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1.  Introduction
1.1.  Context

In Data Assimilation (DA), the time dependent state of a system is estimated using two models that are the 
observational model, which relates the state to physical observations, and the dynamical model, that is used 
to propagate the state along the time dimension (Asch et al., 2016). These models can be written as a Hidden 
Markov Model (HMM).

Observational and dynamical models are described using random variables that account for observation and 
state errors. Hence DA algorithms are grounded on a Bayesian approach in which observation realizations are 
combined with the above statistical models to obtain state predictive and posterior density sequences. This esti-
mation is done in two recursive steps: the analysis updates a predictive density into a posterior one with an incom-
ing observation; and the propagation updates a posterior density into a the next cycle predictive (or prior) density.

DA methods use additional assumptions or approximations to obtain closed expressions for the densities so that 
they can be handled by computers. Historically in the Kalman filter (KF) approach, statistical models are assumed 
to be Gaussian and the physical dynamics are assumed to be linear (Kalman, 1960). Hence, the propagation and 
analysis steps consist in updating mean and covariance matrix of Gaussian densities. A correct estimation of 
the covariance matrices is crucial since they determine to what extent the predictive density will be corrected to 

Abstract  Data Assimilation aims at estimating the posterior conditional probability density functions 
based on error statistics of the noisy observations and the dynamical system. State of the art methods are 
sub-optimal due to the common use of Gaussian error statistics and the linearization of the non-linear 
dynamics. To achieve a good performance, these methods often require case-by-case fine-tuning by using 
explicit regularization techniques such as inflation and localization. In this paper, we propose a fully data 
driven deep learning framework generalizing recurrent Elman networks and data assimilation algorithms. Our 
approach approximates a sequence of prior and posterior densities conditioned on noisy observations using a 
log-likelihood cost function. By construction our approach can then be used for general nonlinear dynamics and 
non-Gaussian densities. As a first step, we evaluate the performance of the proposed approach by using fully 
and partially observed Lorenz-95 system in which the outputs of the recurrent network are fitted to Gaussian 
densities. We numerically show that our approach, without using any explicit regularization technique, achieves 
comparable performance to the state-of-the-art methods, IEnKF-Q and LETKF, across various ensemble size.

Plain Language Summary  Data Assimilation aims at forecasting the state of a dynamical system 
by combining information coming from the dynamics and noisy observations. Bayesian data assimilation uses 
the random nature of a system to predict its states in terms of probability density functions. The calculation 
of these densities is difficult for non-linear dynamical systems. Practical algorithms compute limited statistics 
due to computational cost, but this results in sub-optimal DA algorithms which requires then the use of explicit 
regularization techniques to increase the performance of the algorithm. With the advances in Machine Learning 
(ML) and deep learning, there has been significant increase in the research of using ML for data assimilation to 
decrease the computational cost, or to have better estimation of the state. In this paper, we propose a fully data 
driven algorithm to learn the prior and posterior pdfs conditioned on given observations. Our learning is based 
on a set of trajectories of the model and observations. It aims to correct the pdfs by optimizing likelihood-based 
loss functions in the sense of the Kullback-Leibler (KL) divergence. Numerical experiments show that we 
can obtain similar performance when compared with the IEnKF-Q and LETKF methods, without the need 
of localization and inflation techniques. These numerical results shows the potential advantage of ML based 
algorithms when the used practical algorithms are sub-optimal.
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match observations. In the Ensemble Kalman Filter (EnKF) approach, the covariance matrices are represented by 
a set of sampling vectors to reduce the computational cost of the filter (Evensen, 2009). When EnKF is used with 
a small number of ensembles, the covariance matrix estimation becomes low-rank. This causes some spurious 
correlations in the covariance matrix which are filtered by using regularization techniques such as localization 
and inflation (Asch et al., 2016; Hamill et al., 2001; Houtekamer & Mitchell, 2001). EnKF can be used for nonlin-
ear dynamics, however due to the truncation of the statistics up to the second order, in the limit of large ensembles 
the EnKF filter solution differs from the solution of the Bayesian filter (Le Gland et al., 2011), except for linear 
dynamics and Gaussian statistics. Hence, when using these methods for non-linear and non-Gaussian setting 
there are still open questions in achieving an optimal prediction error in the Bayesian setting.

In this paper, we propose a general supervised learning framework based on Recurrent Neural Network (RNN) 
for Bayesian DA to approximate a sequence of prior and posterior densities conditioned on noisy observations. 
Section  2 explains the sequential Bayesian DA framework with an emphasis on the time invariant structure 
in the Bayesian DA which is the key property for RNNs. The proposed approach, Data Assimilation Network 
(DAN), is then detailed in Section 3 which generalizes both the Elman Neural Network and the Kalman Filter. 
DAN approximates the prior and posterior densities by minimizing the log-likelihood cost function based on the 
information loss, related to the cross-entropy. The details of the cost function and the theoretical results for the 
optimal solution of the cost function are presented in Section 3.4. The practical aspects of the DAN including 
the architecture and computationally efficient training algorithm are given in Section 4. We then evaluate the 
performance of DAN by using fully and partially observed Lorenz-95 system with Gaussian prior and posterior 
densities in Section 5. The Lorenz-95 system is non-linear and it is often used as a first-step in meteorology to 
investigate potential applications of the proposed method to high-dimensional chaotic systems. We compare the 
performance of DAN with state-of-the-art EnKFs methods, IEnKF-Q and LETKF, in terms of root mean square 
errors, and we also provide the stability analysis with respect to the initial condition and the forecast time-interval 
beyond the training range. Finally, we provide the conclusions in Section 6.

1.2.  Related Work

With the advances in machine learning and deep learning, there has been significant increase in the research 
of using ML to forecast the evolution of physical systems with a data-driven approach (Brunton et al., 2016; 
Jia et al., 2021; Li et al., 2020; Raissi et al., 2017a, 2017b, 2019; Rudy et al., 2017). Recently, this research has 
its significant impact on the design of advanced DA algorithms. We next outline three main directions that are 
related to our research in the hybridization of DA and ML approaches.

In a first direction, one addresses the traditional DA problem where the goal is to estimate the distribution of a 
state sequence xt conditioned on an observation sequence yt, by using explicitly an underlying dynamical model 

𝐴𝐴  . Harter and de Campos Velho (2012) propose to use Elman Neural Network to learn the analysis equation of 
KF type algorithm where the dynamics are nonlinear. Their main aim is to reduce the computational complexity 
without affecting the accuracy. McCabe and Brown (2021) focus on the learning of the analysis equation within 
an EnKF framework. They propose the Amortized Ensemble Filter which aims to improve existing EnKF algo-
rithms by replacing the EnKF analysis equations with a parameterized function in the form of a neural network.

In a second direction, one aims to learn an unknown dynamical model 𝐴𝐴  from noisy observations of yt. This direc-
tion is more ambitious compared to the first one as the dynamics to be learned can be non-linear or even chaotic. 
Bocquet et  al.  (2019) propose to use the Bayesian data assimilation framework to learn a parametric 𝐴𝐴  from 
sequences of observations yt. The dynamical model is represented by a surrogate model which is formalized as a 
neural network under locality and homogeneity assumptions. Bocquet et al. (2020) extends this framework to the 
joint estimation of the state xt and the dynamical model 𝐴𝐴  with a model error represented by a covariance matrix. 
They estimate the ensembles of the state by using a traditional Ensemble Kalman Smoother based on Gaussian 
assumption, and then with the given posterior ensemble they minimize for the dynamical model and its error statis-
tics. Similarly, Brajard et al. (2020) propose an iterative algorithm to learn a neural-network parametric model of 𝐴𝐴  . 
With a fixed 𝐴𝐴  , it estimates the state xt using the observations yt, and then uses the estimated state to optimize the 
parameters of 𝐴𝐴  . A related work is from Krishnan et al. (2015), which introduces a deep KF to estimate the mean 
and the error covariance matrix in KF to model medical data, based on variational autoencoder (Girin et al., 2021).

A third direction, which is what we consider in the present paper, is to estimate the distribution of a state sequence 
xt conditioned on a observation sequence yt, without explicitly using the underlying dynamical model 𝐴𝐴  in 
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the propagation. This direction often uses training data in a supervised form of (xt, yt). For instance, Fablet 
et al. (2021) propose a joint learning of the NN representation of the model dynamics and of the analysis equation 
albeit within a traditional variational data assimilation framework. A related work to learn a surrogate model 
is Revach et al. (2022), which proposes a parametric KF to handle partially known model dynamics, replacing 
explicit covariance matrices by a parametric NN to estimate the model error. Penny et al. (2022) learns also a 
surrogate model, based on recurrent neural networks, by using only state sequence (xt) which is then used in a 
deterministic EnKF framework.

All these approaches consider improving the DA methodologies which are based on an existing DA algorithm. In 
this work, we propose a fully data driven approach for Bayesian data assimilation without relying on any prior DA 
algorithm that can be sub-optimal in case of non-Gaussian error statistics and non-linear dynamics.

1.3.  Notation

We denote a state random variable at time t as xt taking their values in some space 𝐴𝐴 𝕏𝕏 = ℝ
𝑛𝑛 of dimension n. An 

observation random variable at time t is denoted by yt taking its values in some space 𝐴𝐴 𝕐𝕐  of dimension d (often 𝐴𝐴 ℝ
𝑑𝑑 ). 

We write a sequence of random variables x1, …, xt as x1:t. A joint probability density of two sequence of random 
variables x1:t and y1:t with respect to the Lebesgue measure on the finite dimensional Euclidean space 𝐴𝐴 𝕏𝕏

𝑡𝑡
× 𝕐𝕐

𝑡𝑡 is 
written as 𝐴𝐴 𝐴𝐴(𝑥𝑥1∶𝑡𝑡, 𝑦𝑦1∶𝑡𝑡) = 𝑝𝑝𝒙𝒙

1∶𝑡𝑡 ,𝒚𝒚1∶𝑡𝑡
(𝑥𝑥1∶𝑡𝑡, 𝑦𝑦1∶𝑡𝑡) . We denote the value (realization) of a random variable x as x. The set 

of pdfs over 𝐴𝐴 𝕏𝕏 is denoted by 𝐴𝐴 ℙ𝕏𝕏 . A conditional pdf for xt conditioned on the value of yt, that is, yt = yt is written 
as 𝐴𝐴 𝐴𝐴𝒙𝒙𝑡𝑡|𝒚𝒚𝑡𝑡 (⋅|𝑦𝑦𝑡𝑡) ∈ ℙ𝕏𝕏 . Given a function f(x) on a measurable space of 𝐴𝐴 𝕏𝕏 with measure p, we say f(x) = 0 p-almost 
everywhere x (p-a.e. x in short), when there exists a measurable set A with p(A) = 0 such that f(x) = 0 for all x∉A.

2.  Sequential Bayesian Data Assimilation
In this section, we review the Bayesian optimal solution of sequential Bayesian data assimilation for an observed 
dynamical system and use its repetitive time-invariant structure to motivate the introduction of the DAN 
framework.

2.1.  Sequential Bayesian Data Assimilation

Data assimilation aims to estimate the state of a dynamical process which is modeled by a discrete-time stochas-
tic equation and observed via available instruments which can be modeled by another stochastic equation (Asch 
et al., 2016). These equations are given by the following system:

𝒙𝒙𝑡𝑡 = (𝒙𝒙𝑡𝑡−1) + 𝜼𝜼
𝑡𝑡
, (propagation equation)� (1a)

𝒚𝒚
𝑡𝑡
= (𝒙𝒙𝑡𝑡) + 𝜺𝜺𝑡𝑡, (observation equation)� (1b)

where 𝐴𝐴 (⋅) is the nonlinear propagation operator that acts on the model state random variable vector at time t, 
𝐴𝐴 𝒙𝒙𝑡𝑡 ∈ 𝕏𝕏 and return the model state vector 𝐴𝐴 𝒙𝒙𝑡𝑡+1 ∈ 𝕏𝕏 . 𝐴𝐴 (⋅) is the nonlinear observation operator that acts on the state 

random variable xt and approximately returns the observation random variable 𝐴𝐴 𝒚𝒚
𝑡𝑡
∈ 𝕐𝕐  at time t. Both of these 

steps may involve errors and they are represented by an additive model error, ηt, and an additive observation 
error, ɛt. For example, the observation operator may involve spatial interpolations, physical unit transformations 
and so on, resulting in measurement errors. We assume that these stochastic errors are distributed according to 
the pdf pη and pɛ and they are i.i.d. along time, independent to the initial state x1. Using these assumptions DA 
problem can be interpreted as a Hidden Markov Model (Carrassi et al., 2018).

Given such a dynamical model, sequential Bayesian DA aims at quantifying the uncertainty over the system state 
each time an observation sample becomes available. Such an analysis starts by rewriting, under suitable math-
ematical assumptions, the DA system in terms of conditional probability density functions 𝐴𝐴 𝐴𝐴𝒙𝒙𝑡𝑡|𝒙𝒙𝑡𝑡−1 (⋅|𝑥𝑥𝑡𝑡−1) ∈ ℙ𝕏𝕏 
which represents Equation 1a, and 𝐴𝐴 𝐴𝐴𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡 (⋅|𝑥𝑥𝑡𝑡) ∈ ℙ𝕐𝕐  which represents Equation 1b. Using these densities, we can 
quantify the uncertainty of the state as a function of the observations. This can be done in two steps sequentially 
using the Bayesian framework: the analysis step and the propagation (forecast) step. Let 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
∶= 𝑝𝑝𝒙𝒙𝑡𝑡|𝒚𝒚1∶𝑡𝑡−1 be the 

prior distribution of xt given y1:t−1, and 𝐴𝐴 𝐴𝐴
𝑎𝑎

𝑡𝑡
∶= 𝑝𝑝𝒙𝒙𝑡𝑡|𝒚𝒚1∶𝑡𝑡 be the posterior distribution of xt given y1:t. The analysis step 

computes 𝐴𝐴 𝐴𝐴
𝑎𝑎

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡) ∈ ℙ𝕏𝕏 from 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) ∈ ℙ𝕏𝕏 based on Bayes rule,
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𝑝𝑝
𝑎𝑎

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡) =

𝑝𝑝𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡 (𝑦𝑦𝑡𝑡|⋅) 𝑝𝑝
𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1)

𝑝𝑝𝒚𝒚
1∶𝑡𝑡−1

(𝑦𝑦1∶𝑡𝑡−1)
.� (2)

Here, 𝐴𝐴 𝐴𝐴𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡 (𝑦𝑦𝑡𝑡|⋅) is considered as a likelihood function of xt, and 𝐴𝐴 𝐴𝐴𝒚𝒚
1∶𝑡𝑡−1

 is a marginal distribution of observations. 
Similarly, the propagation step computes 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡+1
(⋅|𝑦𝑦1∶𝑡𝑡) from 𝐴𝐴 𝐴𝐴

𝑎𝑎

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡) ,

𝑝𝑝
𝑏𝑏

𝑡𝑡+1
(⋅|𝑦𝑦1∶𝑡𝑡) =

∫
𝑝𝑝𝒙𝒙𝑡𝑡+1|𝒙𝒙𝑡𝑡 (⋅|𝑥𝑥)𝑝𝑝

𝑎𝑎

𝑡𝑡
(𝑥𝑥|𝑦𝑦1∶𝑡𝑡)d𝑥𝑥𝑥� (3)

The analysis and forecast steps are then repeated within a given number of cycles (time interval) in which the 
forecast step provides a prior density for the next cycle.

Performing the analysis and propagation steps in Equations 2 and 3 with linear dynamics for the propagation 
operator 𝐴𝐴 (⋅) and the observation operator 𝐴𝐴 (⋅) , and using a Gaussian assumption for the probabilities pɛ and 
pη reduces to the well known Kalman filter (KF, Kalman, 1960). The challenge is that the calculation of the 
pdfs become intractable with nonlinear operators or non-Gaussian pdfs of the error terms. When the dynamics 
are nonlinear, ensemble type KFs such as Ensemble KF (Evensen, 2009) are widely used alternative methods, 
but when used with limited number of ensembles, they require additional remedies (see Section 3.3 for further 
discussions).

2.2.  Time-Invariant Structure in the Bayesian Data Assimilation

We review the invariant structure of the Bayesian Data Assimilation (BDA) for the Hidden Markov Model 
(HMM) defined in Section 2.1, which is a key property to motivate the DAN framework. Following the i.i.d. 
assumptions that we have made on the errors in Equations 1a and 1b, the conditional pdfs 𝐴𝐴 𝐴𝐴𝒙𝒙𝑡𝑡+1|𝒙𝒙𝑡𝑡 and 𝐴𝐴 𝐴𝐴𝒚𝒚𝑡𝑡|𝒙𝒙𝑡𝑡 are 
time invariant, in the sense that for t = 1, 2, …

���+1|�� (�|�) = ��2|�1 (�|�)

���|�� (�|�) = ��1|�1 (�|�)
�

for all 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 ∈ 𝕏𝕏 and 𝐴𝐴 𝐴𝐴 ∈ 𝕐𝕐  .

As a result, the conditional pdfs representing the HMM are time invariant in the following sense. The analysis step 
(2) can then be considered as a time invariant function, a BDA, which operates on the prior cpdf, 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) ∈ ℙ𝕏𝕏 

and a current observation, 𝐴𝐴 𝐴𝐴𝑡𝑡 ∈ 𝕐𝕐  , and then return a posterior cpdf 𝐴𝐴 𝐴𝐴
𝑎𝑎

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡) ∈ ℙ𝕏𝕏 :

𝑝𝑝
𝑎𝑎

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡) = 𝑎𝑎

𝐵𝐵𝐵𝐵𝐵𝐵
[
𝑝𝑝
𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1), 𝑦𝑦𝑡𝑡

]
.�

Similarly, according to Equation 3, the propagation transformation can be considered as a time invariant function, 
b BDA, that transforms a posterior pdf to a prior pdf,

𝑝𝑝
𝑏𝑏

𝑡𝑡+1
(⋅|𝑦𝑦1∶𝑡𝑡) = 𝑏𝑏

𝐵𝐵𝐵𝐵𝐵𝐵
[
𝑝𝑝
𝑎𝑎

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡)

]
.�

This presentation of the sequential BDA allows us to see the DA cycle as the composition of two time invariant 
transformations a BDA and b BDA, that is, each transformation is produced using the same update rule applied to the 
previous transformations. Exploiting this repetitive time invariant structure, corresponding to a chain of events, 
leads to a general framework named as the DAN based on recurrent neural networks (RNNs). We detail these 
ingredients of the DAN in Sections 3 and 4.

3.  Data Assimilation Networks (DAN)
In Section 3.1 we present DAN, a general framework for DA, which generalizes traditional data assimilation 
algorithms such as the Kalman filter and the EnKF detailed in Sections 3.2 and 3.3. Thanks to the repetitive 
structure of BDA, we propose in Section 3.4, a log-likelihood cost function based on the information loss to 
approximate conditional pdfs. Instead of calculating the posterior pdfs analytically, DAN aims to learn these pdfs 
by using sequences of (xt, yt) generated from the HMM. We show theoretically that this framework allows one to 
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handle nonlinear model dynamics and non-Gaussian error distributions where the Bayesian conditional pdfs are 
not necessarily Gaussian.

3.1.  DAN Framework

For a given set 𝐴𝐴 𝕊𝕊 , DAN is defined as a triplet of transformations such that

𝑎𝑎 ∈ 𝕊𝕊 × 𝕐𝕐 → 𝕊𝕊, (analyzer)� (4a)

𝑏𝑏 ∈ 𝕊𝕊 → 𝕊𝕊, (propagator)� (4b)

𝑐𝑐 ∈ 𝕊𝕊 → ℙ𝕏𝕏, (procoder)� (4c)

The term “procoder” is a contraction of “probability coder” as the function c transforms an internal representation 
into an actual pdf over 𝐴𝐴 𝕏𝕏 . A representation of a DAN is given by Figure 1. When 𝐴𝐴 𝐴𝐴 = ℙ𝕏𝕏 and c is identity, this 
framework encompasses the transformation of a BDA and b BDA in the BDA as a special case. However, it includes 
also other DA algorithms such as Kalman Filter and Ensemble Kalman Filter. Such connections are detailed in 
Sections 3.2 and 3.3.

One important ingredient of DAN as a general framework for cycled DA algorithms is the use of memory to 
transform prior and posterior densities from one cycle to the next one. In this respect, 𝐴𝐴 𝕊𝕊 can be interpreted as a 
memory space which is a vector space within the DAN framework. Considering DAN as a RNN with memory 
usage naturally make the link with the well-known Elman Network. This connection is detailed in Section 4.1.

As a recurrent neural network, we can unroll DAN into a sequence of transformations. Given an initial memory 
𝐴𝐴 𝐴𝐴

a

0
∈ 𝕊𝕊0 , and an observation trajectory 𝐴𝐴 𝐴𝐴1∶𝑇𝑇 ∈ 𝕐𝕐

𝑇𝑇  , a DAN recursively outputs a predictive and a posterior sequence 
such that for 1 ≤ t ≤ T,

𝑠𝑠
𝑏𝑏

𝑡𝑡
∶= 𝑏𝑏

(
𝑠𝑠
a

𝑡𝑡−1

)
, 𝑠𝑠

a

𝑡𝑡
∶= 𝑎𝑎

(
𝑠𝑠
𝑏𝑏

𝑡𝑡
, 𝑦𝑦𝑡𝑡

)

𝑞𝑞
𝑏𝑏

𝑡𝑡
∶= 𝑐𝑐

(
𝑠𝑠
𝑏𝑏

𝑡𝑡

)
, 𝑞𝑞

a

𝑡𝑡
∶= 𝑐𝑐

(
𝑠𝑠
a

𝑡𝑡

)
.

�

This recursive application is represented in Figure 1. Note that 𝐴𝐴
{
𝑞𝑞
𝑏𝑏

𝑡𝑡

}𝑇𝑇

𝑡𝑡=1
 and 𝐴𝐴

{
𝑞𝑞
a

𝑡𝑡

}𝑇𝑇

𝑡𝑡=1
 are candidate conditional 

densities. This means that for a given sequence of observations y1:t = (y1, …, yt), we have 𝐴𝐴 𝐴𝐴
𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) ∈ ℙ𝕏𝕏 and 

𝐴𝐴 𝐴𝐴
a

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡) ∈ ℙ𝕏𝕏 . However, these candidate conditional densities are not required to be compatible by construction 

with a joint-distribution over 𝐴𝐴 𝕏𝕏
𝑇𝑇
× 𝕐𝕐

𝑇𝑇  . As a consequence, we do not assume that there is some joint distribution 
q(x1:T, y1:T) which induces the 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) and 𝐴𝐴 𝐴𝐴

𝑎𝑎

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡) . However, as we shall see in Section 4, the construction of 

DAN using recurrent neural networks implicitly imposes some relationships between these candidate conditional 
densities.

3.2.  The Kalman Filter as a DAN

In the original Kalman filter (KF) (Kalman, 1960), both the propagation operator M and the observation operator 
H are assumed to be affine. In this case, the analysis and propagation transformations preserve Gaussian pdfs that 
are easily characterized by their mean and covariance matrix. The analysis and propagation transformations then 
simplify to algebraic expressions on these pairs as we shall see in this section.

Figure 1.  Representation of DAN. Left: scheme of DAN. Right: unrolled DAN along time interval.
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Suppose that the internal representation of a Gaussian pdf is formalized by the injective transformation,            
𝐴𝐴 𝐴𝐴

KF
∶ ℤ𝕏𝕏 → 𝔾𝔾𝕏𝕏 ,

𝑐𝑐
KF
(𝑠𝑠) =  (𝜇𝜇𝜇Σ),�

where s  := (μ, Σ), μ and Σ being the mean and covariance matrix respectively and 𝐴𝐴 ℤ𝕏𝕏 is the set of mean and 
covariance matrix pairs over 𝐴𝐴 𝕏𝕏 , 𝐴𝐴 𝔾𝔾𝕏𝕏 is the set of Gaussian pdfs over 𝐴𝐴 𝕏𝕏 . The KF analysis transformation is the 
function that transforms such a prior pair in 𝐴𝐴 ℤ𝕏𝕏 and an observation y in 𝐴𝐴 𝕐𝕐  into the posterior pair in 𝐴𝐴 ℤ𝕏𝕏 , that is, 

𝐴𝐴 𝐴𝐴
KF

∶ ℤ𝕏𝕏 × 𝕐𝕐 → ℤ𝕏𝕏 , given by

𝑎𝑎
KF
(
𝜇𝜇
b
,Σ

b
, 𝑦𝑦
)
= (𝜇𝜇

a
,Σ

a
)� (5)

with 𝐴𝐴 𝐴𝐴
a
= 𝜇𝜇

b
+ Σ

a
𝐻𝐻

T
𝑅𝑅

−1
(
𝑦𝑦 −𝐻𝐻

(
𝜇𝜇
b
))

 . When the dimension of the observation yt is less or equal to the 
dimension of the state xt, as an alternative we can obtain 𝐴𝐴 𝐴𝐴

a
= 𝜇𝜇

b
+𝐾𝐾

(
𝑦𝑦 −𝐻𝐻

(
𝜇𝜇
b
))

 and Σ a = (I − KH)Σ b with 
𝐴𝐴 𝐴𝐴 = Σ

b
𝐻𝐻

T
(
𝐻𝐻Σ

b
𝐻𝐻

T
+𝑅𝑅

)−1 . The mapping diagram for the analysis step of the KF is given by the diagram in 
Figure 2, which is a commutative diagram. We remind that a diagram is said to commute if any two paths between 
the same nodes compose to give the same map (Barr & Wells, 1991).

As well, the KF propagation transformation is the function that transforms a posterior pair in 𝐴𝐴 ℤ𝕏𝕏 into the next 
cycle prior in 𝐴𝐴 ℤ𝕏𝕏 , that is, 𝐴𝐴 𝐴𝐴

KF
∶ ℤ𝕏𝕏 → ℤ𝕏𝕏 , given by

𝑏𝑏
KF
(𝜇𝜇

a
,Σ

a
) =

(
𝜇𝜇
b
,Σ

b
)

� (6)

with Σ b = MΣ aM T + Q, Q being the model error covariance matrix and 𝐴𝐴 𝐴𝐴
b
= 𝑀𝑀(𝜇𝜇

a
) . The mapping diagram for 

the propagation step of the KF is given by the diagram in Figure 2, which is a commutative diagram.

Unfortunately, the linearity of M and H is rarely met in practice and covariance matrices may not be easy to store 
and manipulate in the case of large scale problems. A popular reduced rank approach is the ensemble Kalman 
filter that has proven effective in several large scale applications.

3.3.  The Ensemble Kalman Filter as a DAN

In the Ensemble Kalman Filter (EnKF) (Evensen, 2009), statistics 𝐴𝐴 (𝜇𝜇𝜇Σ) ∈ ℤ𝕏𝕏 are estimated from an ensemble 
matrix 𝐴𝐴 𝐴𝐴 ∈ 𝕏𝕏

𝑚𝑚
= ℝ

𝑛𝑛×𝑚𝑚 having m columns with the empirical estimators

𝜇𝜇 = 𝑋𝑋𝑋𝑋𝑋� (7a)

Σ = 𝑋𝑋𝑋𝑋𝑋𝑋
T
,� (7b)

where 𝐴𝐴 𝐴𝐴 =

(
1

𝑚𝑚
, . . . ,

1

𝑚𝑚

)T

∈ ℝ
𝑚𝑚
, 𝑈𝑈 =

𝐼𝐼𝑚𝑚−𝑚𝑚×𝑢𝑢𝑢𝑢
T

𝑚𝑚−1
∈ ℝ

𝑚𝑚×𝑚𝑚 and 𝐴𝐴 𝐴𝐴𝑚𝑚 ∈ ℝ
𝑚𝑚×𝑚𝑚 is the identity matrix (Fillion et al., 2020). 

Thus, the algebra over mean and covariance matrices pairs can be represented by operators on ensembles. In this 
approach nonlinear operators can be evaluated columnwise on ensembles and ensembles with few columns may 
produce low-rank approximations of large scale covariance matrices. Hence ensembles are an internal representa-
tion for the pdfs that are transformed by the function into a Gaussian pdf, 𝐴𝐴 𝐴𝐴

E𝑛𝑛𝑛𝑛𝑛𝑛
∶ 𝕏𝕏

𝑚𝑚
→ 𝔾𝔾𝕏𝕏 ,

�E��� (�) = 
(

��,���T),� (8)

Figure 2.  Kalman filter mapping diagram. Left: commuting diagram for the KF analysis. Right: commuting diagram for the 
KF propagation.
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when the error covariance matrix XUX T is full-rank, for instance when m ≥ n. In the case when m < n, the error 
covariance matrix become rank deficient resulting in spurious correlations. In this rank-deficient case, we must 
select a different base measure where the Gaussian distribution is supported, by using generalized inverse of 
XUX T (Rao, 1973).

The EnKF analysis transformation is the function that transforms such a prior ensemble 𝐴𝐴 𝐴𝐴b ∈ 𝕏𝕏
𝑚𝑚 and an obser-

vation 𝐴𝐴 𝐴𝐴 ∈ 𝕐𝕐  into the posterior ensemble 𝐴𝐴 𝐴𝐴a ∈ 𝕏𝕏
𝑚𝑚 , 𝐴𝐴 𝐴𝐴

EnKF
∶ 𝕏𝕏

𝑚𝑚
× 𝕐𝕐 → 𝕏𝕏

𝑚𝑚 , given by

𝑎𝑎
EnKF

(𝑋𝑋b, 𝑦𝑦) = 𝑋𝑋a with 𝑋𝑋a = 𝑋𝑋b +𝐾𝐾(𝑌𝑌 − 𝑌𝑌b)� (9)

where 𝐴𝐴 𝐴𝐴 = 𝑋𝑋b𝑈𝑈𝑈𝑈
T

b

(
𝑌𝑌b𝑈𝑈𝑈𝑈

T

b
+𝑅𝑅

)−1
∈ ℝ

𝑛𝑛×𝑑𝑑 is the ensemble Kalman gain, 𝐴𝐴 𝐴𝐴b = (𝑋𝑋b) ∈ 𝕐𝕐
𝑚𝑚 and 𝐴𝐴 𝐴𝐴 ∈ 𝕐𝕐

𝑚𝑚
(
= ℝ

𝑑𝑑×𝑚𝑚
)
 

is a column matrix with m samples of 𝐴𝐴  (𝑦𝑦𝑦 𝑦𝑦) .

As well, the EnKF propagation transformation is the function that transforms a posterior ensemble 𝐴𝐴 𝐴𝐴a ∈ 𝕏𝕏
𝑚𝑚 into 

the next cycle prior ensemble 𝐴𝐴 𝐴𝐴b ∈ 𝕏𝕏
𝑚𝑚 , 𝐴𝐴 𝐴𝐴

EnKF
∶ 𝕏𝕏

𝑚𝑚
→ 𝕏𝕏

𝑚𝑚 , given by

𝑏𝑏
EnKF

(𝑋𝑋a) = 𝑋𝑋b with 𝑋𝑋b = (𝑋𝑋a) +𝑊𝑊� (10)

where 𝐴𝐴 𝐴𝐴 ∈ 𝕏𝕏
𝑚𝑚 is a column matrix consisting of m samples distributed according to the Gaussian pdf 𝐴𝐴  (0𝑛𝑛, 𝑄𝑄) .

In EnKF, as explained above the mean and the covariance matrix for the Gaussian pdf are calculated through 
ensembles and propagation is performed through the ensembles using nonlinear dynamics. For large-scale 
nonlinear systems, when one can use only a limited number of ensembles, the error covariance matrix become 
a rank deficient matrix. This leads to sub-optimal performance (Asch et  al.,  2016) and may introduce errors 
during the propagation. For instance, spurious correlations may appear or ensembles may collapse. As a result, 
for a stable EnKF regularization techniques like localization and inflation needs to be applied (Gharamti, 2018; 
Hamill et al., 2001; Houtekamer & Mitchell, 2001). Localization consists in filtering out the long-distance spuri-
ous correlations in the error covariance matrix. It is not straightforward to find the optimal parameters for the 
localization, therefore some tuning is required. After filtering out these spurious correlations such that the anal-
ysis is updated by the local observations, there may be still problem with the use of limited ensembles along the 
propagation. These small errors may be problematic when they are accumulated through the cycles. This can 
still lead to filter divergence. A common solution is to inflate the error covariance matrix by an empirical factor 
slightly greater than one. The multiplicative inflation compensate errors due to a small size of ensembles and the 
approximate assumption of Gaussian distribution on the error statistics (Bocquet, 2011).

3.4.  DAN Log-Likelihood Cost Function

In this section, we introduce a cost function which allows one to optimize the candidate conditional densities, 
that is, 𝐴𝐴 𝐴𝐴

a

𝑡𝑡
 and 𝐴𝐴 𝐴𝐴

b

𝑡𝑡
 , based on samples of x1:T and y1:T. The distance between the target conditional densities 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
 and 

𝐴𝐴 𝐴𝐴
a

𝑡𝑡
 and the candidate conditional densities 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
 and 𝐴𝐴 𝐴𝐴

a

𝑡𝑡
 are minimized in the sense of the information loss, related to 

cross-entropy (Cover & Thomas, 2005).

Definition 1.  (log-likelihood cost function). Assume 𝐴𝐴 𝐴𝐴 =

(
𝑞𝑞
𝑏𝑏

𝑡𝑡
, 𝑞𝑞

a

𝑡𝑡

)𝑇𝑇
𝑡𝑡=1

∈ ℙ =

(
Π

𝑇𝑇

𝑡𝑡=1
𝕐𝕐

𝑡𝑡−1
→ ℙ𝕏𝕏

)
×

(
Π

𝑇𝑇

𝑡𝑡=1
𝕐𝕐

𝑡𝑡
→ ℙ𝕏𝕏

)
 

such that the following log-likelihood cost function is well-defined (i.e., for each t ≥ 1, the Lebesgue integral with 
respect to x1:t and y1:t exists)

𝑡𝑡

(
𝑞𝑞
𝑏𝑏

𝑡𝑡
, 𝑞𝑞

a

𝑡𝑡

)
∶= −

∫

[
ln 𝑞𝑞

𝑏𝑏

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡−1) + ln 𝑞𝑞

a

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡)

]
𝑝𝑝(𝑥𝑥1∶𝑡𝑡, 𝑦𝑦1∶𝑡𝑡)d𝑥𝑥1∶𝑡𝑡d𝑦𝑦1∶𝑡𝑡.� (11)

The total log-likelihood cost function is defined as

 (𝑞𝑞) ∶=
1

𝑇𝑇

𝑇𝑇∑

𝑡𝑡=1

𝑡𝑡

(
𝑞𝑞
𝑏𝑏

𝑡𝑡
, 𝑞𝑞

a

𝑡𝑡

)
.� (12)

The following results show that if 𝐴𝐴 𝐴𝐴 ∈ ℙ , the global optima of 𝐴𝐴   is the Bayesian prior and posterior cpdf 
trajectories of the HMM.

Theorem 1.  Let 𝐴𝐴 𝐴𝐴𝐴 ∈ argmin𝑞𝑞∈ℙ (𝑞𝑞) , then ∀t ∈ {1, …, T}, 𝐴𝐴 𝐴𝐴𝐴
𝑏𝑏

𝑡𝑡
(𝑥𝑥|𝑦𝑦1∶𝑡𝑡−1) = 𝑝𝑝

𝑏𝑏

𝑡𝑡
(𝑥𝑥|𝑦𝑦1∶𝑡𝑡−1) for 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1)-a.e 𝐴𝐴 𝐴𝐴 ∈ 𝕏𝕏 

and p-a.e 𝐴𝐴 𝐴𝐴1∶𝑡𝑡−1 ∈ 𝕐𝕐
𝑡𝑡−1 . Similarly, 𝐴𝐴 𝐴𝐴𝐴

a

𝑡𝑡
(𝑥𝑥|𝑦𝑦1∶𝑡𝑡) = 𝑝𝑝

a

𝑡𝑡
(𝑥𝑥|𝑦𝑦1∶𝑡𝑡) for 𝐴𝐴 𝐴𝐴

a

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡)-a.e 𝐴𝐴 𝐴𝐴 ∈ 𝕏𝕏 and p-a.e 𝐴𝐴 𝐴𝐴1∶𝑡𝑡 ∈ 𝕐𝕐

𝑡𝑡 .
Proof. See Appendix A.
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Theorem 1 shows that the objective function of DAN can approximate the Bayesian prior and posterior cpdf when 
the candidate pdfs belong to a general functional class (i.e., 𝐴𝐴 𝐴𝐴 ∈ ℙ ). However, the loss function 𝐴𝐴  (𝑞𝑞) can not be 
numerically computed without making the functional class more specific. As a common specific case, we next 
consider candidate conditional pdfs as the Gaussian pdfs.
Let 𝐴𝐴 𝔾𝔾𝕏𝕏 be the set of Gaussian pdfs over 𝐴𝐴 𝕏𝕏 , and 𝐴𝐴 𝐴𝐴 ∈ 𝔾𝔾 =

(
Π

𝑇𝑇

𝑡𝑡=1
𝕐𝕐

𝑡𝑡−1
→ 𝔾𝔾𝕏𝕏

)
×

(
Π

𝑇𝑇

𝑡𝑡=1
𝕐𝕐

𝑡𝑡
→ 𝔾𝔾𝕏𝕏

)
 . For each 𝐴𝐴 𝐴𝐴𝑡𝑡

(
𝑞𝑞
𝑏𝑏

𝑡𝑡
, 𝑞𝑞

a

𝑡𝑡

)
 

in Definition 1 to be well-defined, it is necessary to assume that the target prior and posterior distributions 
𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) and 𝐴𝐴 𝐴𝐴

a

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡) have first-order and second-order moments. Under these assumptions, Theorem 2 shows 

that using Gaussian pdfs, one can match the correct mean and covariance of the target prior and posterior cpdf.

Theorem 2.  Let 𝐴𝐴 𝐴𝐴𝐴 ∈ argmin𝑞𝑞∈𝔾𝔾 (𝑞𝑞) , then ∀t ∈ {1, …, T}, the mean and covariance of 𝐴𝐴 𝐴𝐴𝐴
𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) equals to the 

mean and covariance of 𝐴𝐴 𝐴𝐴
𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) for p-a.e 𝐴𝐴 𝐴𝐴1∶𝑡𝑡−1 ∈ 𝕐𝕐

𝑡𝑡−1 . Similarly, the mean and covariance of 𝐴𝐴 𝐴𝐴𝐴
𝑎𝑎

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡) equals 

to the mean and covariance of 𝐴𝐴 𝐴𝐴
𝑎𝑎

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡) for p-a.e 𝐴𝐴 𝐴𝐴1∶𝑡𝑡 ∈ 𝕐𝕐

𝑡𝑡 .
Proof. See Appendix B.
Theorem 2 indicates that DAN has the capacity to optimally capture non-linear dynamics in terms of first and 
second-order statistics. Note that here the optimality is defined with respect to the cost function Equation 12. 
Contrary to KF-based approaches, DAN never uses Gaussian approximations in its internal computations. DAN 
fits the output of the recurrent neural network with Gaussian pdfs.

4.  DAN Construction and Training Algorithm
Having specified the cost function in the previous section, we are now going to discuss how to construct the 
components of a, b, c in DAN in order to fit training data samples. To motivate the DAN construction, we first 
review its connection with the classical Elman network in Section 4.1. We then specify the construction of a 
DAN using recurrent neural networks in Section 4.2. Sections 4.3 and 4.4 describe how to efficiently train the 
network.

4.1.  Connection With Elman Network

DAN can be interpreted as an extension of an Elman network (EN) (Elman, 1990) which is a basic structure of 
recurrent network. An Elman network is a three-layer network (input, hidden and output layers) with the addition 
of a set of context units. These context units provide memory to the network. Both the input units and context 
units activate the hidden units; the hidden units then feed forward to activate the output units (Elman, 1990). A 
representation of an EN is given in Figure 3.

The context units make the Elman network able to process variable length sequences of inputs to produce 
sequences of outputs as shown in Figure 3. Indeed, given a new input 𝐴𝐴 𝐴𝐴𝑡𝑡 ∈ 𝕐𝕐  in the input sequence, the function 
a updates a context memory from 𝐴𝐴 𝓁𝓁𝑡𝑡−1 ∈ ℂ to a hidden state memory 𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝑎𝑎(𝓁𝓁𝑡𝑡−1, 𝑦𝑦𝑡𝑡) ∈ 𝕊𝕊 . And the function c 
decodes the hidden state memory into an output 𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝑐𝑐(𝑠𝑠𝑡𝑡) ∈ 𝕎𝕎 in the output sequence. The updated hidden state 
memory is transferred to the context unit via a function b. In a way, the context memory of an Elman network 
is expected to gather relevant information from the past inputs to perform satisfactory predictions. The training 
process in machine learning will optimally induce how to manipulate the memory from data.

The similarity between DAN and EN can be made explicit with the analogy that the hidden layer is connected to 
the context units by the function b, which includes time propagation for DAN. In DAN the hidden unit memory 

𝐴𝐴 𝕊𝕊 is considered as the same set as the context unit memory 𝐴𝐴 ℂ , and c function decodes both the hidden and the 
context unit memory into a probability density function.

Figure 3.  Representation of an Elman Network. Left: scheme of an EN. Right: unrolled EN along time interval.
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The EN can not perform DA operations in all its generality. For instance, EN can not make predictions without obser-
vations, that is estimating strict future states from past observations. This is because the function a performs both the 
propagation and the analysis at once. In a way, the EN only produces posterior outputs and no prior outputs while the 
DAN produces prior or posterior outputs by applying the procoder c before or after the propagator b (see Figures 1 
and 3). DAN can also produce strict future predictions without observations by applying the propagator b multiple 
times before applying the procoder c. Second, the DAN provides a probabilistic representation of the state that is, an 
element in 𝐴𝐴 ℙ𝕏𝕏 instead of an element in 𝐴𝐴 𝕏𝕏 . Also, note that the compositions of b and c make a generalized propagation 
operator as it propagates in time probabilistic representations of the state rather than punctual realizations.

4.2.  Construct DAN Using Recurrent Neural Networks (RNN)

We propose to use neural networks to construct a parameterized family of DANs. Let θ denote all the weights in 
neural networks, and the memory space 𝐴𝐴 𝕊𝕊 be a finite-dimensional Euclidean space. The parametric family of the 
analyzers and propagators are L-layer fully connected neural networks:

�� ∶ � × � → ⋯ → � × �
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

� �����

→ �,
� (13a)

�� ∶ � → ⋯ → �
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

� �����

,
� (13b)

The construction of aθ is built upon L fully connected layers with residual connections. It is based on the 
LeakyReLU activation function (Bing et al., 2015) to improve the trainability when L is large. For layer ℓ, the 
input 𝐴𝐴 𝐴𝐴

𝓁𝓁−1 ∈ 𝕊𝕊 × 𝕐𝕐  is transformed into 𝐴𝐴 𝐴𝐴
𝓁𝓁
∈ 𝕊𝕊 × 𝕐𝕐  by

𝑣𝑣
𝓁𝓁
= 𝑣𝑣

𝓁𝓁−1 + 𝛼𝛼
𝓁𝓁
LeakyReLU(𝑊𝑊

𝓁𝓁
𝑣𝑣
𝓁𝓁−1 + 𝛽𝛽

𝓁𝓁
).� (14)

Taking a vector v as its input, the LeakyReLU function outputs a vector w of the same size. For the ith element 
of w, wi = vi if vi ≥ 0; wi = avi if vi < 0, where a is set to 0.01 by default in our implementation based on Pytorch 
(Paszke et al., 2019).

An extra linear layer is then applied to the output vL in order to compute a memory state as the output of aθ. The train-
able parameters of aθ are 𝐴𝐴 (𝛼𝛼

𝓁𝓁
,𝑊𝑊

𝓁𝓁
, 𝛽𝛽

𝓁𝓁
)
𝓁𝓁≤𝐿𝐿 and the weight and bias in the linear layer. As illustrated in Figure 1, the 

input aθ at time t is a concatenation of 𝐴𝐴 𝐴𝐴
𝑏𝑏

𝑡𝑡
 and yt, that is, 𝐴𝐴 𝐴𝐴0 =

(
𝑠𝑠
𝑏𝑏

𝑡𝑡
, 𝑦𝑦𝑡𝑡

)
 . Similarly, bθ is constructed from the same L fully 

connected layers as in Equation 14 by using a different set of trainable parameters. The input of bθ at time t is set to 𝐴𝐴 𝐴𝐴
𝑎𝑎

𝑡𝑡
 .

The procoder cθ is specified with respect to the pdf choice of candidate conditional densities. For instance, for the 
Gaussian case studied in Theorem 2, cθ can be defined as:

�� ∶ � → ℝ�+
�(�+1)

2 → ��
� (15)

which is a linear layer from 𝐴𝐴 𝕊𝕊 to 𝐴𝐴 ℝ
𝑛𝑛+

𝑛𝑛(𝑛𝑛+1)

2  , followed by a function that transforms the 𝐴𝐴 𝐴𝐴 +
𝑛𝑛(𝑛𝑛+1)

2

 dimensional vector 
into the mean and the covariance of a Gaussian distribution. This transformation is detailed in Appendix C.

4.3.  Training and Test Loss From Unrolled RNN

In order to train a DAN, we will unroll the RNN defined by (aθ, bθ, cθ) so as to define the training loss computed 
from I i.i.d trajectories of (x1:T, y1:T). We also define the test loss to evaluate the performance of training.

To be clear on how the states 𝐴𝐴 𝐴𝐴
a

𝑡𝑡
 and 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
 depend on aθ, bθ and a given trajectory y1:t, we will denote the state 

(memory) at time t informed by the data up to time t−1 and generated using a θ-parametric function as 𝐴𝐴 𝐴𝐴
𝑏𝑏𝑏𝑏𝑏

𝑡𝑡|𝑡𝑡-1
 . Then 

we can rewrite 𝐴𝐴 𝐴𝐴
𝑏𝑏

𝑡𝑡
 and 𝐴𝐴 𝐴𝐴

a

𝑡𝑡
 more explicitly as:

𝑠𝑠
𝑏𝑏𝑏𝑏𝑏

𝑡𝑡|𝑡𝑡-1
= 𝑏𝑏𝜃𝜃

(

𝑠𝑠
a,𝜃𝜃

𝑡𝑡-1|𝑡𝑡-1

)

, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎
a,𝜃𝜃

𝑡𝑡|𝑡𝑡
= 𝑎𝑎𝜃𝜃

(

𝑠𝑠
𝑏𝑏𝑏𝑏𝑏

𝑡𝑡|𝑡𝑡-1
, 𝑦𝑦𝑡𝑡

)

,� (16)

where 𝐴𝐴 𝐴𝐴
a,𝜃𝜃

0|0
= 𝑠𝑠0 is an initial memory of RNN independent of θ. The procoder cθ outputs the pdf

𝑞𝑞
𝑏𝑏𝑏𝑏𝑏

𝑡𝑡|𝑡𝑡-1
(⋅|𝑦𝑦1∶𝑡𝑡−1) = 𝑐𝑐𝜃𝜃

(

𝑠𝑠
𝑏𝑏𝑏𝑏𝑏

𝑡𝑡|𝑡𝑡-1

)

, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎
a,𝜃𝜃

𝑡𝑡|𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡) = 𝑐𝑐𝜃𝜃

(

𝑠𝑠
a,𝜃𝜃

𝑡𝑡|𝑡𝑡

)

.� (17)
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To define the training loss computed from the I trajectories, we introduce a trajectory-dependent loss function 
which will be needed to define our online training strategy. Let 𝐴𝐴

(
𝑥𝑥
(𝑖𝑖)

1∶𝑇𝑇
, 𝑦𝑦

(𝑖𝑖)

1∶𝑇𝑇

)
 be the ith trajectory, we write the loss 

function for the ith trajectory as:

𝐽𝐽
(𝑖𝑖)

𝑡𝑡

(

𝑞𝑞
𝑏𝑏𝑏𝑏𝑏

𝑡𝑡|𝑡𝑡-1
, 𝑞𝑞

a,𝜃𝜃

𝑡𝑡|𝑡𝑡

)

= −log 𝑞𝑞
𝑏𝑏𝑏𝑏𝑏

𝑡𝑡|𝑡𝑡-1

(
𝑥𝑥
(𝑖𝑖)

𝑡𝑡
|𝑦𝑦

(𝑖𝑖)

1∶𝑡𝑡−1

)
− log 𝑞𝑞

a,𝜃𝜃

𝑡𝑡|𝑡𝑡

(
𝑥𝑥
(𝑖𝑖)

𝑡𝑡
|𝑦𝑦

(𝑖𝑖)

1∶𝑡𝑡

)
.�

The training loss is defined accordingly as a function of θ,

1
��

�
∑

�=1

�
∑

�=1

� (�)
�

(

��,��|�-1, �
a,�
�|�

)

� (18)

We define the test loss J(θ), as in Equation  18, by using another I independent trajectories of (x1:T, y1:T). 
It allows one to evaluate how well a DAN learns the underlying dynamics of HMM beyond the training 
trajectories.

4.4.  Online Training Algorithm: TBPTT

Direct optimization of the training loss in Equation 18 is impractical for large-scale problems since to compute the 
gradient of the loss, with back-propagation through time, it requires a large computational graph that consumes a 
lot of memory (Jaeger, 2002). This limits the training data size TI which, in turn, might lead to overfitting due to 
limited data. A workaround is to resort to gradient descent with truncated backpropagation through time (TBPTT, 
Williams & Peng, 1990; Williams & Zipser, 1995). It is commonly used in the machine learning community to 
train recurrent neural networks (Aicher et al., 2020; Tang & Glass, 2018).

Starting from θ0, TBPTT is an online method which generates a sequence of model parameters θk for k = 1, 2, …, 
T. Instead of computing the gradient of the loss Equation 18 with respect θ which depends on time from 1 to T, the 
idea of TBPTT is to truncate the computation at each iteration k by considering only a part of the gradient from 
time k − 1 to k. Each θk is obtained from θk−1 based on the information of I training trajectories 𝐴𝐴

{(
𝑥𝑥
(𝑖𝑖)

𝑘𝑘
, 𝑦𝑦

(𝑖𝑖)

𝑘𝑘

)}

𝑖𝑖≤𝐼𝐼
 

on-the-fly.

More precisely, given the initial memories 𝐴𝐴
{
𝑠̄𝑠
(𝑖𝑖)

0

}

𝑖𝑖≤𝐼𝐼
 and θ0, we update the memory

𝑠̄𝑠
(𝑖𝑖)

𝑘𝑘
= 𝑎𝑎𝜃𝜃𝑘𝑘−1

(
𝑏𝑏𝜃𝜃𝑘𝑘−1

(
𝑠̄𝑠
(𝑖𝑖)

𝑘𝑘−1

)
, 𝑦𝑦

(𝑖𝑖)

𝑘𝑘

)
, 𝑘𝑘 ≥ 1�

and then we perform the following gradient update,

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝜂𝜂𝑘𝑘
1

𝐼𝐼

𝐼𝐼∑

𝑖𝑖=1

∇𝜃𝜃𝐽𝐽
(𝑖𝑖)

𝑘𝑘+1

(
𝑐𝑐𝜃𝜃 ⋅ 𝑏𝑏𝜃𝜃

(
𝑠̄𝑠
(𝑖𝑖)

𝑘𝑘

)
, 𝑐𝑐𝜃𝜃 ⋅ 𝑎𝑎𝜃𝜃

(
𝑏𝑏𝜃𝜃

(
𝑠̄𝑠
(𝑖𝑖)

𝑘𝑘

)
, 𝑦𝑦

(𝑖𝑖)

𝑘𝑘+1

))
|𝜃𝜃=𝜃𝜃𝑘𝑘� (19)

where ηk is the learning rate. The learning rate is also called the step size in optimization. The gradient is computed 
over the I training trajectories at time k + 1. As a result, the optimization is not anymore limited in time due to 
computer memory constraints.

To adjust the learning rate ηk adaptively, we apply the Adam optimizer (Kingma & Ba, 2014) to the gradient 
in Equation 19. This simultaneously adjusts the updates of θk based on an average gradient computed from the 
gradients at previous steps.

5.  Numerical Experiments
In this section, we present results of DAN on the Lorenz-95 system (Lorenz, 1995) using the Gaussian conditional 
posteriors presented in Theorem 2. We first explain Lorenz dynamics in Section 5.1, and provide experimen-
tal details in Section 5.2. Then, Section 5.3 evaluates the effectiveness of the online training method TBPTT. 
Section 5.4 compares standard rmses performance of DAN to state-of-the-art DA methods IEnKF-Q and LETKF 
using a limited ensemble memory. We further study the robustness of DAN in terms of its performance on future 
sequences beyond the horizon T of the training sequences, as well as its sensitivity to the initial distribution of 
each trajectory.
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5.1.  The Lorenz-95 System

The Lorenz-95 system introduced by Lorenz (1995) contains n variables xi, i = 1, …, n and is governed by the n 
equations:

𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
= −𝑥𝑥𝑖𝑖−2𝑥𝑥𝑖𝑖−1 + 𝑥𝑥𝑖𝑖−1𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖 + 𝐹𝐹 𝐹� (20)

In Equation 20 the quadratic terms represent the advection that conserves the total energy, the linear term repre-
sents the damping through which the energy decreases, and the constant term represents external forcing keeping 
the total energy away from zero. The n variables may be thought of as values of some atmospheric quantity in n 
sectors of a latitude circle.

In this study, we take n = 40 and F = 8 which results in some chaotic behavior. The boundary conditions are set to 
be periodic, that is, x0 = x40, x−1 = x39, and x41 = x1. The equations are solved using the fourth-order Runge-Kutta 
scheme, with Δt = 0.05 (a 6 hr time step).

5.2.  Experiment Setup

We study the performance of DAN when trained to map to Gaussian posteriors, that is, the procoder c function 
is given by Equation 15. This is compared to two state-of-art baseline methods of EnKF: Iterative EnKF with 
additive model error (IEnKF-Q) (Sakov et al., 2018) and Local Ensemble Transform Kalman filter (LETKF) 
(Hunt et al., 2007).

A batch of I trajectories of 𝐴𝐴 𝐴𝐴 ∈ ℝ
40 is simulated from the resolvent (propagation operator) 𝐴𝐴  ∶ ℝ

40
→ ℝ

40 of 
the 40 dimensional Lorenz-95 system. To start from a stable regime, we use a burning phase which propagates 
an initial batch of states 𝐴𝐴

{
𝑥𝑥
(𝑖𝑖)

init

}

𝑖𝑖≤𝐼𝐼
 for a fixed number of cycles. The initial states are drawn independently from 

𝐴𝐴  (3 × 140, 𝐼𝐼40) . The operator 𝐴𝐴  is then applied 10 3 times (burning time) to the given initial batch of states 
(Sakov et al., 2018). The resulting states are taken as the initial state 𝐴𝐴 𝐴𝐴

(𝑖𝑖)

1

 .

After the burning phase, the Gaussian propagation errors 𝐴𝐴
{
𝜂𝜂
𝑖𝑖

𝑡𝑡

}
 , sampled independently from 𝐴𝐴  (040, 0.01 × 𝐼𝐼40) , 

are added to each subsequent propagation to get the state trajectories

𝑥𝑥
(𝑖𝑖)

𝑡𝑡+1
= 

(
𝑥𝑥
(𝑖𝑖)

𝑡𝑡

)
+ 𝜂𝜂

(𝑖𝑖)

𝑡𝑡
,�

Then the Gaussian errors 𝐴𝐴 𝐴𝐴
(𝑖𝑖)

𝑡𝑡+1
 , sampled independently from 𝐴𝐴  (040, 𝐼𝐼40) , are added to the observation operator 

evaluations to get a training batch of observation trajectories

𝑦𝑦
(𝑖𝑖)

𝑡𝑡+1
= 

(
𝑥𝑥
(𝑖𝑖)

𝑡𝑡+1

)
+ 𝜀𝜀

(𝑖𝑖)

𝑡𝑡+1
.�

In the numerical experiments we consider two cases for the observation network: (a) fully observed, that is, 𝐴𝐴  is 
taken to be the identity operator I, and (b) partially observed, that is, 𝐴𝐴  is taken as a uniform selection operator 
H0. For any 40-dimensional vector x, the vector H0x preserves half of the grid of x, by removing even-indexed 
elements of x. It is left as a future work to study cases where H is a nonlinear operator.

5.2.1.  Setup of Baseline

The baseline methods, IEnKF-Q and LETKF, are implemented with explicit inflation or localization regulari-
zation in order to obtain a good estimation of the covariance matrix of Gaussian densities. Such regularization 
is often critical to the final performance of EnKF methods, and it often requires the tuning of hyper-parameters 
whenever the ensemble size m is changed (Asch et al., 2016).

To illustrate the sensitivity to the hyper-parameter tuning, we provide two set of experiments for LETKF: (a) 
(with case-by-case turning) The filter for each ensemble size is run with the best performance values provided in 
Table 1, found by a 2D grid search for each m, named as LETKF*. (b) (without case-by-case tuning) The filter 
for each ensemble is run with the best performance obtained at m = 20, that is, the grid search is only run for this 
m and the obtained optimal hyper-parameters are used for all m. We name these experiments simply as LETKF.

We implemented the IEnKF-Q which uses only inflation regularization. This allows one to measure the effect of 
using both inflation and localization regularization in LETKF. We present results without case-by-case tuning 
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across different number of ensembles for EnKF, that is, m ∈ {5, 10, 20, 30}. As we do not have localization in 
IEnKF-Q, we fine-tune the inflation hyper-parameter of this method at m = 20 using grid-search. We find that on 
both fully observed and partially observed cases, a common inflation parameter 1.1 is close to be optimal among 
{1.0, 1.02, 1.03, 1.04, 1.07, 1.08, 1.09, 1.1, 1.2, 1.3, 2.0}, according to the time-averaged posterior (filtering) 
rmses (see the definition of the rmses in Section 5.4).

Experiments with the LETKF are performed by using an open source code: DAPPER (Raanes et al., 2022, version 
1.2.1). For each ensemble, we have performed 2D grid search. Localization radius is chosen from the set {1, 2, 4} 
and the inflation hyper-parameter is chosen from the set {1.02, 1.03, 1.04, 1.07, 1.1}. We also use rotation after 
the analysis step which is shown to provide better performance for LETKF (Sakov & Oke, 2008). The inflation 
and localization radius hyper-parameter values that provide the best performance according to the time-averaged 
posterior (filtering) rmses are given in Table 1.

5.2.2.  Setup of DAN

To make DAN comparable to EnKF in terms of the used memory, we set the memory space 𝐴𝐴 𝕊𝕊 = ℝ
𝑚𝑚×𝑛𝑛 . Similar 

to the results without case-by-case turning in LETKF and IEnKF-Q, hyper-parameters of DAN are only tuned at 
m = 20, and then fixed across all m.

Across m ∈ {5, 10, 20, 30}, DAN is trained with a batch size of I = 1,024 of training samples for T = 6 × 10 5 
cycles. The initial learning rate η0 for the TBPTT is set to be 10 −4. The initial memory s0 of the RNN is set to be 
zero, while the initial parameter θ0 of the RNN is mostly set to be random. More precisely, we use the standard 
random initialization for the weights (W, b) of each linear layer implemented in the Pytorch software. To train 
a neural network with a large number of layers L, we use the ReZero trick (Bachlechner et al., 2020) which sets 
the initial weight αℓ in Equation 14 to be zero for each ℓ. The functions a and b in the cost function of DAN are 
constructed by L = 20 fully connected layers with residual connections (as detailed in Section 4).

5.3.  Training Performance of TBPTT

To show the effectiveness of the training method TBPTT specified in Equa-
tion 19, we evaluate the test loss J(θ) using I = 1,024 i.i.d samples (defined 
in Section 4.3), on a sub-sequence of θk. This allows one to access whether 
the online method is effective to minimize the total loss 𝐴𝐴  (𝑞𝑞) in Equation 12. 
The training time of DAN grows with T but it is not sensitive to  the choice 
of I. This is because our current implementation runs on GPU graphics 
cards, which allows the computation over I training samples to be in parallel. 
However, the sequential computation of TBPTT can not be done in parallel. 
One potential improvement of the running time is to use a modified version of 
TBPTT to improve the convergence rate, as suggested in (Chen et al. (2022), 
Algorithm 4.2).

The test loss J(θk) changes over iteration k are displayed in Figure  4. We 
observe that the minimal loss decreases as m increases, suggesting that the 
performance of DAN is improved with the memory size. Moreover, we find 
that the test loss decreases during the training process, which shows that 
TBPTT implicitly minimizes the test loss J(θ). In theory, we expect this to 
happen for a suitable large memory size m because it is proportional to the 
capacity of the neural networks used in DAN: a larger m implies a better 

Figure 4.  The test loss evaluated at training iterations θk of TBPTT, using 
various memory size m in DAN.

Table 1 
Optimal Hyper-Parameter Values of LETKF Across Various Ensemble Size m Found by 2D Grid Search

m 5 10 20 30 m 5 10 20 30

Inflation 1.1 1.07 1.04 1.03 Inflation 1.1 1.04 1.03 1.02

Local. Radius 1 2 4 4 Local. Radius 2 2 4 4

Note. Left: fully observed case (H = I). Right: partially observed case (H = H0).
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approximation of the posterior distributions due to the universal approximation property of neural networks. The 
trade-off is that a too large m may lead to over-fitting (i.e., a large gap between the training loss and test loss), as 
we use only I finite trajectories of (xt, yt) in the training algorithm.

5.4.  Performance of DAN

After DAN is trained, new observation trajectories yt are generated from a new unknown state trajectory xt. These 
testing observations together with a null initial memory vector are then given as input of the trained DAN in a test 
phase and its outputs are compared with the unknown state xt.

To evaluate the accuracy of the trained DAN (k = T), we compute the accuracy of the mean 𝐴𝐴 𝐴𝐴
a

𝑡𝑡
 (resp. 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
 ) of 

𝐴𝐴 𝐴𝐴
a,𝜃𝜃𝑇𝑇

𝑡𝑡|𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡) (resp. 𝐴𝐴 𝐴𝐴

𝑏𝑏𝑏𝑏𝑏𝑇𝑇

𝑡𝑡|𝑡𝑡−1
(⋅|𝑦𝑦1∶𝑡𝑡−1) ), evaluated on a test sequence (x1:T, y1:T). A standard evaluation in DA is to 

compute rmses, that is, for 1 ≤ t ≤ T, we compute the following normalized posterior and prior rmses,

𝑅𝑅
a

𝑡𝑡
=

1
√
𝑛𝑛

‖
‖𝑥𝑥𝑡𝑡 − 𝜇𝜇

a

𝑡𝑡
‖
‖, 𝑅𝑅

𝑏𝑏

𝑡𝑡
=

1
√
𝑛𝑛

‖
‖𝑥𝑥𝑡𝑡 − 𝜇𝜇

𝑏𝑏

𝑡𝑡
‖
‖�

In Figures 5 and 6, we compare the averaged rmses of DAN with IEnKF-Q and LETKF when the ensemble 
size m is smaller than the dimension n of the state xt. For DAN, we report an averaged rmses over t, computed 
at the parameter θT at the last step of training. These rmses are compared to the two baseline methods, IEnKF-Q 
and LETKF, over the same range of t. Recall that we use the same size m to define the memory space 𝐴𝐴 𝕊𝕊 = ℝ

𝑚𝑚×𝑛𝑛 
in  DAN.

Let us first analyze the numerical results for the fully observed case. When m is small, IEnKF-Q performs worse 
than DAN, due to sampling errors. Note that with the choice F = 8 in the Lorenz-95 dynamics (Equation 20), 

Figure 5.  Time averaged posterior (filtering) rmses 𝐴𝐴
1

𝑇𝑇

∑𝑇𝑇

𝑡𝑡=1
𝑅𝑅

𝑎𝑎

𝑡𝑡
 using various ensemble size m. Left: fully observed case (H = I). 

Right: partially observed case (H = H0). DAN, IEnKF-Q, and LETKF are tuned at m = 20; LETKF* is tuned at each m.

Figure 6.  Time averaged prior (prediction) rmses 𝐴𝐴
1

𝑇𝑇

∑𝑇𝑇

𝑡𝑡=1
𝑅𝑅

𝑏𝑏

𝑡𝑡
 using various ensemble size m. Left: fully observed case (H = I). 

Right: partially observed case (H = H0). DAN, IEnKF-Q, and LETKF are tuned at m = 20; LETKF* is tuned at each m.
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the model has 13 positive and one neutral Lypapunov exponents, that is, the 
dimension of the unstable-neutral subspace is 14 (Bocquet & Carrassi, 2017; 
Carrassi et al., 2022; Sakov et al., 2018; Trevisan et al., 2010). Therefore, 
when the model is propagated through time, small perturbations grow along 
these directions (Carrassi et  al.,  2022). This explains why IEnKF-Q does 
not perform well when m ≤ 14, as a result we need to apply localisation and 
inflation techniques to reduce these sampling errors. As expected, LETKF 
and LETKF*, in which localization and inflation techniques are applied with 

turned parameter values, performs much better than the IEnKF-Q. DAN performs similarly. When m = 5, it is 
slightly better than LETKF* in the fully observed case. LETKF performs much worse than LETKF* and DAN, 
showing how sensitive the method is to the tuning of the inflation and localization hyper-parameters. When m 
becomes closer to n (e.g., m = 20, 30), we find that the posterior and prior rmses of DAN, IEnKF-Q, LETKF, and 
LETKF* are similar, with better results for LETKF*. This tendency of rmses as a function the ensemble size m 
is strongly correlated with the smallest test loss achieved by DAN in Figure 4. We observe that for the partially 
observed case, conclusions are similar as well. These experiments clearly show that DAN can achieve a compa-
rable performance without using EnKF-type regularization techniques.

5.5.  Predictive Performance and Sensitivity to Initialization

As DAN is trained on the time interval t ≤ T, it remains important to evaluate its predictive performance by 
considering how well it performs for t  >  T. Such performance can be measured by the average rmses over 
T + 1 ≤ t ≤ 2T instead of over 1 ≤ t ≤ T, evaluated using the trained model parameter (θ = θT). The posterior 
rmses for fully observed case are provided in Table 2. We find that the rmses over T + 1 ≤ t ≤ 2T are close to 
those over 1 ≤ t ≤ T. This suggests that DAN has learned the dynamics of the Lorenz system in order to perform 
well on future trajectories.

All the earlier results are concerned of the performance of DAN under a fixed burning time. Using this burning 
time for the training of DAN, we further evaluate the rmses on test sequences which have a different burning time. 
It allows us to indirectly access how well recurrent structures inherited from the HMM are learned. The results 
of the ensemble size m = 20 are given in Table 3. It shows that the performance of DAN is not sensitive to the 
distribution of the test sample x1 initialized over a wide range of burning time.

We remark that among all the simulations, there is always a relatively large error in 𝐴𝐴 𝐴𝐴
𝑎𝑎

𝑡𝑡
 and 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
 for small t then 

it decreases very quickly (e.g., m = 20, burning = 1,000, both 𝐴𝐴 𝐴𝐴
𝑎𝑎

𝑡𝑡
 and 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
 get close to a constant level when 

t ≥ 20). This transition is needed for DAN to enter a stable regime because the initial memory of the RNN is 
set to zero.

6.  Conclusions
Based on the key observation that the analysis and propagation steps of DA consist in applying time-invariant 
transformations a and b that update the pdfs using incoming observations, we propose a general framework DAN 
which encompasses well-known state-of the art methods as special cases. We have shown that by optimizing 
suitable likelihood-based objective functions, the underlying posterior densities represented by these transforma-
tions have the capacity to approximate the optimal posterior densities of BDA. By representing a and b as neural 
networks, the estimation problem takes the form of the minimization of a loss with respect to the parameters of an 
extended Elman recurrent neural network. As a result, this general framework can be used for nonlinear dynamics 
and non-Gaussian error statistics.

In practice, we need to define the pdfs for the calculation of the loss func-
tion. As a first step and to be able to compare performance of DAN with 
the state-of-the-art ensemble methods, we perform numerical experiments 
with a procoder c which outputs a Gaussian pdf. Our numerical results on 
a 40-dimensional chaotic Lorenz-95 system show that when the ensemble 
size is small, DAN performs similarly compared to LETKF which includes 
regularization techniques such as localization and inflation. For large ensem-
ble size, DAN has similar performance compared to IEnKF-Q and LETKF. 

Table 2 
Time Averaged Posterior (Filtering) rmses 𝐴𝐴

1

𝑇𝑇

∑
2𝑇𝑇

𝑡𝑡=𝑇𝑇+1
𝑅𝑅

𝑎𝑎

𝑡𝑡
 With Various 

Ensemble Size

m 5 10 20 30

DAN 0.400 0.388 0.377 0.376

Table 3 
Time Averaged Posterior (Filtering) rmses 𝐴𝐴

1

𝑇𝑇

∑𝑇𝑇

𝑡𝑡=1
𝑅𝑅

𝑎𝑎

𝑡𝑡
 With Various Burning 

Time at Ensemble Size m = 20

Burning time 10 1 10 3 10 5 10 7

DAN 0.376 0.376 0.377 0.377
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It indicates that the DAN framework has the advantage of avoiding some problem-dependent numerical-tuning 
techniques. We also find that DAN is robust in terms of its predictive performance and its initialization.

Although we use a Gaussian approximation of the posterior densities in the procoder c, it can still happen that the 
memory space 𝐴𝐴 𝕊𝕊 may encode non-Gaussian information of the posterior distributions. To analyze why DAN can 
handle problems with nonlinear dynamics (even in other nonlinear dynamical systems) is left as a future study. 
From a practical point of view, DAN in its current form is not scalable to perform DA when the dimensionality 
n is very large (e.g., in the order of 10 9). To make DAN scalable, different training strategies (Chen et al., 2022; 
Penny et al., 2022) will be considered in the future.

Appendix A:  Proof of Theorem 1
Proof. According to Equation  12, it is sufficient to derive the optimal solution of 𝐴𝐴 𝑡𝑡

(
𝑞𝑞
𝑏𝑏

𝑡𝑡
, 𝑞𝑞

a

𝑡𝑡

)
 for each t inde-

pendently. The proof is an application of the KL-divergence (Kullback & Leibler, 1951) to conditional probability 
densities. We re-write 𝐴𝐴 𝑡𝑡

(
𝑞𝑞
𝑏𝑏

𝑡𝑡
, 𝑞𝑞

a

𝑡𝑡

)
 as

-
∫

ln 𝑞𝑞
𝑏𝑏

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡-1)𝑝𝑝

𝑏𝑏

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡-1)𝑝𝑝(𝑦𝑦1∶𝑡𝑡-1)𝑑𝑑𝑑𝑑𝑡𝑡d𝑦𝑦1∶𝑡𝑡-1 −

∫
ln 𝑞𝑞

a

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡)𝑝𝑝

a

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡)𝑝𝑝(𝑦𝑦1∶𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡d𝑦𝑦1∶𝑡𝑡,� (A1)

using the property 𝐴𝐴 𝐴𝐴(𝑥𝑥𝑡𝑡, 𝑦𝑦1∶𝑡𝑡−1) = 𝑝𝑝
𝑏𝑏

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡-1)𝑝𝑝(𝑦𝑦1∶𝑡𝑡-1) and 𝐴𝐴 𝐴𝐴(𝑥𝑥𝑡𝑡, 𝑦𝑦1∶𝑡𝑡) = 𝑝𝑝

𝑎𝑎

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡)𝑝𝑝(𝑦𝑦1∶𝑡𝑡) . The first term in Equa-

tion A1 can be written as a non-negative conditional relative entropy by including a constant conditional entropy term:

∫

(

∫
ln

𝑝𝑝
𝑏𝑏

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡-1)

𝑞𝑞
𝑏𝑏

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡-1)

𝑝𝑝
𝑏𝑏

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡-1)𝑑𝑑𝑑𝑑𝑡𝑡

)

𝑝𝑝(𝑦𝑦1∶𝑡𝑡-1)d𝑦𝑦1∶𝑡𝑡-1 ≥ 0.� (A2)

We have equality in Equation A2 if and only if 𝐴𝐴 𝐴𝐴
𝑏𝑏

𝑡𝑡
(𝑥𝑥|𝑦𝑦1∶𝑡𝑡-1) = 𝑝𝑝

𝑏𝑏

𝑡𝑡
(𝑥𝑥|𝑦𝑦1∶𝑡𝑡-1) for 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡-1) -a.e x, and p-a.e. y1:t−1 (see 

a proof in (Kullback & Leibler (1951), Lemma 3.1) and (Bogachev, 2007, Corollary 2.5.4)). Thus, the minimal 
solution is given by 𝐴𝐴 𝐴𝐴𝐴

𝑏𝑏

𝑡𝑡
 as stated in the theorem. Similarly, the minimal solution of the second term Equation A1 

is given by the 𝐴𝐴 𝐴𝐴𝐴
a

𝑡𝑡
 in the statement.

Appendix B:  Proof of Theorem 2
Proof. We shall only provide a proof for 𝐴𝐴 𝐴𝐴𝐴

𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) as the proof is similar for 𝐴𝐴 𝐴𝐴𝐴

𝑎𝑎

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡) . Let 𝐴𝐴 𝐴𝐴𝐴

𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) be the 

Gaussian distribution which has the mean and covariance of 𝐴𝐴 𝐴𝐴
𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) . Following the proof of Theorem 1, we 

can rewrite the first term, up to a constant, in Equation A1 into

∫

(

∫
ln

𝑝̄𝑝
𝑏𝑏

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡−1)

𝑞𝑞
𝑏𝑏

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡−1)

𝑝𝑝
𝑏𝑏

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡−1)𝑑𝑑𝑑𝑑𝑡𝑡

)

𝑝𝑝(𝑦𝑦1∶𝑡𝑡−1)d𝑦𝑦1∶𝑡𝑡−1� (B1)

This is an equivalent minimization problem because we have added a term of 𝐴𝐴 𝐴𝐴𝐴
𝑏𝑏

𝑡𝑡
 which does not depend on 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
 . By 

definition, 𝐴𝐴 𝐴𝐴
𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) ∈ 𝔾𝔾𝕏𝕏, 𝑞𝑞

𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) ∈ 𝔾𝔾𝕏𝕏 , the logarithm term in Equation B1 is a quadratic function of xt. As 

a consequence, we can rewrite Equation B1 as

∫

(

∫
ln

𝑝̄𝑝
𝑏𝑏

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡−1)

𝑞𝑞
𝑏𝑏

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡−1)

𝑝̄𝑝
𝑏𝑏

𝑡𝑡
(𝑥𝑥𝑡𝑡|𝑦𝑦1∶𝑡𝑡−1)𝑑𝑑𝑑𝑑𝑡𝑡

)

𝑝𝑝(𝑦𝑦1∶𝑡𝑡−1)d𝑦𝑦1∶𝑡𝑡−1 ≥ 0.� (B2)

where we have replaced the density 𝐴𝐴 𝐴𝐴
𝑏𝑏

𝑡𝑡
 by 𝐴𝐴 𝐴𝐴𝐴

𝑏𝑏

𝑡𝑡
 because they have the same first and second order moments. Note that 

the inner integral in Equation B2 is the KL divergence between 𝐴𝐴 𝐴𝐴𝐴
𝑏𝑏

𝑡𝑡
 and 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
 , so its minimal solution 𝐴𝐴 𝐴𝐴𝐴

𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) equals 

almost surely to 𝐴𝐴 𝐴𝐴𝐴
𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) . Therefore the mean and covariance of 𝐴𝐴 𝐴𝐴𝐴

𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) and 𝐴𝐴 𝐴𝐴

𝑏𝑏

𝑡𝑡
(⋅|𝑦𝑦1∶𝑡𝑡−1) match for p-a.e. y1:t−1.

Appendix C:  Parameterization of DAN

We use the following parameterization of μ and Λ to convert the vector 𝐴𝐴 𝐴𝐴 ∈ ℝ
𝑛𝑛+

𝑛𝑛(𝑛𝑛+1)

2  in Equation 15 into a Gauss-
ian distribution 𝐴𝐴 

(
𝜇𝜇𝜇ΛΛ

𝑇𝑇
)
 . Let v = (v0, …, vn+n(n+1)/2−1), we set

� =

⎛

⎜

⎜

⎜

⎜

⎝

�0

⋮

��−1

⎞

⎟

⎟

⎟

⎟

⎠

∈ ℝ�,� (C1a)
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Λ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

��� 0 ⋯ 0

�2� ���+1 ⋱ ⋮

⋮ ⋱ ⋱ 0

��+ �(�+1)
2 −1 ⋯ �3�−2 ��2�−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈ ℝ
�(�+1)

2 .� (C1b)

The exponential terms in Λ ensure the positive definiteness of ΛΛ T. This can be easily imple-
mented in Pytorch by using the module torch.distributions.multivariate_normal: 
MultivariateNormal(loc = μ,scale_tril = Λ).

Data Availability Statement
All the results and data in this paper can be reproduced from a software which is available at https://gitlab.com/
aniti-data-assimilation/dan_james. It can be cited at https://doi.org/10.5281/zenodo.7656199.
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