ON THE COEFFICIENTS OF THE ZETA-FUNCTION'S L-POLYNOMIAL FOR ALGEBRAIC FUNCTION FIELDS OVER FINITE CONSTANT FIELDS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

ON THE COEFFICIENTS OF THE ZETA-FUNCTION'S L-POLYNOMIAL FOR ALGEBRAIC FUNCTION FIELDS OVER FINITE CONSTANT FIELDS

Résumé

We give an explicit formula of the coefficients of the Zeta-Function's L-polynomial for algebraic function fields over finite constant fields. Thus, we deduce an expression of the class number of algebraic function fields defined over finite fields. Moreover, we give an application of this formula in the case of the curves of defect 2 defined over F 2 .

Fichier principal
Vignette du fichier
On the coefficients of the $L$-polynomial for algebraic function fields over finite constant fields.pdf (153.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04733558 , version 1 (14-10-2024)

Licence

Identifiants

Citer

Mahdi Mohamed Koutchoukali. ON THE COEFFICIENTS OF THE ZETA-FUNCTION'S L-POLYNOMIAL FOR ALGEBRAIC FUNCTION FIELDS OVER FINITE CONSTANT FIELDS. 2024. ⟨hal-04733558⟩
12 Consultations
2 Téléchargements

Altmetric

Partager

More