Data Assimilation Networks - Archive ouverte HAL
Article Dans Une Revue Journal of Advances in Modeling Earth Systems Année : 2023

Data Assimilation Networks

Réseaux d'assimilation de données

Résumé

Abstract Data Assimilation aims at estimating the posterior conditional probability density functions based on error statistics of the noisy observations and the dynamical system. State of the art methods are sub‐optimal due to the common use of Gaussian error statistics and the linearization of the non‐linear dynamics. To achieve a good performance, these methods often require case‐by‐case fine‐tuning by using explicit regularization techniques such as inflation and localization. In this paper, we propose a fully data driven deep learning framework generalizing recurrent Elman networks and data assimilation algorithms. Our approach approximates a sequence of prior and posterior densities conditioned on noisy observations using a log‐likelihood cost function . By construction our approach can then be used for general nonlinear dynamics and non‐Gaussian densities. As a first step, we evaluate the performance of the proposed approach by using fully and partially observed Lorenz‐95 system in which the outputs of the recurrent network are fitted to Gaussian densities. We numerically show that our approach, without using any explicit regularization technique , achieves comparable performance to the state‐of‐the‐art methods, IEnKF‐Q and LETKF, across various ensemble size.
Fichier principal
Vignette du fichier
J Adv Model Earth Syst - 2023 - Boudier - Data Assimilation Networks.pdf (1.28 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04733065 , version 1 (13-10-2024)

Licence

Identifiants

Citer

Pierre Boudier, Anthony Fillion, Serge Gratton, Selime Gürol, Sixin Zhang. Data Assimilation Networks. Journal of Advances in Modeling Earth Systems, 2023, 15 (4), ⟨10.1029/2022MS003353⟩. ⟨hal-04733065⟩
62 Consultations
4 Téléchargements

Altmetric

Partager

More