Geometry of convex geometries - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Geometry of convex geometries

Résumé

We prove that any convex geometry $\mathcal{A}=(U,\mathcal{C})$ on $n$ points and any ideal $\mathcal{I}=(U',\mathcal{C}')$ of $\mathcal{A}$ can be realized as the intersection pattern of an open convex polyhedral cone $K\subseteq {\mathbb R}^n$ with the orthants of ${\mathbb R}^n$. Furthermore, we show that $K$ can be chosen to have at most $m$ facets, where $m$ is the number of critical rooted circuits of $\mathcal{A}$. We also show that any convex geometry of convex dimension $d$ is realizable in ${\mathbb R}^d$ and that any multisimplicial complex (a basic example of an ideal of a convex geometry) of dimension $d$ is realizable in ${\mathbb R}^{2d}$ and that this is best possible. From our results it also follows that distributive lattices of dimension $d$ are realizable in ${\mathbb R}^{d}$ and that median systems are realizable. We leave open %the question whether each median system of dimension $d$ is realizable in ${\mathbb R}^{O(d)}$.
Fichier principal
Vignette du fichier
2405.12660v1.pdf (623.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04728856 , version 1 (09-10-2024)

Identifiants

Citer

Jérémie Chalopin, Victor Chepoi, Kolja Knauer. Geometry of convex geometries. 2024. ⟨hal-04728856⟩
8 Consultations
6 Téléchargements

Altmetric

Partager

More