Curvature Constrained MPNNs : Improving Message Passing with Local Structural Properties - Archive ouverte HAL
Article Dans Une Revue Journal Data & Knowledge Engineering Année : 2024

Curvature Constrained MPNNs : Improving Message Passing with Local Structural Properties

Davide Buscaldi
  • Fonction : Auteur
Nathalie Pernelle
  • Fonction : Auteur

Résumé

Graph neural networks operate through an iterative process that involves updating node representations by aggregating information from neighboring nodes, a concept commonly referred to as the message passing paradigm. Despite their widespread usage, a recognized issue with these networks is the tendency to over-squash, leading to diminished efficiency. Recent studies have highlighted that this bottleneck phenomenon is often associated with specific regions within graphs, that can be identified through a measure of edge curvature. In this paper, we present a novel framework designed for any Message Passing Neural Network (MPNN) architecture, wherein information distribution is guided by the curvature of the graph's edges. Our approach aims to address the over-squashing problem by strategically considering the geometric properties of the underlying graph. The experiments carried out show that our method demonstrates significant improvements in mitigating over-squashing, surpassing the performance of existing graph rewiring techniques across multiple node classification datasets.

Fichier principal
Vignette du fichier
CCMP__.pdf (778.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04744412 , version 1 (18-10-2024)

Identifiants

  • HAL Id : hal-04744412 , version 1

Citer

Hugo Attali, Davide Buscaldi, Nathalie Pernelle. Curvature Constrained MPNNs : Improving Message Passing with Local Structural Properties. Journal Data & Knowledge Engineering , In press. ⟨hal-04744412⟩
48 Consultations
19 Téléchargements

Partager

More