficient to efficiently train a neural network. We thus introduce a learning process that takes this imperfect nature of data into account, by iteratively filtering the dataset to only keep the best segmented images. We show this method improves the neural network's performance by a significant amount.

Fichier principal
Vignette du fichier
Iterative_Dataset_Filtering_for_Weakly_Supervised_Segmentation_of_Depth_Images.pdf (679.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04750525 , version 1 (23-10-2024)

Identifiants

Citer

Thibault Blanc-Beyne, Axel Carlier, Vincent Charvillat. Iterative Dataset Filtering for Weakly Supervised Segmentation of Depth Images. 2019 IEEE International Conference on Image Processing (ICIP), Sep 2019, Taipei, France. IEEE, pp.1515-1519, ⟨10.1109/ICIP.2019.8803086⟩. ⟨hal-04750525⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More