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Abstract

Graph neural networks operate through an iterative process that involves
updating node representations by aggregating information from neighboring
nodes, a concept commonly referred to as the message passing paradigm.
Despite their widespread usage, a recognized issue with these networks is
the tendency to over-squash, leading to diminished efficiency. Recent studies
have highlighted that this bottleneck phenomenon is often associated with
specific regions within graphs, that can be identified through a measure of
edge curvature. In this paper, we present a novel framework designed for any
Message Passing Neural Network (MPNN) architecture, wherein information
distribution is guided by the curvature of the graph’s edges. Our approach
aims to address the over-squashing problem by strategically considering the
geometric properties of the underlying graph. The experiments carried out
show that our method demonstrates significant improvements in mitigating
over-squashing, surpassing the performance of existing graph rewiring tech-
niques across multiple node classification datasets.

Keywords: Graph Neural Netwoks, over-squashing, rewiring, discrete
curvature

1. Introduction

Graph representation learning is a rapidly expanding research field that
focuses on the development of versatile methods for effectively learning rep-
resentations from graph-structured data (Goller and Kuchler, 1996) (Gori
et al., 2005) (Scarselli et al., 2008) (Bruna et al., 2014). The majority of
Graph neural networks GNNs are based on the message passing paradigm
(Gilmer et al., 2017), in which the information is propagated by the iterative
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exchange of information (messages) between neighboring nodes to update
their representations. This process is typically performed over multiple iter-
ations and/or layers. The message passing paradigm is effective in capturing
the relational information and structural patterns within graph-structured
data. It enables GNNs to learn expressive representations that are sensi-
tive to the connectivity and interactions among nodes in a graph. GNNs
have been successful in various domains, including chemistry, information
retrieval, social network analysis, and knowledge graphs, due to the wide
variety of features that a graph can model (Wu et al., 2020). These architec-
tures have produced very interesting results when it comes to solving tasks at
the node, graph, or edge level (Xiao et al., 2022) (Errica et al., 2020) (Zhang
and Chen, 2018).

Despite their widespread use, it has been shown that GNNs can face a variety
of issues under certain conditions, specifically in heterophilic environments
(Zhu et al., 2020) (Platonov et al., 2023), when the neighboring nodes tend
to have different labels. Other works have highlighted that GNNs suffer from
a limited ability to model long-range interactions (Alon and Yahav, 2021).
Popular GNN architectures such as Graph Convolutional Networks (GCN)
(Kipf and Welling, 2017) and Graph Attention Networks (GAT) (Veličković
et al., 2018) can only share information between nodes at a distance that
depends on the number of layers in the architecture: for a node i to be able
to exchange information with a node j ∈ Nk(i), we need to stack at least k
layers. Therefore, a naive approach to address this issue consists of increas-
ing the number of layers.

However, this process leads to two well-known problems for GNN. First,
the phenomenon of over-smoothing which arrives when the message pass-
ing is carried out in an excessive way. In this case, all the features of the
nodes are going to be similar wich leads to a deterioration in results (Oono
and Suzuki, 2020) (Cai and Wang, 2020). Second, as the number of lay-
ers in a GNN grows, information from exponentially growing receptive fields
must be propagated concurrently at each message-passing step, leading to
a bottleneck that causes over-squashing (Alon and Yahav, 2021). In this
case, spreading information locally is not enough. To overcome this prob-
lem, GNNs must be able to incorporate additional global graph features
in the process of learning representations. Another popular approach is to
rewire the input graph to improve the connectivity and avoid over-squashing.
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Recently, it has been shown that the local structural properties of a graph,
like edge curvature, play an essential component in the spread of knowledge
about the graph (Topping et al., 2022).

Main Contributions. This paper introduces an innovative framework ap-
plicable to any Message Passing Neural Network (MPNN) architecture, able
to mitigate over-squashing. The main contributions are:

• Introducing a novel metric for homophily, based on edge curvature,
that allows to better model the neighborhood community behavior.

• Motivated by this metric we propose a new MPNN architecture (Curvature-
Constrained Message Passing) that leverages the curvature of the edges
to guide learning by dissociating edges with positive and negative cur-
vature. We propose different variants of this model, each one based
on a different way of propagating the information: only on edges with
negative curvature, or positive curvature. We also propose two- or one-
hop propagation strategies that are bound to the curvature.

• We empirically demonstrate a performance gain on heterophilic datasets
and we show that using a curvature message passing attenuates over-
squashing.

Reproducibility.. Our codes to reproduce the experiments of the paper is
available. 1

2. Related Work

In this section, we introduce the class of Message Passing Neural Networks
and discuss some of its main limitations. We first review some important
notions concerning graphs.

1Code available from: https://github.com/Hugo-Attali/
Curvature-Constrained-Message-Passing
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2.1. Preliminaries
We start by introducing notations used throughout this paper. A graph

is written as a tuple G = (V , E) where V and E denote the set of nodes
and edges, respectively. In this work, we focus on undirected graphs, i.e., if
eij ∈ E , then eji ∈ E . We note by N (i) the set of neighbors of node i. We
define N×N adjacency matrix A as Ai,j = 1 if (i, j) ∈ E and zero otherwise.
We add self-loops to each node such that Â = A+I. In addition, we let D be
the diagonal matrix and L = I −D−1/2AD−1/2 be the normalized Laplacian
of G. We denote the nodes feature by H where hi is the feature of node i.

2.2. Message Passing Neural Networks
The remarkable achievements of deep learning within the Euclidean do-

main have spurred significant interest in extending the capabilities of neural
networks to non-Euclidean domains, such as graphs.

The main objective of the message passing approach is to iteratively find
an effective node embedding that captures context and neighborhood infor-
mation (Gilmer et al., 2017). The message passing technique consists of two
phases which iteratively apply the AGGREGATE and UPDATE function
to compute embeddings hℓ

i at the layer ℓ based on message m
(ℓ)
i containing

information on neighbors :

m
(ℓ)
i = AGGREGATE(ℓ)

(
h
(ℓ−1)
i ,

{
h
(ℓ−1)
j j ∈ N (i)

})
,

hℓ
i = UPDATE(ℓ)

(
h
(ℓ−1)
i ,m

(ℓ)
i

) (1)

For GCN (Kipf and Welling, 2017) mℓ
i =

∑
j∈N (i)

hℓ
j√

|N (i)||N (j)|
,

while for GAT (Veličković et al., 2018) mℓ
i =

∑
j∈N (i) a

ℓ
ij hj, with :

a
(ℓ)
ij =

exp
(
LeakyReLU(z(ℓ) · [h(ℓ−1)

i W(ℓ)||h(ℓ−1)
j W(ℓ)])

)∑
j∈Ni

exp
(
LeakyReLU(z(ℓ) · [h(ℓ−1)

i W(ℓ)||h(ℓ−1)
j W(ℓ)])

)
where || stands for concatenation. This score is parameterised by z(l) and
W(l), respectively a weight vector and a linear transformation.

As classical MPNNs only send messages along the edges of the graph,
this will prove particularly interesting when adjacent nodes in the graph
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share the same label (homophilic case). On the other hand, working in a
heterophilic environment with classical MPNNs can leads to low performance
(Zheng et al., 2022). Indeed one of the main drawbacks of classical MPNNs
is to rely only on one-hop message propagation. Additional layers must
be stacked to capture non-local interactions. However, this leads to over-
squashing discussed in the section 2.5.

2.3. Graph Curvature
As for a manifold, the notion of curvature is a good way to classify the

local behavior of a graph. The Ricci curvature of a manifold can be char-
acterized by the concept of "geodesic dispersion," indicating whether two
parallel geodesics originating from nearby points converge, remain parallel
(Euclidean case), or diverge (indicating negative curvature and giving rise to
hyperbolic geometry). To analogize geodesic dispersion on graphs, consider
an edge eij and two edges emanating from nodes i and j. To draw the anal-
ogy with discrete spherical geometry, these edges would intersect at another
node, forming a triangle (a 3-clique). In a discrete Euclidean geometry, the
edges would persist in parallel, creating a rectangle (4-cycle) based on eij
(a grid). Finally, in a discrete hyperbolic geometry, the mutual distance be-
tween the ends of the edges would increase concerning that of i and j, related
to the structure of a tree.

More generally discrete graph curvature describes how the neighbors of
two nodes are structurally connected. (Forman, 2003) and (Ollivier, 2007)
were the first to propose a measure of discrete graph curvature. Numerous
studies have demonstrated the usefulness of edge curvature for various graph
tasks. For instance (Jost and Liu, 2014) (Ni et al., 2019) (Sia et al., 2019)
use Ollivier curvature for community detection.
Another work (Ye et al., 2019) defined Curvature Graph Neural architecture
which calculates an attention mechanism based on Ollivier curvature. They
demonstrate the benefits of such an architecture for the task of node clas-
sification. More recently, (Jost and Liu, 2014) and (Topping et al., 2022)
proposed extensions to Forman’s curvature to improve its expressiveness.
(Topping et al., 2022) demonstrate the correlation between edge curvature
and over-squashing phenomenon. In this paper, we focus on the best known
discrete curbature, Ollivier curvature (Ollivier, 2007), Augmented Forman
Curvature and Balanced Forman Curvature as detailed in Section 2.4.

Illustration of graph curvature are provide in Figure 1.
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(1)
(2)

Figure 1: In red, edges with positive curvature,connect nodes in the same community,
and in blue, edges with negative curvature connect nodes in different communities. Edge
Curvature Measures using Augmented Forman Curvature (AFC) and Ollivier Curvature
(O) on edge (1) and (2) is AFC((1)) = −4 and AFC((2)) = 1 O((1)) = −0.5 and
O((2)) = 0.25.

2.4. Curvature measures
In this paper, we use the curvature of graphs by employing three estab-

lished definitions of edge curvature in the context of information diffusion:
Ollivier curvature (Ollivier, 2007), Augmented Forman Curvature (Samal
et al., 2018), Balanded Forman Curvature (Topping et al., 2022). We pro-
vide a exemple of edge curvature value on Figure 1.

Ollivier Curvature. Let’s define a probability distribution µi over the
nodes of the graph such that we apply to each node i a lazy random walk
probability measure α :

µi : j 7→


α if j = i

(1− α)/di if j ∈ N (i)
0 otherwise

, (2)

Following previous work (Ni et al., 2015) (Ni et al., 2018) we choose α = 0.5.
We then consider the Wasserstein distance of order 1, W1(i, j), correspond-
ing to the optimal transport of probability masses from i neighbors to j
neighbors.

W1 (µi, µj) = inf
α∈Π(µi,µj)

∑
i,j∈V

dist (i, j)M (i, j) (3)
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where Π(µ1, µ2) denotes the set of probability measures with marginals µi

and µj. where M (i, j) is the amount of mass moved from i to j along the
shortest path of i and j.
Finally, the Ollivier curvature cij of an edge eij can be defined as :

cij = 1− W1 (µi, µj)

dist (i, j)
, (4)

where dist(i, j) is the shortest path beetween node i and node j.

Augmented Forman Curvature. The curvature measure proposed by (Samal
et al., 2018) proposes to extend Forman’s curvature taking into account the
triangles in the graph.

For an undirected graph :

cij = 4−Dii −Djj + 3m, (5)

where m is the number of triangles that contain eij.

Balanced Forman Curvature. (Topping et al., 2022) proposes a more
expressive combinatorial measure than augmented Forman, which can only
distinguish triangles considering cylce :

cij =
2

Dii

+
2

Djj

− 2 + 2
m

max {Dii, Djj}
+

m

min {Dii, Djj}
+

(Γmax)
−1

max {Dii, Djj}
(γi + γj)

(6)

where Γmax(i, j) is the maximal number of 4-cycles based at eij, and γi is the
number of 4-cycles based at eij without diagonals inside.

2.5. Over-squashing
Long-range tasks need the propagation of information across several lev-

els. The node representations are aggregated with others at each stage before
being passed on to the next node. Because the size of the node feature vec-
tors remains constant, they rapidly exhaust their representational capacity
in order to retain all of the previously integrated information. When an ex-
ponentially expanding quantity of information is squashed into a fixed-size
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i

Figure 2: A

i

Figure 3: C

i

Figure 4: D

Figure 5: On the left a classic message passing for the first (A) starting from a given
node i. On the right an example of one-hop positive curvature (C) and two-hop positive
curvature (D) message passing. The message is propagated not only to the adjacent nodes
but also to those at distance two along positively curved edges i.e following a chain of
positively curved edges of size 2.

vector, over-squashing happens (Alon and Yahav, 2021).

To quantify this phenomenon, some approaches exploit the spectral gap
(Banerjee et al., 2022) (Karhadkar et al., 2023), which is closely linked to
the Cheeger constant (Chung and Graham, 1997).

Ch(G) = min
1≤|S|≤ |V |

2

|∂S|
|S|

, (7)

with S ⊂ V and where ∂S = {(i, j) : i ∈ S, j ∈ S, (i, j) ∈ E}

If Cheeger’s constant is small, there is a bottleneck structure in the sense
that there are two large groups of vertices with few edges connecting them.
Cheeger’s constant is large if a feasible vertex split into two subsets has
"many" edges between these two subsets.
Calculating the precise value of Ch(G) is too costly. The discrete Cheeger
inequality (Alon and Milman, 1984) (Cheeger, 1970) shows the link between
the spectral gap and the Cheeger constant. The spectral gap of G is the
difference between the first two eigenvalues λ2 - λ1 of L with λ1 = 0.
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λ2

2
≤ Ch(G) ≤

√
2λ2 (8)

To mitigate the over-squashing phenomenon different works have proposed
various methods to improve the local connectivity of the graph.

Rewiring methods. Most methods address over-squashing by rewiring the
input graph i.e. modifying the original adjacency matrix such that it has
fewer structural bottlenecks. The work (Alon and Yahav, 2021) were the
first to highlight the problem of GNN over-squashing. They propose to mod-
ify the GNN’s last layer in order to connect all of the nodes. (Topping et al.,
2022) shows that the highly negatively curved edges are characteristic of the
bottleneck phenomenon and therefore disrupt message passing. They pro-
pose a stochastic discrete Ricci Flow (SDRF) rewiring approach, which tries
to raise the balanced Forman curvature of negatively curved edges by adding
and removing edges. BORF, as presented by (Nguyen et al., 2023), estab-
lishes a connection between edges exhibiting very high positive curvature.
Consequently, it suggests a strategy of removing and adding edges to avoid
edges with strongly negative and positive curvatures, aiming to simultane-
ously mitigate both over-squashing and over-smoothing. This is achieved by
leveraging the curvature of Ollivier. (Karhadkar et al., 2023) propose an al-
gorithm (FOSR) for adding edges at each step to maximize the spectral gap.
Because calculating the spectral gap for each edge addition is costly, FOSR
employs a first-order spectral gap approximation based on matrix perturba-
tion theory.
Without the direct objective of reducing the phenomenon of over-squashing,
other methods such as (Klicpera et al., 2019) modify the adjacency matrix
to improve the connectivity of the graph (DIGL). This method adds edges
based on the PageRank algorithm, followed by sparsification. As PageRank
works using random walks, DIGL tends to improve the connectivity among
nodes in the intra-community parts of the graph.

Master node. Another way to reduce over-squashing consists of the intro-
duction of a sort of "global context" by introducing a master node. This node
is connected to all other nodes in the graph (Battaglia et al., 2018) (Gilmer
et al., 2017). Since the hop distance between all other nodes is at a maxi-
mum of two, the reduction of over-squashing is assured (except for the master
node). However, in large graphs, incorporating information over a very large
neighborhood leads to poor quality of the master node embedding.
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Expander Graphs. Another work (Deac et al., 2022) adopt a strategy based
on expander graphs, adding to the GNN a layer based on a Cayley graph of
the same size as the original input graph. These graphs have some desirable
properties, such as being sparse and having a low diameter. The smaller
diameter means that any two nodes in the graph can be reached in a reduced
number of hops, which removes bottlenecks.

3. Curvature Message Passing

We propose a novel method that introduces a homophily measure con-
strained by graph edge curvature, enabling selective information flow along
edges with distinct curvature values. Our main contribution is the develop-
ment of a flexible framework that dynamically reshapes the graph by strate-
gically adding or filtering edges to enhance homophily. This approach not
only improves information propagation but also facilitates efficient network
restructuring. Moreover, our method is compatible with any Message Passing
Neural Network (MPNN) architecture, making it a versatile tool for refining
node features through the use of curvature information.

Our framework integrates three existing methods for calculating graph
edge curvature but can also accommodate alternative structural indicators,
offering added flexibility for analysis. In this section, we first introduce a new
homophily measure that incorporates edge curvature, followed by a detailed
presentation of the Curvature-Constrained Message Passing framework.

3.1. Curvature-Constrained Homophily
The homophily of a graph has a determining role in the efficiency of

architectures on a node classification task. Many homophily measures exist
in literature (Pei et al., 2020) (Zhu et al., 2020) (Lim et al., 2021) (Platonov
et al., 2022); the most commonly used are node homophily (Pei et al., 2020)
which computes the average of the proportion of neighbors that have the
same class y for each node and edge homophily β (Zhu et al., 2020) which
corresponds to the fraction of edges that connect nodes of the same class:

β =
|{(i, j) : (i, j) ∈ E ∧ yi = yj}|

|E|

The main limitation of this measure is that it doesn’t fully capture the local
structural characteristics of the graphs. Therefore, we propose a new measure
of homophily that takes into account the curvature of edges such that:
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β+ =
|{(i, j) : (i, j) ∈ E+ ∧ yi = yj}|

|E+|
Where E+ is the set of edges (i, j) such that cij ≥ ϵ. β− is conversely defined
using E−, the set of edges (i, j) such that cij < ϵ. A high value for the
positive curvature homophily means that the fraction of edges that connect
nodes within the same community tend to have the same label.
The values of β+ and β− derived from the datasets are presented in Ta-
ble 1 (refer to Table 2 for specific dataset details) using Ollivier-curvature-
constrained homophily. In our experiments, we set ϵ = µ for both one-hop
and two-hop neighborhoods, where µ represents the mean curvature of the
graph’s edges. We also provide the max homophilic gain relative to the
initial metrics (Zhu et al., 2020). Please note that details on Augmented
Forman curvature-constrained homophily and Balanced Forman curvature-
constrained homophily can be found in Appendix Appendix A.2.

Max
Dataset β β+ β− 2-hopβ+ 2-hopβ− Homophilic Gain

Heterophilic

Squirrel 0.23 0.24 0.25 0.21 0.23 7%
Chameleon 0.26 0.30 0.26 0.33 0.29 28%

Texas 0.31 0.43 0.45 0.52 0.46 69%
Wisconsin 0.36 0.42 0.53 0.44 0.36 48%

Cornell 0.34 0.47 0.50 0.33 0.36 46%
Romain-empire 0.29 0.43 0.48 0.05 0.07 67%

Actor 0.32 0.37 0.42 0.21 0.21 30%

Homophilic

Cora 0.84 0.94 0.82 0.90 0.72 11%
Citeseer 0,81 0.86 0.83 0.78 0.76 10%

Photo 0.84 0.93 0.72 0.93 0.51 11%
Computers 0.78 0.90 0.64 0.90 0.59 16%

Table 1: Comparison of edge homophily measures. The last column reports the max gain
in homophily obtained by using the curvature-constrained edge homophily as opposed to
edge homophily.

In homophilic datasets, we observe that β+ ≥ β, indicating that intra-
community nodes in the graph tend to exhibit more similar labels (on positive
curvature edges) than their inter-community counterparts (on negative cur-
vature edges).
In the case of heterophilic datasets, leveraging positively curved edges does
not enhance homophily. As suggested in (Zhu et al., 2020), for heterophilic
graphs, the 2-hop scenario is more homophilic than the 1-hop. However, our
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analysis reveals that, based on curvature-constrained edge homophily, adopt-
ing a two-hop neighborhood is significantly advantageous only for smaller
datasets, such as the WebKB dataset. Notably, negative curvature homophily
generally surpasses the initial metrics for heterophilic datasets.

3.2. Curvature-Constrained Message Passing
Based on the previously introduced curvature-constrained homophily mea-

sures, we propose to dissociate the spread of information in the graph based
on the curvature of the graph edges. We consider diffusions for both one-hop
and two-hop connectivity (see the examples in Figure 5).
We propose to extend the aggregation part of the classic MPNNs 1 :

h
(ℓ)
i = UPDATE(ℓ)

(
h
(ℓ−1)
i ,AGGREGATE(ℓ)

({
h
(ℓ)
j : j ∈ N+(i)

}))
(9)

Where N+ represents the neighborhood of nodes that are connected by a
positively curved edge to i. Diffusing information only on edges with positive
curvature allows information to be exchanged only within the communities
of the graph. Based on the curvature-constrained homophily used positive
curvature adjacency matrix can be useful on homophilic datasets.
Similarly, Curv−mi

is defined in the same way by considering N− instead of
N+. As discussed by (Deac et al., 2022) working with negatively curved edges
may seem counterintuitive in relation to the recommendation to avoid nega-
tively curved edges (Topping et al., 2022). We confirm the results of (Deac
et al., 2022) by showing empirically that diffusing information through neg-
atively curved edges improves performance and mitigates the oversquashing
phenomenon.
Propagating information through the curvature of edges offers greater flex-
ibility in learning representation. For a two-layer GNN, we can either only
exchange information on edges with negative or positive curvature i.e. us-
ing one curvature adjacency matrix, or first broadcast information on edges
with positive and then negative curvature, or using both curvature adjacency
matrix for the two different layers.

One-hop curvature. Utilizing a one-hop curvature neighborhood allows us
to selectively distribute information solely to edges exhibiting a particular
curvature. By excluding either edges with negative curvature or positive
edges, we streamline the connectivity of the graph. In this scenario, the

12



value of W1 (µi, µj) in Equation 3 decreases, effectively reducing the count
of strongly negatively curved edges (Topping et al., 2022) that often act as
bottlenecks.

Furthermore, sparsifying the graph offers several advantages: (1) it aids
in mitigating oversmoothing concerns (Rong et al., 2019), (2) significantly
decreases the graph’s diameter, thus reducing the number of hops required
to connect two nodes and preventing over-squashing issues (Deac et al., 2022).
Our empirical findings demonstrate that employing a one-hop strategy proves
beneficial in constraining bottlenecks, as evidenced by an increase in the
normalized spectral gap following the rewiring process.

Two-hop curvature. Leveraging a multi-hop neighborhood addresses a
limitation in classical Message Passing Neural Networks (MPNNs), where
nodes can only communicate directly with their neighbors. By expanding
the graph connectivity through multiple hops, information transmission be-
comes possible even with nodes that are distant (Brüel-Gabrielsson et al.,
2022)(Abboud et al., 2022). This approach eliminates the need to iterate
messages across powers of the adjacency matrix, mitigating the risk of over-
squashing (Topping et al., 2022).

However, depending on the graph’s size, this may significantly escalate the
computational cost of the method proposed by Gutteridge et al. (Gutteridge
et al., 2023). By focusing solely on a two-hop neighborhood based on a
specific curvature of the edges, it becomes feasible to restrict the graph’s
densification. This not only reduces the computational burden of the two-hop
approach but also facilitates efficient information exchange between distant
nodes.

Utilizing one-hop and two-hop curvature across layers. It’s essential
to bear in mind that when the distance k between nodes i and j surpasses
one, their interaction is confined to the kth layer.

In the realm of two-layer Graph Neural Networks (GNNs), the integra-
tion of one-hop and subsequently two-hop curvature between layers expedites
interactions between distant nodes. This strategy restricts dynamic rewiring
message passing (Gutteridge et al., 2023) to either positive or negative cur-
vatures, as demonstrated in (Gutteridge et al., 2023), effectively mitigating
concerns related to over-squashing.

This tailored framework not only accelerates information exchange but
also addresses a key limitation of the paper—its exclusive suitability for very
deep GNN models—by imposing constraints on the dynamic rewiring process.
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4. Experiments

We carried out experiments on the eleven different node classification
datasets for which we presented the homophily measures in Table 1 and
compared the results obtained by our proposed method to four other methods
based on rewiring techniques.

4.1. Datasets
We provide a detailed overview of the datasets used in our study, which in-

clude 7 heterophilic datasets and 4 homophilic datasets. The current datasets
vary in size and have very different structures.

• WebKB: This dataset consists of pages from Cornell, Texas, and Wis-
consin, where nodes represent web pages and edges denote hyperlinks
between them. Node features are represented using a bag-of-words
model based on the content of the web pages. The classification labels
include student, project, course, staff, and faculty.

• Actor: In this dataset, each node represents an actor, and an edge
between two nodes indicates their co-occurrence on the same Wikipedia
page (Tang et al., 2009). Node features are derived from keywords
found in the corresponding Wikipedia pages. The goal is to classify
the nodes into five distinct categories.

• Wikipedia Network: The Squirrel and Chameleon datasets are in-
cluded in this category, where nodes represent web pages and edges
indicate mutual links between these pages (Rozemberczki et al., 2021).
Node features correspond to informative nouns extracted from the
Wikipedia pages. The nodes are categorized into five classes based
on their popularity, defined by the average monthly traffic of each web
page.

• Roman Empire: This dataset is based on the article about the Roman
Empire from English Wikipedia, which is one of the longest articles
available (Platonov et al., 2023). Each node corresponds to a word in
the text. An edge connects two words if they either follow each other
in the text or are linked in the dependency tree of a sentence. The
classification for each node is determined by its syntactic role.
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• Scientific Publication Networks: The Cora and Citeseer datasets
(Sen et al., 2008) describe citations among scientific publications. Each
publication is represented by a binary bag-of-words model indicating
the presence or absence of specific words in the publication’s abstract.
The classes correspond to the categories of the publications.

• Amazon: This dataset includes two subsets, Amazon Computers and
Amazon Photo, derived from the Amazon purchase graph (McAuley
et al., 2015). Nodes represent products, while edges indicate whether
two products are frequently purchased together. The features are the
bags of words from the product descriptions, and the classes represent
different product categories.

The statistics for these datasets are summarized in Table 2. Additionally,
we present the construction time of the curvature matrix using both Ollivier
(O) and Augmented Forman (AF) methods (measured in seconds).

Scalability. Our method, based on Augmented Forman Curvature, demon-
strates superior scalability compared to most graph rewiring techniques.
The computational complexity of Balanced Forman Curvature is O(|E|d2max),
where dmax is the maximum node degree, making it significantly more resource-
intensive than both Ollivier and Augmented Forman curvature. As a result,
the Balanced Forman curvature calculations required GPU acceleration to
achieve practical efficiency.

Our results show that Augmented Forman Curvature is far more compu-
tationally efficient than Ollivier Curvature, especially on larger graphs. For
instance, on the penn94 dataset (Lim et al., 2021) (with 41,554 nodes and
1,362,229 edges), the Augmented Forman Curvature was computed in just
675 seconds, while Ollivier Curvature ran out of memory (OOM) with 12GB
of RAM

4.2. Baseline
We use the two most popular GNNs, GCN (Kipf and Welling, 2017) and

GAT (Veličković et al., 2018) as a basis and we compare our method with four
other methods based on structural rewiring techniques (Attali et al., 2024).
We provide the results of FA (Alon and Yahav, 2021), DIGL (Klicpera et al.,
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Dataset # Nodes # Edges # C O-time AF- time
Squirrel 5021 217073 5 ≈ 836 ≈202
Chameleon 2277 36101 5 ≈ 11 ≈9
Texas 181 309 5 ≈ 1 ≈1
Wisconsin 251 499 5 ≈ 1 ≈1
Cornell 181 295 5 ≈ 1 ≈1
R-empire 22662 32927 18 ≈ 75 ≈2
Actor 7600 33544 5 ≈ 10 ≈ 4
Cora 2 708 5 429 7 ≈ 2 ≈ 1
Citeseer 3 312 4 715 6 ≈ 3 ≈ 1
Computers 13752 245861 10 ≈ 287 ≈ 135
Photo 7650 119081 8 ≈ 61 ≈34

Table 2: Number of nodes (# Nodes), edges (# Edges) and node labels (#C ) for each
dataset. We also show the computation time (in seconds) for Ollivier (O-time) and Aug-
mented Forman (AF-time) curvatures on the graphs.

2019)2, SDRF(Topping et al., 2022)3, FOSR(Karhadkar et al., 2023)4 and
BORF (Nguyen et al., 2023). 5.
For SDRF, we use the hyperparameters that have been defined in the original
publication and fine-tune the number of iterations. For FOSR, we fine-tuned
the number of iterations. For BORF, we fine-tuned the top values from
the sets of the number of batches n {1, 2, 3}, the number of edges added
per batch h {10, 20, 30, 40}, and the number of edges removed per batch
k {10, 20, 30, 40}. For DIGL we fine tune top k for {8, 16, 32, 64, 128} and
{0.05, 0.1, 0.15} for the personalized PageRank (Page et al., 1998).

4.3. Setup
For the experiments we use the same framework as (Pei et al., 2020) ,(At-

tali et al., 2024) to evaluate the robustness of each method. Thus, we fix the
number of layers to 2, the dropout to = 0.5, learning rate to 0.005, patience
of 100 epochs, weight decay of 5E−6 (Texas, Wisconsin and Cornell) or 5E−5

(other datasets). The number of hidden states is 32 (Texas, Wisconsin and

2https://github.com/gasteigerjo/gdc
3https://github.com/jctops/understanding-oversquashing/tree/main
4https://github.com/kedar2/FoSR/tree/main
5https://github.com/hieubkvn123/revisiting-gnn-curvature
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Cornell), 48 (Squirrel, Chameleon and Roman-Empire), 32 (Actor) and 16
(Cora and Citeseer) except for Amazon Photo and Computers where the
hidden states is 64 and we use a learning rate of 0.01 following the usual
framework presented in (Shchur et al., 2018).

For all the graphs datasets we take a random sample of nodes of 60% for
training, and 20% for validation and 20% for testing. We report the average
accuracy of each method on 100 random samples.

Curvature-Constrained Message Passing (CCMP). We first calculate

the average curvature over all graph edges µ =

∑
{i,j|Aij=1} cij

|E| . Then, we can
split the adjacency matrix A into two adjacency matrices A+ and A− such as:
A+

ij = 1 if cij ≥ µ and A−
ij = 1 if cij ≤ µ. For each dataset, we then choose

to propagate the messages either along the positive or negative edges (i.e; we
choose A+ or A− as adjacency matrix), depending on which one presents the
highest gain compared to the average homophily of the original graph (as
it can be seen in Table A.9). We also choose a 1-hop or a 2-hop strategy
depending on the size of the graph. 2-hops strategies are well adapted to
the small datasets, such as Cornell, Wisconsin and Texas; therefore, we use
2-hop in this case.

We indicate the Olliver curvature with CCMPO, the augmented Forman
curvature with CCMPAF and the Balanced Forman with CCMPBF .

Method Cora Citeseer Photo Computers
Base(GCN) 87.73 ±0.25 76.01 ±0.25 89.89 ±0.37 80.45 ±0.56

DIGL 88.22 ±0.28 76.18 ±0.34 90.31 ±0.43 83.04±0.43
FA 29.86 ±0.28 22.31 ±0.34 OOM OOM

SDRF 87.73 ±0.31 76.43±0.32 ≥ 24H ≥ 24H
FOSR 87.94±0.26 76.34 ±0.27 90.24 ±0.31 80.78 ±0.43
BORF 87.80 ±0.26 76.49 ±0.28 ≥ 24H ≥ 24H

CCMP0 85.34 ±0.29 75.53±0.29 90.30 ±0.35 82.40 ±0.43
CCMPAF 85.60 ±0.37 75.76 ±0.39 90.31 ±0.38 81.84 ±0.45
CCMPBF 86.01±0.32 75.79 ±0.41 89.31 ±0.32 82.67 ±0.44

Table 3: Node classification results on homophilic datasets with GCN as backbone. The
top three accuracy are coloured as First, Second and Third, respectively.

4.4. Results
Tables 5, 6, 3 and 4 present the results of our experiments.
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Method Cora Citeseer Photo Computers
Base(GAT) 87.65 ±0.24 76.08 ±0.27 88.76 ±0.39 80.72 ±0.53

DIGL 88.31 ±0.29 76.22 ±0.34 90.32±0.46 83.28 ±0.49
FA 30.44 ±0.26 23.11 ±0.32 OOM OOM

SDRF 88.11 ±0.28 76.16 ±0.31 ≥ 24H ≥ 24H
FOSR 88.13 ±0.27 75.94±0.32 90.12 ±0.41 80.78 ±0.51
BORF 87.72±0.27 76.44 ±0.33 ≥ 24H ≥ 24H

CCMPO 84.82 ±0.28 75.82±0.30 89.57 ±0.33 81.97 ±0.47
CCMPAF 86.16 ±0.32 76.18 ±0.44 89.88 ±0.22 81.96 ±0.51
CCMPBF 87.39 ±0.34 75.79 ±0.34 89.21 ±0.29 81.98 ±0.49

Table 4: Node classification results on homophilic datasets with GAT as backbone. The
top three accuracy are coloured as First, Second and Third, respectively.

Chameleon Squirrel Actor Texas Wisconsin Cornell R-Empire
Base (GCN) 65.35±0.54 51.30±0.38 30.02±0.22 56.19 ±1.61 55.12±1.51 44.78 ±1.45 51.66 ±0.17
DIGL 54.82 ±0.48 40.53 ±0.29 26.75 ±0.23 45.95 ±1.58 46.90 ±1.28 44.46 ±1.37 53.93 ±0.14
FA 26.34 ±0.61 22.88 ±0.42 26.03±0.30 55.93 ±1.76 46.77±1.48 45.33±1.55 OOM
SRDF 63.08 ±0.37 49.11±0.28 31.85 ±0.22 59.79 ±1.71 58.49 ±1.23 47.73 ±1.51 52.53 ±0.13
FOSR 67.98 ±0.40 52.63 ±0.30 29.26±0.23 61.35 ±1.25 55.60 ±1.25 45.11 ±1.47 52.38 ±0.21
BORF 65.35 ±0.51 ≥ 24h 31.36±0.27 56.30±1.45 55.37±1.47 46.81±1.56 52.94 ±0.21

CCMPO 61.22 ±0.45 53.34 ±0.33 32.55±0.22 69.38±1.81 66.04±1.31 58.91 ±1.82 58.14 ±0.17
CCMPAF 65.66 ±0.44 54.79±0.33 34.59±0.24 69.67 ±1.64 67.80 ±1.49 58.95 ±1.63 58.91 ±0.19
CCMPBF 62.29 ±0.49 53.04 ±0.41 32.90±0.28 68.59 ±1.99 64.37 ±1.42 59.41 ±1.57) 58.13 ±0.15

Table 5: Node classification results on heterophilic datasets with GCN as backbone.
The top three accuracy results are coloured as First, Second and Third, respectively.

Chameleon Squirrel Actor Texas Wisconsin Cornell R-Empire
Base (GAT) 65.07 ±0.41 50.87 ±0.56 29.92 ±0.23 56.84 ±1.61 53.58 ±1.39 46.05 ±1.49 49.23 ±0.33
DIGL 56.34 ±0.43 41.65 ±0.68 31.22 ±0.47 46.49 ±1.63 46.29 ±1.47 44.05 ±1.44 53.89 ±0.16
FA 27.11 ±0.56 21.49 ±0.71 28.20 ±0.51 56.17 ±1.71 46.95 ±1.52 44.60 ±1.74 OOM
SRDF 63.15 ±0.44 50.36 ± 0.38 31.47 ±0.25 57.45 ±1.62 56.80 ±1.29 48.03 ±1.66 50.75 ±0.17
FOSR 66.61 ±0.45 52.02 ±0.43 29.73 ±0.24 61.85 ±1.41 54.06 ±1.27 48.30 ±1.61 49.54 ±0.31
BORF 66.92 ±0.60 ≥ 24h 29.64 ±0.33 56.68 ±1.49 55.39 ±1.23 48.57 ±1.56 51.03 ±0.26

CCMPO 62.86 ±0.52 52.69 ±0.34 32.32 ±0.27 73.81 ±1.29 65.71±1.23 60.03 ±1.41 56.83 ±0.19
CCMPAF 65.59 ±0.43 54.74 ±0.52 34.23 ±0.23 70.65 ±1.36 68.59 ±1.41 59.81 ±1.49 56.78 ±0.39
CCMPBF 64.91 ±0.54 51.67 ±0.48 32.28 ±0.25 72.73 ±1.45 67.71 ±1.22 61.01 ±1.61 57.10 ±0.22

Table 6: Node classification results on heterophilic datasets with GAT as backbone.
The top three results are coloured as First, Second and Third, respectively.

Homophilic datasets. Table 3 and Table 4 show that the rewiring strate-
gies aimed at mitigating over-squashing do not improve significantly the re-
sults on homophilic dataset, in comparison to the GCN and GAT baselines.
Given the characteristics of the graphs, this is an expected result. DIGL,
on the other hand, obtains the best results on three datasets over four. The
reason is that DIGL improves connectivity among nodes with short diffusion
paths. This rewiring process allows to add positively curved edges that im-
prove the connectivity of nodes that share the same label according to the
value of β+ in Table A.9.
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Heterophilic datasets. As shown in Tables 5 and 6, our method (CCMP)
achieves the best results for six out of seven heterophilic datasets. CCMPO,
CCMPAF , CCMPBF on average, exceed the results obtained on the original
adjacency matrix with a basic GCN and GAT by 14.24%, 16.55%, and 13,92%
respectively. It can be noted that this result holds no matter which curvature
is chosen for our CCMP method. Therefore, AF+CCMP seems the best
compromise considering the computational costs (see Table 7) and the overall
performance: it is the best method in 3 datasets over 7, and among the top
3 choices for the other 4.
Regarding the other methods, as expected on heterophilic datasets the SDRF,
FOSR and BORF methods improve performance compared to the baseline
and also outperform DIGL due to the tendency of neighboring nodes to have
different labels.

Computational Costs. Utilizing a one-hop curvature allows the reduction
of the graph size. Table 7 shows the average run execution time using CCMP
and the base GCN. The results show an important decrease in execution time
in particular for the larger graphs.

CCMPO CCMPAF CCMPBF

Chameleon -29.8% -31.4% -26.2%
Squirrel -24.2% -19.2% -2.8%

Actor -6.2% 8.2% 1.6%
Roman-Empire -37.9% -10.3% -27.7%

Cora -5.6% -10.1% -8.2%
Citeseer -6.7% -0.7% -4.4%

Photo -23.1% -15.8% -31.6%
Computers -28.8% -4.8% -28.9%

Table 7: Comparison of the execution time for the average of the runs according to the
datasets using CCMP and the base GCN. In bold where the execution time is lower than
the original method.
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Properties of the rewired graph. To show that our approach does indeed
mitigate over-squashing, we present the evolution of the normalized spectral
gap compared to the original graph in Table 8. In general, regardless of
the curvature used we observe that the spectral gap of rewired graph is
higher than that of the original graph. Consequently, the resulting graph has
fewer bottleneck structures, thereby enhancing the overall quality of signal
propagation across nodes.

O + O - AF + AF - BF + BF -
Cham. 46.7% 18.8% 16.2% 63.1% 63.8% 23.2%

Squi. 58.4% 6.6% 1.0 42.8% 72.3% 9.7%
Actor 31.0% 56.6% 5.7 384.1% 25.1% 74.2%
Texas -23.6% -1.0% -14.3% -19.7% -21.8% -5.3%
Wisc. 7.0% 37.4% -22.6% -5.1% -7.7% -14.8%

Cornell -18.9% 12.0% -7.4% 23.5% -17.21% 9.6%
R-Emp 34.1% 86.2% 103 15.4% 53.2% 38.2%

Table 8: Evolution of the normalised spectral gap as a function of curvature. In bold, the
curvature used in our experiments.
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5. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduce a methodology applicable to any Message
Passing Neural Network (MPNN) architecture, enabling the distribution of
messages based on the curvature of the graph’s edges. This innovative ap-
proach addresses over-squashing, a prominent limitation in classical MPNN
architectures. By incorporating a novel curvature-constrained homophily
metric, we have purpose various method variants for propagating informa-
tion along curved edges, encompassing propagation along negative or pos-
itive edges, with either one or two hops. Our experiments demonstrate a
substantial enhancement compared to equivalent state-of-the-art methods
that utilize rewiring, empirically validating the efficacy of curvature-based
constraints in message passing for bottleneck reduction.

In future research, we want to study the effect of using very deep GNN
models with different curvature adjacency matrices for long-range graph
benchmarks. We also plan to create a new attention mechanism by taking
into account not only the features of the nodes but also the local structure
of the graph via the curvature of the edges of the graph.
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Appendix A. Appendices

Appendix A.1. Details of configuration for CCMP
• The optimal configurations for CCMPO is:

(1) for Cora, Citeseer,Amazon photo, Amazon Computers and Chameleon
a one-hop positively curved adjacency matrix for both layers. (2) for
Texas, Wisconsin and Cornell, a two-hop negatively curved adjacency
matrix for both layers. (3) for Squirrel, Actor, Roman-Empire datasets,
a negatively curved one-hop adjacency matrix on two layers,

• The optimal configurations for CCMPAF is:

(1) for Cora, Citeseer, Amazon photo, Amazon Computers, Chameleon
and Squirrel a one-hop positively curved adjacency matrix for both lay-
ers. (2) for Texas, Wisconsin and Cornell, a two-hop negatively curved
adjacency matrix for both layers. (3) For Actor and Romain-empire we
use a negatively curved one-hop adjacency matrix on two layers.

• The optimal configurations for CCMPBF is:

(1) for Cora, Citeseer, Amazon photo and Amazon Computers a one-
hop positively curved adjacency matrix for both layers. (2) for Texas,
Wisconsin and Cornell, a two-hop negatively curved adjacency matrix
for both layers. (3) For Chameleon, Squirrel, Actor and Romain-empire
we use a negatively curved one-hop adjacency matrix on two layers,

Appendix A.2. Homophily of datasets according to curvature
Here we specify the details of the Curvature-Constrained homophily used

in the experiments for our rewiring methods for layers 1/2.
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Dataset β β-CCMPO β-CCMPAF β-CCMPBF

Heterophilic

Squirrel 0.23/0.23 0.28/0.28 0.24/0.24 0.24/0.24
Chameleon 0.26/0.26 0.29/0.29 0.28/0.28 0.31/0.31

Texas 0.31/0.31 0.47/0.47 0.56/0.56 0.47/0.47
Wisconsin 0.36/0.36 0.38/0.38 0.42/0.42 0.38/0.38

Cornell 0.34/0.34 0.40/0.40 0.39/0.39 0.41/0.41
R-empire/ 0.29/0.29 0.48/0.48 0.33/0.33 0.41/O.41

Actor 0.32/0.32 0.73/0.73 0.64/0.64 0.36/0.36

Homophilic

Cora 0.84/0.84 0.95/0.95 0.98/0.98 0.93/0.93
Citeseer 0.81/0.81 0.86/0.86 0.89/0.89 0.83/0.83

Photo 0.84/0.84 0.94/0.94 0.89/0.89 0.92/0.92
Computers 0.78/0.78 0.93/0.93 0.83/0.83 0.86/0.86

Table A.9: Comparison of edge homophily measures. The last column reports the max
gain in homophily obtained by using the curvature-constrained edge homophily as opposed
to edge homophily.
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