Geometric Features and GAT Neural Network for Protein Surface Classification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Geometric Features and GAT Neural Network for Protein Surface Classification

Résumé

Proteins are dynamic macromolecules with evolving 3D shapes, making classification challenging. We introduce a novel method that estimates local principal curvatures at each mesh vertex to capture key geometric features of protein surfaces. Features are represented as a graph and classified using double-headed graph attention networks (GATs). Our approach emphasizes the importance of surface characteristics in biological function, offering a systematic framework for protein surface analysis and classification.
Fichier non déposé

Dates et versions

hal-04741052 , version 1 (17-10-2024)

Identifiants

Citer

Wissam Ferroudj, Noura Faci, Hamamache Kheddouci. Geometric Features and GAT Neural Network for Protein Surface Classification. Database and Expert Systems Applications (DEXA' 2024), Aug 2024, Naples (Italie), Italy. pp.320-325, ⟨10.1007/978-3-031-68312-1_24⟩. ⟨hal-04741052⟩
5 Consultations
0 Téléchargements

Altmetric

Partager

More