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Abstract

We prove that any convex geometry A = (U, C) on n points and any ideal I = (U ′, C′) of A can be realized
as the intersection pattern of an open convex polyhedral cone K ⊆ Rn with the orthants of Rn. Furthermore,
we show that K can be chosen to have at most m facets, where m is the number of critical rooted circuits of A.
We also show that any convex geometry of convex dimension d is realizable in Rd and that any multisimplicial
complex (a basic example of an ideal of a convex geometry) of dimension d is realizable in R2d and that this is
best possible. From our results it also follows that distributive lattices of dimension d are realizable in Rd and that
median systems are realizable. We leave open whether each median system of dimension d is realizable in RO(d).

1 Introduction

Several fundamental combinatorial structures constitute abstract generalizations of geometric settings. Matroids
generalize the linear independence in vector spaces, oriented matroids (OMs) capture the combinatorics of regions
in a central hyperplane arrangement in Rd, ample/lopsided sets (AMPs) encode the regions of the arrangement of
coordinate hyperplanes intersected with a convex set, and convex geometries/antimatroids represent an abstraction
of Euclidean convexity restricted to a finite set. Finally, complexes of oriented matroids (COMs) are a common
generalization of oriented matroids and ample sets and capture the combinatorics of regions in an arbitrary hyperplane
arrangement in Rd restricted to a convex set K. Although this geometric model is a desirable property for a respective
combinatorial structure, the realizability question is hard. For example, the problem of characterizing which oriented
matroids come from hyperplane arrangements is intractable.

We investigate the realizability question for convex geometries and generalize them to ideals of convex geometries.
Convex geometries (alias antimatroids) have been introduced and investigated by Edelman and Jamison [11] in the
context of abstract convexity and by Korte and Lovasz [20, 21] in combinatorics. Kashiwabara, Nakamura, and
Okamoto [16] proved that any convex geometry A = (U, C) on n points can be realized in Rn using a generalized
convex shelling. Richter and Rogers [24] proved that A can be realized in this way in Rd, where d is the convex
dimension of A. In this paper, we consider a simpler (and dual) version of realizability via hyperplane arrangements
and convex sets, as in the case of OMs and COMs. We prove that any convex geometry A is realizable in this way
in Rn. Furthermore, we show that the convex set realizing A can be chosen to be a polyhedral cone with at most
m facets, where m is the number of critical rooted circuits of A. We also establish that any ideal I = (U, C′) of A
is realizable in Rn by a convex polyhedron with m+ k facets where k is the number of positive circuits. We also
show that any convex geometry of convex dimension d is realizable in Rd. As an application of our results on ideals,
we show that any multisimplicial complex of dimension d is realizable in R2d and this is optimal. It follows that
distributive lattices of dimension d are realizable in Rd and that median systems are realizable. We leave open whether
each median system of dimension d is realizable in RO(d) but show that any tree (median system of dimension 1) is
realizable in R2.

2 Preliminaries

In this section, we define the main combinatorial structures investigated in this paper and their realizability.
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2.1 Set families and systems of sign vectors

Let U be a set of size n. A set family S is any collection of subsets of U . We denote by S∗ the complement 2U \ S of
the family S. Any set family S ⊆ 2U can be viewed as a subset of vertices of the n-dimensional hypercube Qn = Q(U).
Denote by G(S) the subgraph of Qn induced by the vertices of Qn corresponding to the sets of S; G(S) is called the
1-inclusion graph of S. A set family S is called isometric if G(S) is an isometric subgraph of the hypercube Qn, i.e.,
the distances in G(S) and in Qn between any two vertices of G(S) are equal. An X-cube Q of Qn is the 1-inclusion
graph of the set family {Y ∪X ′ : X ′ ⊆ X}, where Y is a subset of U \X, called the support of Q. If |X| = n′, then
any X-cube is a n′-dimensional subcube of Qn and Qn contains 2n−n′

X-cubes.
Let L be a system of sign vectors on U , i.e., maps from U to {−1, 0,+1}. The elements of L are referred to as

covectors and denoted by capital letters X,Y, Z. For X ∈ L, the subset X = {e ∈ U : Xe ̸= 0} is the support of X
and its complement X0 = U \X = {e ∈ U : Xe = 0} is the zero set of X.

The systems of sign vectors generalize set families. Indeed, any set family (U,S) can be encoded as a system of
sign vectors by setting for each set X ∈ S, Xe = −1 if e /∈ X and Xe = −1 if e ∈ X. In this representation, each
set X is encoded by a {−1,+1}-vector. The encoding with {−1, 0,+1}-vectors is useful when encoding cubes of Qn.
Indeed, each X-cube Q with support Y can be encoded by {−1, 0,+1}-vector X(Q), where X(Q)e = +1 if e ∈ Y ,
X(Q)e = −1 if e ∈ (U \X) \ Y , and X(Q)e = 0 if e ∈ X.

For each subset X ⊂ U , the (open) X-orthant of Rn is the set O(Y ) of all points x = (x1, . . . , xn) ∈ Rn such that
xe > 0 if e ∈ X and xe < 0 if e /∈ X. More generally, for a covector X ∈ {−1, 0,+1}U , the X-generalized orthant
is the set of all points x = (x1, . . . , xn) ∈ Rn such that xe > 0 if Xe = +1 and xe < 0 if Xe = −1. Notice that the
X-generalized orthant is the union of all Y -orthants O(Y ) such that Y = X ∪ Y ′ with Y ′ ⊆ X0.

2.2 OMs and COMs

We recall the basic theory of OMs and COMs from [5] and [3], respectively. Co-invented by Bland and Las Vergnas [6]
and Folkman and Lawrence [14], and further investigated by Edmonds and Mandel [13] and many other authors,
oriented matroids represent a unified combinatorial theory of orientations of ordinary matroids, which simultaneously
captures the basic properties of sign vectors representing the regions in a hyperplane arrangement in Rd and of sign
vectors of the circuits in a directed graph. OMs provide a framework for the analysis of combinatorial properties of
geometric configurations occurring in discrete geometry and in machine learning. Point and vector configurations,
order types, hyperplane and pseudo-line arrangements, convex polytopes, directed graphs, and linear programming
find a common generalization in this language. The Topological Representation Theorem of [14] connects the theory of
OMs on a deep level to arrangements of pseudohyperplanes and distinguishes it from the theory of ordinary matroids.

Let L ⊆ {−1, 0,+1}U be a system of sign vectors. For the sake of this paper we assume that L is simple, i.e., for
all e ∈ U there exists X ∈ L such that Xe ̸= 0. For X,Y ∈ L, Sep(X,Y ) = {e ∈ U : XeYe = −1} is the separator of
X and Y . The composition of X and Y is the sign vector X ◦ Y , where for all e ∈ U , (X ◦ Y )e = Xe if Xe ̸= 0 and
(X ◦ Y )e = Ye if Xe = 0.

Definition 1. An oriented matroid (OM) [5] is a system M = (U,L) of sign vectors satisfying

(C) (Composition) X ◦ Y ∈ L for all X,Y ∈ L.

(SE) (Strong elimination) for each pair X,Y ∈ L and for each e ∈ Sep(X,Y ), there exists Z ∈ L such that Ze = 0 and
Zf = (X ◦ Y )f for all f ∈ U \ Sep(X,Y ).

(Sym) (Symmetry) −L = {−X : X ∈ L} = L, that is, L is closed under sign reversal.

Let ≤ be the product ordering on {−1, 0,+1}U relative to 0 ≤ −1,+1. The poset (L,≤) of an OM M = (U,L)
with an artificial maximum 1̂ forms the (graded) big face lattice Fbig(M). The topes T of L are the co-atoms of
Fbig(M). By simplicity the topes are {−1,+1}-vectors and T can be seen as a family of subsets of U . For each
T ∈ T , an element e ∈ U belongs to the corresponding set if and only if Te = +1. The tope graph G(M) of an OM
M = (U,L) is the 1-inclusion graph of the set T of topes of L, i.e., the subgraph of the hypercube induced by the
vertices corresponding to T . Then G(M) is an isometric subgraph of Qn.

Complexes of Oriented Matroids (COMs) were introduced by Bandelt, Chepoi, and Knauer [3] as a natural
common generalization of ample sets and OMs. They are defined by replacing the global axiom (Sym) with a weaker
local axiom:
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Definition 2. A complex of oriented matroids (COM) [3] is a system of sign vectors M = (U,L) satisfying (SE)
and the following axiom:

(FS) (Face symmetry) X ◦ −Y ∈ L for all X,Y ∈ L.

One can see that OMs are exactly the COMs containing the zero vector 0, see [3]. The twist between (Sym) and
(FS) allows to keep using the same concepts, such as topes, tope graphs, the sign-order and the big face (semi)lattice
in a completely analogous way. On the other hand, it leads to a combinatorial and geometric structure that is build
from OMs as cells but is much richer than OMs. Let M = (U,L) be a COM and X ∈ L a covector. The face of X is
↑X := {Y ∈ L : X ≤ Y }, sometimes denoted F(X), see [3, 5]. A facet is an inclusion maximal proper face. From
the definition, any face ↑X consists of the sign vectors of all faces of the subcube of [−1,+1]U with barycenter X.
By [3, Lemma 4], each face ↑X of a COM M is an OM. The topes T and the tope graph G(M) of a COM are defined
as for OMs. Again, the COM M = (U,L) can be recovered from G(M) and G(M) is an isometric subgraph of Qn,
see [3, 18].

2.3 Ample sets

Ample sets [2] (originally introduced as lopsided sets by Lawrence [22]) are combinatorial structures somewhat opposed
to oriented matroids. They capture an important variety of combinatorial objects, e.g., diagrams of (upper locally)
distributive lattices, median graphs or CAT(0) cube complexes, convex geometries and conditional antimatroids,
see [2]. Ample sets are exactly the COMs, in which all faces are cubes. Ample sets can be defined and characterized
in a multitude of combinatorial ways in the language of set families, i.e., in terms of topes; see [2, 7, 22]. One of them
is via shattering and strong shattering.

Let S be a family of subsets of an n-element set U . For a set Y ⊂ U , the trace of S to Y is defined as
S|Y = {X ∩ Y : X ∈ S}. A subset X of U is shattered by S if for all Y ⊆ X there exists S ∈ S such that S ∩X = Y ,
i.e. SX = 2X . The Vapnik-Chervonenkis dimension (the VC-dimension for short) VC-dim(S) of S is the cardinality
of the largest subset of U shattered by S. A subset X of U is strongly shattered by S if the 1-inclusion graph G(S) of
S contains an X-cube. Denote by X (S) and X (S) the families consisting of all shattered and of all strongly shattered
sets of S, respectively. Clearly, X (S) ⊆ X (S) and both X (S) and X (S) are closed under taking subsets, i.e., X (S)
and X (S) are abstract simplicial complexes. The VC-dimension VC-dim(S) of S is thus the size of a largest set
shattered by S, i.e., the dimension of the simplicial complex X (S). A family S of subsets of U is ample whenever the
simplicial complexes X (S) and X (S) coincide, i.e., each shattered set is strongly shattered. From this definition it
follows that the VC-dimension of an ample set S coincides with the dimension of a largest cube included in S. The
complement S∗ = 2U \ S of an ample set S is also ample. Finally, ample sets are isometric.

2.4 Convex geometries

Convex geometries, introduced and investigated by Edelman and Jamison [11], are the abstract convexity spaces
satisfying one of the most important properties of Euclidean convexity: each convex set is the convex hull of its
extremal points. A convex geometry [11] is a pair A = (U, C) of a finite universe U and a collection of convex sets
C ⊆ 2U satisfying the following two conditions:

(C1) ∅ ∈ C and U ∈ C;

(C2) X ∩ Y ∈ C for all X,Y ∈ C; (intersection-closed)

(C3) if X ∈ C \ {U}, then there exists e ∈ U \X such that X ∪ e ∈ C. (extendable)

The convex hull conv(A) of a set A ⊂ U is the intersection of all convex sets of A containing A. A point x of a convex
set X is called an extreme point of X if X \ {x} is also convex. Denote by ex(X) the set of all extreme points of X.
Under axioms (C1) and (C2), the axiom (C3) is equivalent to the following axiom:

(C4) X = conv(ex(X)) for any convex set X.

Convex geometries can be also characterized by the anti-exchange axiom:

(C5) if X ∈ C and p, q are two different points of U \X, then q ∈ conv(X ∪ p) implies that p /∈ conv(X ∪ q).
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For other characterizations of convex geometries, their properties, and examples, see the foundational paper by
Edelman and Jamison [11]. Convex geometries are ample sets [2]. If A = (U, C) is a convex geometry, then the set
family A∗ on U consisting of the complements U \C of sets C of C is union closed and is called an antimatroid. For a
nice exposition of the theory of convex geometries/antimatroids, see the book by Korte, Lovász, and Schrader [21].
Below we will present a characterization of convex geometries via rooted circuits and the notion of convex dimension.

A pair I = (U ′, C′) is called an ideal of a convex geometry if there is a convex geometry A = (U, C) such that
U ′ ⊆ U , C′ ⊆ C and if X ∈ C, Y ∈ C′ and X ⊆ Y , then X ∈ C′ (equivalently, for any X ∈ C′, the intervals in C′ and C
between ∅ and X coincide). One can show that ideals of convex geometries are ample sets because they are particular
instances of conditional antimatroids, see [2] and Section 6.2. This will also be a consequence of our realizability
results.

3 Realizability

In this section, we recall the notion of realizability of COMs and investigate some general properties of realizable
COMs. We also compare the notion of realizability with the notion of generalized convex shelling, which can be seen
as a dual realizability.

3.1 Realizability of COMs

We continue with the definition of realizable COMs given in the paper [3], which generalizes realizability of oriented
and affine oriented matroids [5] and of ample sets [22]. An affine arrangement of hyperplanes H is a finite set of
affine hyperplanes of Rd. We will denote by Hd the set of d coordinate hyperplanes of Rd. Let K be an open convex
set of Rd. Each (oriented) hyperplane H = {x ∈ Rd : ax = b} in an arrangement of hyperplanes H splits Rd into
the positive part H+ = {x ∈ Rd : ax > b}, the negative part H− = {x ∈ Rd : ax < b}, and the zero part H. The
arrangement H partitions Rd into open convex regions, called cells. All points belonging to the same cell have the
same sign vector with respect to the hyperplanes of H. Restrict the arrangement pattern to K, that is, remove all
sign vectors which represent the open regions of the partition disjoint from K. The resulting set of sign vectors of the
cells of K is denoted L(H,K) and constitutes a COM M(H,K) = (H,L(H,K)), see [3].

If H is a central arrangement with K being any open convex set containing the origin, then M(H,K) coincides
with the notion of realizable oriented matroid [5]. If the arrangement H is affine and K is the entire space, then
M(H,K) coincides with the realizable affine oriented matroid. Finally, the realizable ample sets arise by taking the
central arrangement Hd of coordinate hyperplanes restricted to an arbitrary open convex set K of Rd (this model was
first considered in [22]). A COM M is called realizable if there exists an affine arrangement of hyperplanes H and an
open convex set K of Rd such that M = M(H,K). Then the pair (H,K) is called a realization of M. As noticed
in [3], for a realizable COM the open convex set K always can be selected to be an open polyhedron (alias open
polyhedral cone). For a realizable COM M, we denote by dimE(M) the smallest d such that M has a realization in
Rd and call it the Euclidean dimension of M.

In realizable COMs, X ≤ Y for two covectors X,Y if and only if the cell corresponding to Y is contained in the
cell corresponding to X. Consequently, the topes of realizable COMs are the covectors of the inclusion maximal
cells (which all have dimension d), called regions. Therefore, the tope graph of a realizable COM with realization
(H,K) can be viewed as the adjacency graph of regions: the vertices of this graph are the regions of K defined by the
hyperplane arrangement H and two regions are adjacent in this graph if they are separated by a unique hyperplane of
the arrangement (recall that a hyperplane H separates two disjoint open convex sets A and B if A and B belong to
distinct halfspaces defined by H).

To realize a COM M, it is necessary to find an arrangement of hyperplanes H, an open convex set K (which may
be selected to be an open polyhedron), and a sign-preserving bijection between the topes of M and the sign vectors
of the regions (maximal cells) defined by H and included in K. Now, we will show that H can be selected to be the
set of coordinate hyperplanes Hd of Rd and K to be an open polyhedron (but not necessarily of full dimension) of Rd.
By this we mean that K is an open set in the induced topology on the affine hull of K. This immediately follows
from the following lemma:

Lemma 3. Let M = (U,L) be a realizable COM. Then M has a realization (H′,K ′), where K ′ is an open polyhedron,
indeed a cone, and H′ is a central arrangement of hyperplanes.
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Proof. Let M = (U,L) be a realizable COM with a realization M = M(H,K), where H is an arrangement of affine
hyperplanes and K is an open polyhedron of Rd. First, we consider Rd as the hyperplane xd+1 = 1 of Rd+1. Second,
we transform each hyperplane He ∈ H, e ∈ U to a central hyperplane H ′

e of Rd+1 passing via He and the origin of
coordinates. Denote the resulting arrangement by H′. The supporting hyperplanes Sj of the closure of K define
a second arrangement of hyperplanes S of Rd. Analogously to H, the arrangement S can be transformed into an
arrangement S ′ of central hyperplanes of Rd+1. Then K belongs to one halfspace defined by each hyperplane S′

j ∈ S ′.
The intersection of those positive open halfspaces is an open polyhedron K ′ containing K. Then L = L(H′,K ′) holds.
Each cell C ⊂ K of the realization M(H,K) gives rise to an open polyhedral cone C ′ ⊂ K ′ (containing C) of the
realization M(H′,K ′). The cone C ′ is the intersection of positive or negative halfspaces defined by the hyperplanes
of H′ and by the halfspaces of the hyperplanes of S ′ containing K ′.

Proposition 4. Let M = (U,L) be a realizable COM. Then M has a realization (Hn,K
′′), where K ′′ is an open

polyhedron, indeed a cone, and Hn is the set of the coordinates hyperplanes.

Proof. Let (H′,K ′) be a realization of M in Rd as in Lemma 3. Since the vectors normal to the central hyperplanes
of H′ are independent, they form a basis of Rd, thus there exists a linear transformation f of Rd mapping these
vectors to the coordinate vectors. Then f maps the hyperplanes of H′ to the coordinate hyperplanes Hd and the open
polyhedron K ′ to an open polyhedron K ′′. Furthermore, each open cell C ′ of K ′ bounded by a set H′

0 of hyperplanes
of H′ is mapped to a nonempty open cell C ′′ of K ′′ bounded by the set H′′

0 of hyperplanes of Hd, which are images of
the hyperplanes of H′

0. Consequently, (Hd,K
′′) realizes M.

3.2 General properties of realizability

We continue with some properties of realizable COMs and OMs. For this we continue with the notions of restriction,
contraction, and minors for COMs. Let M = (U,L) be a COM and A ⊆ U . Given a sign vector X ∈ {±1, 0}U by
X \A we refer to the restriction of X to U \A, that is X \A ∈ {±1, 0}U\A with (X \A)e = Xe for all e ∈ U \A. Note
that in the realizable setting M(H,K) this operation corresponds to adding some hyperplanes from H as halfspaces
to K. The deletion of A is defined as (U \ A,L \ A), where L \ A := {X \ A : X ∈ L}. Note that in the realizable
setting M(H,K) this operation corresponds to removing some hyperplanes from H. The contraction of A is defined
as (U \A,L/A), where L/A := {X \A : X ∈ L and X ∩A = ∅}. Note that in the realizable setting M(H,K) this
operation corresponds to intersecting K with some hyperplanes from H. If L′ arises by deletions and contractions
from L, L′ is said to be minor of L. With the arguments about realizability together with [3] we get.

Lemma 5 ([3, Lemma 1]). The class of realizable COMs is closed under taking minors and restrictions. Moreover, if
M′ is obtained by such operations from M, then dimE(M′) ≤ dimE(M).

A COM M = (U,L) is called free of dimension d if its tope graph is isomorphic to Qd. A COM M has
VC-dimension d if the topes of M define a set-family of VC-dimension d.

Lemma 6 ([8, Lemma 1]). A COM has VC-dimension ≤ d if and only if it does not have a free COM of dimension
d+ 1 as a minor.

Lemma 7. The Euclidean dimension of a free COM of dimension d is at least d.

Proof. A hyperplane arrangement of d hyperplanes in Rd−1 has less than 2d maximal cells, see e.g., [5, Exercise 4.3.5].
Thus, the free COM (which has 2d topes) cannot be realized in Rd−1.

The previous lemmas together imply:

Theorem 8. For every realizable COM M, we have dimVC(M) ≤ dimE(M) ≤ |U |.

Proof. For the lower bound, if M has dimVC(M) = r, then by Lemma 6 we can remove hyperplanes from its
realization and obtain a realization of Qr, which is an OM of VC-dimension r by Lemma 7, hence by Lemma 5 it has
r ≤ dimE(Qr) ≤ dimE(M). The upper bound is Proposition 4.

As a side remark we provide a quick answer to a question communicated to us privately by Kunin, Lienkaemper,
and Rosen, i.e., that a non-realizable OM cannot be realized as a COM either:

Remark 9. If M is an OM realizable as a COM, then M is realizable by a central hyperplane arrangement.
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Proof. Let M = (U,L) be an OM and suppose that it can be realized as a (realizable) COM M = M(H,K) in Rd.
Suppose without loss of generality that K is full-dimensional, otherwise we project into the affine hull of K. Since
M is an OM, we have that 0 ∈ L (recall that 0 is the all-zeros vector). Hence, there is a point x ∈ K in which
all the hyperplanes of H intersect. After translating x to the origin of Rd we see that H is a central hyperplane
arrangement. Hence, its combinatorics is determined by any arbitrary small sphere S around x, see e.g. [5, Section
1.2.(c)]. Therefore, we can set K = Rd and get a a representation of M by a central hyperplane arrangement.

3.3 Generalized convex shellings

Convex geometries are considered as generalizations of Euclidean convexity in the following sense. Let A = (U, C) be a
convex geometry. We say that A is CG-realizable if U can be viewed as a finite subset of points of Rd such that X ⊆ U
belongs to C if and only if the Euclidean convex hull of X does not contain other points of U : convRd(X) ∩ U = X.
Not every convex geometry can be realized in this way. Kashiwabara et al. [16] gave a realization theorem for all
convex geometries using the notion of generalized convex shellings. Let P and Q be two finite sets of Rd such that the
Euclidean convex hull of Q does not intersect P . Then the family of subsets C(P,Q) = {X ⊆ P : conv(X∪Q)∩P = X}
of P is called the generalized convex shelling on P with respect to Q. It is easy to see that any generalized convex
shelling is a convex geometry. Conversely, Kashiwabara et al. [16] proved that any convex geometry arises as a
generalized convex shelling. If Q = ∅, then this leads to the notion of CG-realizability. If C = C(P,Q), then we
will say that C(P,Q) is a generalized convex shelling of A = (P, C). Richter and Rogers [24] proved that any convex
geometry of (combinatorial) dimension d has a generalized convex shelling in Rd.

Extending the notation for generalized convex shellings, given two finite point sets P and Q of Rd, let

M(P,Q) = {X ⊆ P : ∃ halfspace H+ s.t. Q ⊂ H+ and P ∩H+ = X}.

Trivially, P ∈ M(P,Q). We say that (P,Q) is a point representation of a COM M if M = M(P,Q), i.e., the set of
topes of M consists precisely of the {−1,+1}-vectors of all sets of M(P,Q). Now, we establish a correspondence
between (hyperplane) realizations and point realizations of COMs and a link with generalized convex shellings. For
this purpose we define a COM to be acyclic if it has the all plus-vector (+1, . . . ,+1) as a tope.

Proposition 10 (Point representations of COMs). An acyclic COM M = (U,L) is (hyperplane) realizable if and
only if M is point realizable.

Proof. Let M = (U,L) be an acyclic realizable COM. We have M = M(H′,K ′) where H′ is a central hyperplane
arrangement H′ and K ′ an open polyhedral cone in Rd+1 as in Lemma 3. Now, the vectors ve, normal to the
hyperplanes H ′

e, e ∈ U of the arrangement H′, gives raise to a set V of vectors of Rd+1. Analogously, the vectors uj ,
normal to the hyperplanes S′

j of S ′ defining the polyhedron K ′ and such that their product with the vectors with

ends inside K ′ is positive, gives raise to a set U of vectors of Rd+1. For a cell C of the initial realization, each point p
of C defines a vector vp belonging to the cone C ′. Let Hvp be the central hyperplane of Rd+1 having vp as the normal
vector. Then all vectors of U belong to a halfspace defined by Hvp . Analogously, each vector ve ∈ V belongs to the
positive side of the hyperplane Hvp if and only if the cell C is located on the positive side of the hyperplane He ∈ H
(and thus the cone C ′ is on the positive side of the central hyperplane H ′

e ∈ H). Therefore, the topes of M can be
identified (in the set-theoretical language) with the subsets X of U such that there exists a central hyperplane H ′ of
Rd+1 such that all U belong to one halfspace defined by H ′ and a vector ve, e ∈ U belongs to the same halfspace
defined by H ′ if and only if e ∈ X.

Now, we can return back to Rd by considering a hyperplane H0 of Rd+1 parallel to Rd, which intersects all vectors
of V ∪ U . This hyperplane exists, since by acyclicity of M all elements of V have a positive last coordinate and the
same holds for the elements of U by the choice of normal vectors for the defining hyperplanes of K ′. Let pe ∈ H0

denote the point defined by the vector ve ∈ V and let qj ∈ H0 denote the point defined by the vector uj ∈ U . Denote
by P and Q the resulting point configurations of Rd. The correspondence between points in the model (H′,K ′) and
hyperplanes in the model (P,Q) establishes that for any point p in a cell C of (H′,K ′), and thus for any tope X of
M(H′,K ′), there is a hyperplane Hp such that Hp induces the sign-pattern of X in the model (P,Q).

Conversely, the preceding transformation can be reversed. Namely, given sets P,Q in H0 ⊆ Rd+1, we can define
the hyperplane arrangements H and S having P and Q as normal vectors, respectively. Letting K be the polyhedral
cone defined by S, we get a realization M = M(H,K).
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Remark 11. The essential difference between point representation of Proposition 10 provided by M(P,Q) and
generalized convex shelling of [16] provided by C(P,Q) is that instead of a single halfspace H+ containing Q and
intersecting P in X, the generalized convex shelling requires that conv(X ∪ Q) ∩ P = X. This is equivalent to
the existence of a set of halfspaces H+

1 , . . . ,H+
k , all containing Q and such that X = P ∩ (∩k

i=1H
+
i ). (As a set of

halfspaces H+
1 , . . . ,H+

k one can take the halfspaces defined by the support hyperplanes of the facets of the polytope
conv(X ∪Q) and containing this polytope). This is a natural requirement for intersection-closed set families, because
any set family admitting a generalized convex shelling is closed by intersections: if H+

1 , . . . ,H+
k and S+

1 , . . . , S+
m

are two sets of halfspaces such that Q ⊂ (∩k
i=1H

+
i ) ∩ (∩m

j=1S
+
j ) and P ∩ (∩k

i=1H
+
i ) = X, P ∩ (∩m

i=1S
+
j ) = Y , then

P ∩ (∩k
i=1H

+
i ) ∩ (∩m

i=1S
+
j ) = X ∩ Y .

Therefore, the hyperplane realizations and point representations of COMs are much simpler than generalized
convex shellings and correspond to classical OM-realizations. The main results of our paper (Theorems 25 and 34)
must be considered from this point of view, while compared to the results of [16] and [24] in the case of convex
geometries. On the other hand, the generalized convex shellings characterize convex geometries [16].

A relaxed convex shelling is defined as a generalized convex shelling without requiring that conv(Q) ∩ P = ∅.
Analogously to generalized convex shellings, relaxed convex shellings can be reformulated as follows: given two
arbitrary finite sets P and Q of Rd, a set X belongs to C(P,Q) = {X ⊆ P : conv(X ∪Q) ∩ P = X} if and only if
there exists of a set of halfspaces H+

1 , . . . ,H+
k , all containing Q and such that X = P ∩ (∩H+

i ). A COM M is called
intersection-closed if the set of topes of M defines an intersection-closed family of sets and ∅ ∈ M. Obviously, convex
geometries are acyclic and their ideals are intersection closed COMs. Note however, that acyclicity corresponds to the
universe being convex.

Lemma 12. Any point representation (P,Q) of an acyclic intersection-closed COM M yields a relaxed convex shelling
representation of M. If M is a convex geometry, then a relaxed convex shelling is a generalized convex shelling.

Proof. Since (P,Q) is a point representation of M, we have M = M(P,Q). From the definition of the point
representations and relaxed convex shellings, we conclude that M(P,Q) ⊆ C(P,Q). By Remark 11, C(P,Q) is closed
by taking intersections. To prove the converse inclusion C(P,Q) ⊆ M, pick any set X from C(P,Q). Then there exists
a set H+

1 , . . . ,H+
k of halfspaces, all containing Q and such that X = P ∩ (∩H+

i ). Let Xi = P ∩H+
i , i = 1, . . . , k.

Then each Xi belongs to M(P,Q). Since M(P,Q) = M, each Xi belongs to M. Since M is intersection-closed and
∩k
i=1Xi = X, we conclude that X ∈ M, establishing that C(P,Q) ⊆ M. Since ∅ ∈ M, necessarily conv(Q) ∩ P = ∅,

establishing that the relaxed convex shelling is a generalized convex shelling.

4 Convex geometries and their ideals

In this section, we present further results about convex geometries and their ideals that will be used in our proofs.
We also present examples of ideals of convex geometries.

4.1 Rooted circuits

In the proof of realizability of convex geometries, we will use the characterization of convex geometries via rooted
circuits and critical rooted circuits. Let A = (U, C) be a convex geometry. A rooted set is a pair (C, r) consisting of a
subset C of U and an element r of C. A convex geometry C is reconstructed from a collection of rooted sets F if
C = {X ⊆ U : (C, r) ∈ F ⇒ X ∩C ̸= C \ {r}}, i.e., X ⊆ U belongs to C if and only if no rooted set (C, r) ∈ F meets
X in C \ {r}. A rooted set (C, r) is a rooted circuit [20] of C if C|C = 2C \ {C \ {r}}. Denote by R(A) the set of all
rooted circuits of A. R(A) has the following properties established in [20] (for proofs, see Lemma 2 and Proposition 4
of [9]):

Theorem 13 ([20,21]). Let A = (U, C) be a convex geometry. Then:

(i) If (C, r) is a rooted circuit of C, then r ∈ conv(C \ {r});

(ii) A can be reconstructed from the family R(A) of its rooted circuits.

Dietrich [9] provided the following axiomatization of convex geometries via the rooted circuits:
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Theorem 14 ([9]). Let R be a set of rooted subsets of a finite set U . Then R is the set of rooted circuits of a convex
geometry if and only if R satisfies the following two properties:

(1) (C1, r1), (C2, r2) ∈ R and C1 ⊆ C2 implies C1 = C2 and r1 = r2;

(2) (C1, r1), (C2, r2) ∈ R and r1 ∈ C2 \ {r2} implies that there exists (C3, r2) ∈ R such that C3 ⊆ (C1 ∪ C2) \ {r1}.

Korte and Lovász [20] (see also the book [21]) established that antimatroids can be reconstructed from a unique
minimal subset of rooted circuits, which they call critical rooted circuits. In terms of convex geometries, a rooted
circuit (C, a) of a convex geometry A = (U, C) is a critical rooted circuit if conv(C) \ {a} does not belong to C but
conv(C) \ {a, b} belongs to C for any b ∈ C \ {a}. Denote by R0(A) the set of all critical rooted circuits of A.

Theorem 15 ([20,21]). Let A = (U, C) be a convex geometry. Then A can be reconstructed from the family R0(A) of
its critical rooted circuits. Furthermore, if A can be reconstructed from R′ ⊆ R(A), then R0(A) ⊆ R′.

To each rooted set (C, r) of a convex geometry A = (U, C) we can associate the cube Q(C, r): Q(C, r) consists
of all subsets of U of the form (C \ r) ∪X ′ with X ′ ⊆ U \ C. The cube Q(C, r) can be encoded by the sign vector
X(C, r), where Xe(C, r) = +1 if e ∈ C \ {r}, Xr(C, r) = −1, and Xe(C, r) = 0 if e ∈ U \ C. If (C, r) is a rooted
circuit, then the trace of C on C coincides with 2C \ {C \ {r}}, thus the cube Q(C, r) belongs to the complement A∗

of A and, furthermore, Q(C, r) is a maximal by inclusion cube of A∗. Consequently, Q(C, r) is an (U \C)-cube of A∗.
The converse also holds:

Lemma 16. Let A = (U, C) be a convex geometry. If Q is a maximal cube of A∗, then there exists (C, r) ∈ R(A)
such that Q = Q(C, r).

Proof. Suppose that Q consists of the sets {Y ∪X ′ : X ′ ⊆ X} for Y ⊆ U \X. Since Y /∈ C, by Theorem 13(ii), there
exists a rooted circuit (C, r) such that Y ∩ C = C \ {r}. But then Q is contained in the cube Q(C, r) of A∗ whose
vertices are the sets {(C \ {r}) ∪X ′ : X ′ ⊆ U \ C}. Since Q is maximal, Q = Q(C, r).

4.2 Positive circuits

In case of ideals of convex geometries, along with rooted circuits we also have to define positive circuits. Let I = (U ′, C′)
be an ideal of a convex geometry A = (U, C). A positive circuit of I with respect to A is a subset P ⊆ U such that
C′
|P = 2P \ {P}. In particular, for any e ∈ U \U ′, {e} is a positive circuit of I with respect to A. Given an ideal I of

a convex geometry A, we denote by P(I) the set of positive circuits of I with respect to A. We now show that C′ is
precisely the set of elements of C not containing positive circuits.

Lemma 17. For any ideal I = (U ′, C′) of a convex geometry A = (U, C), we have

C′ = {X ∈ C : ∀P ∈ P(I), P ̸⊆ X}.

Proof. Let C′′ = {X ∈ C : ∀P ∈ P(I), P ̸⊆ X}. Observe that C′′ is trivially included in C. For any X ∈ C′ and any
P ⊆ U , if P ⊆ X, then P /∈ P(I). Consequently, X ∈ C′′ and thus C′ ⊆ C′′.

Suppose now that there exists Y ∈ C′′ \ C′ and assume that Y is such a set of minimal size. By minimality of Y ,
for any e ∈ Y , Y \ {e} ∈ C if and only if Y \ {e} ∈ C′. Let P0 = {e ∈ Y : Y \ {e} ∈ C′}. Since C′ is intersection-closed,
we conclude that for any ∅ ⊊ P ′ ⊆ P0, we have Y \ P ′ ∈ C′. Consequently, 2P0 \ {P0} ⊆ C′

|P0
. Since Y ∩ P0 = P0 and

Y ∈ C′′, necessarily P0 /∈ P(I). Consequently, there exists X ∈ C′ such that P0 ⊆ X. Let Z = X ∩ Y and observe
that P0 ⊆ Z. Since C is intersection-closed, Z ∈ C. If Z = Y , then Y ⊆ X ∈ C′, contradicting the fact that C′ is an
ideal of C. Thus, by the minimality of Y , we have Z ⊊ Y . Since Z ∈ C′ and Y /∈ C′, there exists a set Z ⊆ A ⊆ Y and
an element e ∈ Y \A such that A ∈ C′ and B = A ∪ {e} ∈ C \ C′ (A and e exist since C is ample and thus isometric).
By minimality of Y , necessarily B = Y . Consequently e ∈ P0, but this is impossible since P0 ⊆ Z. This establishes
that C′′ ⊆ C′.

4.3 Convex dimension

Edelman and Jamison [11] provided a nice characterization of convex geometries via order convexity. Given a universe
U of size n and a total order e1 ≤ e2 ≤ . . . ≤ en, call an ending interval of ≤ any set of the form {e ∈ U : ei ≤ e} for
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some ei ∈ U . Given a set Υ = {≤1, . . . ,≤d} of d total orders on U , we say that a set family C ⊆ 2U is generated by
the set Υ if ∅ ∈ C and a nonempty set C belongs to C if and only if C is the intersection of d ending intervals, one
from each order ≤i of Υ, i.e., if there exists (ei)1≤i≤d ∈ Ud such that C = {e ∈ U : ei ≤i e,∀1 ≤ i ≤ d}. Edelman
and Jamison proved the following result:

Theorem 18 ([11, Theorem 5.2]). Any set family C ⊆ 2U generated by a set of total orders on U is a convex geometry
and, conversely, any convex geometry A = (U, C) can be generated by a set of total orders on U .

The convex dimension cdim(A) of a convex geometry A = (U, C) is the least number of total orders generating C.

4.4 (Ideals of) convex geometries as meet-(semi)lattices

A poset L = (X,≤) is a meet-semilattice if for every x, y ∈ L there is unique largest element x ∧ y ∈ L such that
x ∧ y ≤ x, y; x ∧ y is called the meet of x and y. A poset L = (X,≤) is a join-semilattice if for every x, y ∈ L there is
unique smallest element x ∨ y ∈ L such that x ∨ y ≥ x, y; x ∨ y is called the join of x and y. A poset is a lattice if it
is both a join- and a meet-semilattice. Note that both join and meet are associative and commutative operations, so
in order to take the join or meet over all the elements of a set Y we sometimes just write

∨
Y and

∧
Y , respectively.

Note that if a poset has a global minimum 0̂ or a global maximum 1̂, then we set
∨

∅ = 0̂ and
∧
∅ = 1̂, respectively.

An element x ∈ L is called join-irreducible if x =
∨

Y implies x ∈ Y for all Y ⊆ L. The set of join-irreducible
elements is denoted by J (L). Similarly, an element x ∈ L is called meet-irreducible if x =

∧
Y implies x ∈ Y for all

Y ⊆ L. The set of meet-irreducible elements is denoted M(L). Following Dilworth a lower locally distributive lattice
(LLD) is a lattice L such that for all x ∈ L there is a unique inclusion-minimal Jx ⊆ J (L) such that x =

∨
Jx (in fact,

Dilworth introduced the dual lattices, the upper locally distributive lattices (ULD)). This definition is equivalent to
Edelman’s notion of semi-distributive lattice, but since there are several notions of semidistributivity in the literature,
we prefer the name LLD. We refer to [17,23,26] for different equivalent characterizations, different names, as well as
many different instances of LLDs and ULDs. We continue with the characterization of lattices of convex geometries
provided by Edelman [10]:

Theorem 19 ( [10, Theorem 3.3]). A lattice is lower locally distributive if and only if it is isomorphic to the
inclusion-order of convex sets of a convex geometry.

The meet-irreducible elements of L = (C,⊆) correspond to the copoints of the convex geometry A = (U, C); a
copoint attached at point p is a maximal by inclusion convex set of C not containing p. Edelman and Jamison [11]
characterized convex geometries as the convexity spaces for which each copoint has a unique attaching point.
Furthermore, Edelman and Saks [12] characterized the convex dimension cdim(C) of a convex geometry A in term of
the poset of all meet-irreducibles in the following nice way:

Theorem 20 ([12]). For a convex geometry A = (U, C), cdim(C) is equal to the size of the largest antichain of the
poset (M(L),⊆), where L = (C,⊆).

An ideal I of a poset is a subset that is downwards-closed, i.e. if x ≤ y and y ∈ I, then x ∈ I. From Theorem 19
by definition we get a justification of the name ideals of convex geometries:

Remark 21. A meet-semilattice is an ideal of a lower locally distributive lattice if and only if it is isomorphic to the
inclusion-order of convex sets of an ideal of a convex geometry.

4.5 Examples of ideals of convex geometries

Edelman and Jamison [11] and Korte et al. [21] presented numerous examples of convex geometries and antimatroids,
arising from geometry, language theory, and chip firing games. Bandelt et al. [2] presented simplicial complexes and
median set systems as examples of conditional antimatroids. We will show below that multisimplicial complexes and
median set systems are in fact ideals of ideal alignments, a particular class of convex geometries.

A simplicial complex L on a set U is a family of subsets of U , called simplices or faces of L, such that if σ ∈ L
and σ′ ⊆ σ, then σ′ ∈ L. The facets of L are the maximal (by inclusion) faces of L. The dimension d of L is the size
of its largest face. A multi-subset σ of U is a subset of U such that each element e ∈ U is given with its multiplicity
nσ(e) (the number of times, e occurs in σ). A multisimplicial complex L on a set U is a family of multi-subsets of U ,
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such that if σ ∈ L and σ′ is a multi-subset of U such that nσ′(e) ≤ nσ(e) for each e ∈ U , then σ′ ∈ L. The size of a
face σ of L is the size of {e ∈ U : nσ(e) > 0}. The dimension d of L is the size of its largest face.

A median set system is a set family (U, C) satisfying (C1′), (C2), and

(C6) for any x ̸= y in U , there exists some K ∈ C with |{x, y} ∩K| = 1,

(C7) Ki,Mi ∈ C (i = 1, 2, 3) with Ki ∪Kj ⊆ Mk for {i, j, k} = {1, 2, 3} implies K1 ∪K2 ∪K3 ∈ C.

The name is justified by the fact that by virtue of (C2) and (C7), C is closed under the median operation m of 2U

defined by
m(L1, L2, L3) := (L1 ∩ L2) ∪ (L1 ∩ L3) ∪ (L2 ∩ L3).

The resulting meet-semilattice is called a median semilattice [1,4,25]. Median semilattices are locally lower distributive.
Indeed, by a result of Birkhoff and Kiss [4] they can be characterized by the property that all intervals [0̂, x] are
distributive lattices and three elements have an upper bound whenever each pair of them does.

Every abstract finite median algebra (for which the former set-theoretic ternary operation is axiomatized) or,
equivalently, any median graph can be represented by a median set system via the Sholander embedding [25] into
some power set 2U . An inherent feature of median algebras/graphs is that they may be oriented so that any element
can serve as the empty set in the associated set representation: a median set system C is mapped onto another one
C △ Z := {A △ Z : K ∈ C}, by the automorphism of 2U taking the symmetric difference with a fixed set Z ∈ C.

Let ≤ be a partial order on U . The ideal alignment DP [11] of the poset P = (U,≤) consists of all ideals of P . It
was noticed in [11] that the ideal alignments are convex geometries and it was shown in [11, Theorem 3.2] that a
convex geometry A = (U, C) is an ideal alignment if and only if C is union-closed. From the lattice point of view,
ideal alignments simply correspond to distributive lattices.

We say that a pair A = (U, C) is an ideal semialignment if C contains ∅, is intersection-closed, locally extendable
in the sense that if X,Y ∈ C such that X ⊆ Y , then there is e ∈ Y \X such that X ∪ e ∈ C, and locally union-closed,
in the sense that if X,Y ∈ C and there exists Z ∈ C such that X,Y ⊆ Z, then X ∪ Y ∈ C. The next result shows that
ideal semialignments are ideals of ideal alignments, hence in particular ideals of convex geometries:

Proposition 22. Every ideal semialignment A = (U, C) with k maximal convex sets is an ideal of an ideal alignment
A+ such that VC-dim(A+) ≤ k ·VC-dim(C).

Proof. We will prove that A = (U, C) is an ideal of an ideal alignment by induction on the number of inclusion-maximal
convex sets in C. If there is only one such set, then A is a convex geometry and we are done. Otherwise, take a
maximal set M = {X1, . . . , Xk} of at least two maxima such that

⋂k
i=1 Xi = M is maximal. Now define C+ by

adding all sets of the form Y1 ∪ . . . ∪ Yk with M ⊆ Yi ⊆ Xi for 1 ≤ i ≤ k to C. We set A+ = (U, C+).

First notice that C+ has a new maximal element
⋃k

i=1 Xi, while none of the sets in M is maximal anymore. Hence,
C+ has less inclusion-maximal convex sets than C. Let us show that C is an ideal of C+. For this purpose let X be
an inclusion-maximal convex set from C and R = Y1 ∪ . . . ∪ Yk ⊆ X with R ∈ C+. Then for all 1 ≤ i ≤ k we have
Yi ⊆ Xi ∩X. But by the maximality in the choice of M this implies Xi ∩X = M and hence X ∈ M, say X = Xk.
But then Yi = M for 1 ≤ i ≤ k − 1 and hence R = Yk ∈ C.

Now, we show that C+ is intersection-closed. Let A,B ∈ C+. If A,B ∈ C, then there is nothing to show, so suppose
first A ∈ C and B ∈ C+ \ C. Hence we can represent B = Y1 ∪ . . .∪Yk and we consider A∩ (Y1 ∪ . . .∪Yk) = (A∩Y1)∪
. . .∪(A∩Yk). Since all of these sets are subsets of A, since C is locally union-closed, their union is in C. If A,B ∈ C+\C,
then A = Y1∪. . .∪Yk and B = Y ′

1∪. . .∪Y ′
k and (Y1∪. . .∪Yk)∩(Y ′

1∪. . .∪Y ′
k) = Y1∩(Y ′

1∪. . .∪Y ′
k)∪. . . Yk∩(Y ′

1∪. . .∪Y ′
k)

but for each i here we have M ⊆ Yi ∩ (Y ′
1 ∪ . . . ∪ Y ′

k) ⊆ Xi, hence their union is in C+ by definition of C+.
In order to show that C+ is locally union-closed let A,B ∈ C+ and let A,B ⊆ Z. Since we can assume that A /∈ C,

without loss of generality we can set Z =
⋃k

i=1 Xi and A = Y1∪ . . .∪Yk as before. Now, B = (B∩X1)∪ . . .∪ (B∩Xk),
where each term is in C. Then, A ∪ B = (Y1 ∪ (B ∩X1) ∪ . . . ∪ Yk ∪ (B ∩Xk)), where each term is in C by local
union-closedness. Hence by definition of C+, A ∪B ∈ C+.

Finally, let us show that C+ is locally extendable. For this purpose let A,B ∈ C+ distinct sets such that B is
a maximal convex set and A ⊆ B. If B ∈ C, then since C is an ideal, also A ∈ C and there is nothing to show. So
suppose A ∈ C+ and B ∈ C+ \ C. We know that B =

⋃k
i=1 Xi if A ∈ C, then if A ∩Xi ⊊ Xi for some i, then there is

an element e ∈ Xi \A ⊆ B \A such that (A∩Xi)∪ e ∈ C since C is locally extendable. Now, C+ is locally union-closed
also A ∪ (A ∩Xi) ∪ e = A ∪ e ∈ C+. If A ∈ C+ \ C, then A = Y1 ∪ . . . ∪ Yk as usual and Yi ⊊ Xi for some i. Since C
is locally extendable, there is e ∈ Xi \ Yi ⊆ B \A such that Yi ∪ e ∈ C. But then by definition of C+, we have that
A ∪ e ∈ C+. The bound on the VC-dimension follows by construction.
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The grid Nn can be viewed as the covering graph of the poset (Nn,≤), where for x, y ∈ Nn with x = (x1, . . . , xn)
and y = (y1, . . . , yn), we set x ≤ y if and only xi ≤ yi for i = 1, . . . , n. Since ideals of the grid (Nn,≤) are ample, the
VC-dimension dimVC(L) of any such ideal L is the largest subcube of L. Notice that dimVC(L) can be smaller than
the dimension n of the grid. It is obvious that there exists a bijection between the ideals of the grid (Nn,≤) and the
multisimplicial complexes on a set X of size n. The simplicial complexes are in bijection with the ideals of the n-cube
{0, 1}n ⊂ Nn. The VC-dimension of any (multi)simplicial complex coincides with its dimension. Hence, we can apply
Proposition 22 to obtain the following result:

Corollary 23. Every multisimplicial complex of dimension d and k facets is an ideal of an ideal alignment of
VC-dimension at most kd.

We get an analogous bound for median set systems:

Corollary 24. Every median set system of VC-dimension d and having k maximal elements is an ideal of an ideal
alignment of VC-dimension at most kd.

5 Realization of convex geometries and of their ideals

In this section we prove the main results of the paper. First, we prove that any convex geometry A = (U, C) admits a
realization (Hn,K(R0)) in Rn, where n = |U |, Hn are the coordinate hyperplanes of Rn, and K(R0) has as many
facets as the number of critical rooted circuits of A. Then we prove that any ideal I of A is also realizable in Rn and
the polyhedron K0 realizing I has as many facets as the number of critical rooted circuits of A and positive circuits
of I. Furthermore, we prove that each convex geometry is realizable in dimension equal to its convex dimension.
Finally, we prove that trees and multisimplicial complexes have realizations in dimension bounded linearly in their
VC-dimension.

5.1 Realization of ideals of convex geometries

Let U = {1, . . . , n} and let A = (U, C) be a convex geometry on U having R := R(A) as the set of rooted circuits and
R0 := R0(A) as the set of critical rooted circuits. For each rooted circuit (C, r) of A consider the hyperplane H(C, r)
defined by the equation |U |xr =

∑
e∈C\{r} xe. Denote by K(C, r) the open halfspace of Rn determined by H(C, r) as

K(C, r) =

x = (x1, . . . , xd) ∈ Rn : |U |xr >
∑

e∈C\{r}

xe

 .

Let K(R) =
⋂

(C,r)∈R K(C, r) and K(R0) =
⋂

(C,r)∈R0
K(C, r) be the open polyhedra that are respectively the

intersection of all K(C, r) taken over all rooted circuits (C, r) of A and the intersection of all K(C, r) taken over all
critical rooted circuits (C, r) of A. Obviously, K(R) ⊆ K(R0).

Consider now an ideal I = (U ′, C′) of the convex geometry A = (U, C). Let P := P(I) be the set of positive
circuits of I with respect to A. For each P ∈ P, the hyperplane H(P ) is defined by the equation

∑
e∈P xe = 0.

Denote by K(P ) the open halfspace of Rn determined by H(P ) as

K(P ) =

{
x = (x1, . . . , xd) ∈ Rd :

∑
e∈P

xe < 0

}
.

Finally, consider the open polyhedra K(P) =
⋂

P∈P K(P ), K = K(R)∩K(P), and K0 = K(R0)∩K(P). Clearly,
K ⊆ K0 ⊆ K(P).

Theorem 25. For a convex geometry A = (U, C), the pairs (Hn,K(R)) and (Hn,K(R0)) are realizations of A. More
generally, for any ideal I = (U ′, C′) of A, the pairs (Hn,K) and (Hn,K0) are realizations of I.

The proof of the first assertion is a direct consequence of the second assertion. The proof that (Hn,K(R)) and
(Hn,K) are realizations of A and I is inspired by (but is simpler than) the proof of Kashiwabara et al. [16] that
convex geometries can be represented via generalized convex shellings. The proof of the second assertion follows from
four lemmas, which we prove first. We first show that for any X ∈ C′, the convex set K intersects the X-orthant
O(X) of Rn.
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Lemma 26. For any X ∈ C′, the X-orthant O(X) of Rn intersects the convex polyhedron K.

Proof. We prove that theX-orthantO(X) intersects the convex setK, i.e., that there exists a point x∗ = (x∗
1, . . . , x

∗
n) ∈

O(X)∩K. Let |X| = k and suppose without loss of generality that X = {e1, . . . , ek}. First, we set x∗
e1 = x∗

e2 = · · · =
x∗
ek

= 1. In the following, we set a negative value for each x∗
e, e /∈ X. Observe that for any rooted circuit (C, r) such

that C ⊆ X, we have |U |x∗
r = |U | > (|C| − 1) =

∑
e∈C\{r} xe and thus x∗ ∈ K(C, r), independently of the values of

the remaining n − k coordinates of x∗. Notice also that, since X belongs to C′, X does not contain any positive
circuit of C′. Since X ∈ C, by axiom (C3) of convex geometries, the elements of U \X can be ordered ek+1, . . . , en,
such that all the sets Xi = X ∪ {xk+1, . . . , xk+i} = Xi−1 ∪ {xk+i}, i = 1, . . . , n− k are convex sets of C. We define
the remaining n− k coordinates of x∗ (which have to be negative) following the order ek+1, . . . , en. Suppose that
after i− 1 steps the coordinates x∗

ek+1
, . . . , x∗

ek+i−1
have been defined. At stage i we need to define the value of x∗

ek+i

in order to satisfy

• all constraints of the form |U |x∗
r >

∑
e∈C\{r} x

∗
e, where (C, r) ∈ R(A), ek+i ∈ C, and C ⊂ Xk+i;

• all constraints of the form
∑

e∈P x∗
e < 0, where P ∈ P, ek+i ∈ P , and P ⊂ Xk+i.

For any rooted circuit (C, r) such that ek+i ∈ C ⊆ Xk+i, the values of x∗
e for all elements e ∈ C \ {ek+i} have been

already defined. Since Xk+i−1 ∈ C and since (C, r) is a rooted circuit of A, we know that r ̸= ek+i. Consequently, if
we set x∗

ek+i
< |U |x∗

r −
∑

e∈C\{r,ek+i} x
∗
e, the point x∗ is in the halfspace K(C, r).

Similarly, for any positive circuit P of I such that ek+i ∈ P ⊆ Xk+i, the values of x
∗
e for all elements e ∈ P \{ek+i}

have been already defined. Setting x∗
ek+i

< −
∑

e∈P\{ek+i} x
∗
e ensures that the point x∗ is in the halfspace K(P ). By

choosing a negative value for x∗
ek+i

that is small enough, we can satisfy all the constraints over the rooted circuits
(C, r) and the positive circuits P contained in the set Xk+i.

Consequently, we have constructed a point x∗ belonging to the X-orthant O(X) and to the convex polyhedron
K.

We now show that if a set Y is not in C, then we can find a rooted circuit (C, r) whose hyperplane H(C, r)
separates the Y -orthant O(Y ) from the polyhedron K(R) (and thus from K and K0).

Lemma 27. For any Y ∈ C∗, there exists a rooted circuit (C, r) of A such that O(Y ) ∩K(C, r) = ∅. Consequently,
the hyperplane H(C, r) separates O(Y ) from K(R).

Proof. Since Y /∈ C, by Theorem 13 there exists a rooted circuit (C, r) such that C ∩ Y = C \ {r}. Pick any point
y = (y1, . . . , yn) from the Y -orthant O(Y ) of Rn (i.e., ye > 0 for e ∈ Y and ye < 0 for e /∈ Y ). Since C ∩ Y = C \ {r},
we have yr < 0 and ye > 0 for any e ∈ C \ {r}. Consequently, y does not satisfy the inequality |U |yr >

∑
e∈C\{r} ye,

and thus y /∈ K. As a result, each orthant O(Y ) with Y ∈ C∗ is separated from K(R) by a hyperplane of the form
H(C, r) with (C, r) ∈ R.

Similarly, if Y ∈ C \ C′, then we can find a positive circuit P ∈ P such that the hyperplane H(P ) separates the
Y -orthant O(Y ) from the polyhedron K(P) (and thus from K and K0).

Lemma 28. For any Y ∈ C \ C′, there exists a positive circuit P ∈ P such that O(Y ) ∩K(P ) = ∅. Consequently,
the hyperplane H(P ) separates O(Y ) from K(P).

Proof. By Lemma 17, there exists a positive circuit P ∈ P such that P ⊆ Y . Consider a point y = (y1, . . . , yn)
from the Y -orthant O(Y ) of Rn. Since P ⊆ Y , we have ye > 0 for any e ∈ P . Consequently, y does not satisfy the
inequality

∑
e∈P ye < 0, and thus y /∈ K(P). As a result, each orthant O(Y ) with Y ∈ C \ C′ is separated from K(P)

by a hyperplane of the form H(P ) with P ∈ P.

Finally, we show that if Y ∈ C∗, then the orthant O(Y ) does not intersect the polyhedron K(R0) defined by the
critical rooted circuits of A. This follows from the following result.

Lemma 29. For any Y ∈ C∗, there exists a rooted set (A, r) and real numbers (ag)g∈A\{e} such that

(1) Y ∩A = A \ {r},

(2) 0 < ag ≤ 1
|Y | for each g ∈ A \ {r},

12



(3) for any x ∈ K(R0), xr >
∑

g∈A\{r} agxg.

Proof. In order to prove the lemma, we employ an elimination procedure similar to Gaussian elimination. Note that
the rooted sets (A, r) we consider are not necessarily circuits. We show the lemma by reverse induction on |Y |.

The following claim ensures that the property holds for any Y ∈ C∗ such that Y ∪ {r} ∈ C for some r ∈ U \ Y .

Claim 30. For any Y ∈ C∗, if there exists r ∈ U \ Y such that Y ∪ {r} ∈ C, then there exists a critical rooted circuit
(C, r) such that C ⊆ Y , and thus for each x ∈ K(R0), we have xr >

∑
g∈C\{r}

1
|U |xg.

Proof. Consider a minimal subset Z ⊆ Y such that Z ∈ C∗ and Z ∪ {r} ∈ C. Let C = ex(Z ∪ {r}) and note that
Z ∪ {r} = conv(C) by (C4). By the definition of C, for any z ∈ C, we have Z ∪ {r} \ {z} ∈ C, and by minimality of
Z, we have Z \ {z} ∈ C. Consequently, (C, r) is a critical rooted circuit of C and thus by the definition of K(R0), for
each x ∈ K(R0), we have xr >

∑
g∈C\{r}

1
|U |xg.

Suppose now that Y ∈ C∗ and that for any e ∈ U \ Y , we also have Y ∪ {e} ∈ C∗. By induction hypothesis, for
any such set Y ∪ {e}, there exists a rooted set (Ae, re) and coefficients (ag)g∈Ae\{re} such that

• (Y ∪ {e}) ∩Ae = Ae \ {re},

• 0 < ag ≤ 1
|Y |+1 for each g ∈ Ae \ {re},

• xre >
∑

g∈Ae\{re} agxg for any x ∈ K(R0).

If there exists e ∈ U \Y such that e /∈ Ae, then Y ∩Ae = Ae \{re} and we are done. Consequently, we now assume
that for any e ∈ U \Y , we have e ∈ Ae, i.e., for any e ∈ U \Y , we have Y ∩Ae = Y \{e, re}. Consider the digraph DY

having U \ Y as the vertex-set and where there is an arc (e, f) precisely when f = re. Note that in DY every vertex
has an out-neighbor and consequently, DY contains a cycle. Consider a shortest cycle (e0, e1, . . . , ek, ek+1 = e0) in DY .
By induction hypothesis, for each 0 ≤ i ≤ k, there exists a rooted set (Aei , ei+1) and coefficients (ai,g)g∈Aei

\{ei+1}
such that

• (Y ∪ {ei}) ∩Aei = Aei \ {ei+1},

• 0 < ai,g ≤ 1
|Y |+1 for each g ∈ Ae \ {ei+1},

• for any x ∈ K(R0), xei+1
>

∑
g∈Aei

\{ei+1} ai,gxg = ai,eixei +
∑

g∈Aei
\{ei,ei+1} ai,gxg.

For each 0 ≤ i ≤ k, let bi = ai,ei and observe that 0 < bi ≤ 1
|Y |+1 < 1. Consequently, 0 <

∏k
i=0 bi < 1. For each

0 ≤ i ≤ k and each g ∈ Y \ Aei , let ai,g = 0. Observe that for any 0 ≤ i ≤ k, for every x ∈ K(R0), we thus obtain
xei+1

> bixei +
∑

g∈Y ai,gxg. We have the following inequality:

Claim 31. For every 0 ≤ i ≤ k and every point x ∈ K(R0), we have:

xei+1
>

 i∏
j=0

bj

xe0 +
∑
g∈Y

 i∑
j=0

 i∏
ℓ=j+1

bℓ

 aj,g

xg.

Proof. We prove the claim by induction on i. The claim trivially holds for i = 0. Assume that the claim holds for
i < k and note that for any point x ∈ K(R0), we have:

xei+2
> bi+1xei+1

+
∑
g∈Y

ai+1,gxg

> bi+1

 i∏
j=0

bj

xe0 +
∑
g∈Y

 i∑
j=0

 i∏
ℓ=j+1

bℓ

 aj,g

xg

+
∑
g∈Y

ai+1,gxg

=

i+1∏
j=0

bj

xe0 +
∑
g∈Y

 i∑
j=0

 i+1∏
ℓ=j+1

bℓ

 aj,g

xg +
∑
g∈Y

ai+1,gxg

=

i+1∏
j=0

bj

xe0 +
∑
g∈Y

i+1∑
j=0

 i+1∏
ℓ=j+1

bℓ

 aj,g

xg.

13



Consequently, for every point x ∈ K(R0), we have

xe0 = xek+1
>

 k∏
j=0

bj

xe0 +
∑
g∈Y

 k∑
j=0

 k∏
ℓ=j+1

bℓ

 aj,g

xg.

This implies the inequality 1−
k∏

j=0

bj

xe0 >
∑
g∈Y

 k∑
j=0

 k∏
ℓ=j+1

bℓ

 aj,g

xg,

yielding

xe0 >
1

1−
∏k

j=0 bj

∑
g∈Y

 k∑
j=0

 k∏
ℓ=j+1

bℓ

 aj,g

xg.

For any g ∈ Y , let a′g = 1
1−

∏k
j=0 bj

∑k
j=0

(∏k
ℓ=j+1 bℓ

)
aj,g. Let C ′ ⊆ Y be the support of (a′g)g∈Y , i.e., the set

{g ∈ Y : a′g ̸= 0}. Observe that the rooted set (C ′ ∪ {e0}, e0) and the coefficients (a′g)g∈C′ satisfy Conditions (1)

and (3) of the lemma. Note that for each 0 ≤ i ≤ k and each g ∈ Y , we have 0 < bi ≤ 1
|Y |+1 and 0 < ai,g ≤ 1

|Y |+1 . It

is obvious that a′g > 0 for any g ∈ C ′. In order to establish Condition (2), it is then enough to show that a′g ≤ 1
|Y | for

any g ∈ Y . Let ∆ = 1
|Y |+1 and note that 1

1−
∏k

j=0 bj
≤ 1

1−∆k+1 . Consequently, for every g ∈ Y , we have

a′g =
1

1−
∏k

j=0 bj

k∑
j=0

 k∏
ℓ=j+1

bℓ

 aj,g ≤ 1

1−∆k+1

k∑
j=0

 k∏
ℓ=j+1

∆

∆ =
∆

1−∆k+1

k∑
j=0

∆k−j

=
∆

1−∆k+1

k∑
j=0

∆j =
∆

1−∆k+1
· 1−∆k+1

1−∆
=

∆

1−∆
=

1
|Y |+1

1− 1
|Y |+1

=
1

|Y |+ 1
· |Y |+ 1

|Y |+ 1− 1

=
1

|Y |
,

which concludes the proof of the lemma.

Proof of Theorem 25. The proof that (Hn,K) is a realization of I is obtained by combining Lemmas 26, 27, and 28
and the equality K = K(R)∩K(P). The proof that (Hn,K0) is a realization of I is obtained by combining Lemmas 26,
29, and 28 and the equality K0 = K(R0) ∩K(P). Finally, the proof of the first assertion of the theorem that the
pairs (Hn,K(R)) and (Hn,K(R0)) are realizations of A is a direct consequence of the second assertion because a
convex geometry A is an ideal of itself not containing positive circuits (and thus K = K(R) and K0 = K(R0)).

Example 32. Consider the convex geometryA = (U, C) of Figure 1. Here, U = {1, 2, 3, 4} and C = {∅, {1}, {2}, {3}, {4},
{1, 2}, {2, 3}, {3, 4}, {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}}. The rooted circuits of A are ({1, 2, 3}, 2), ({2, 3, 4}, 3), ({1, 2, 4}, 2),
and ({1, 3, 4}, 3). Then in R4, A is realized by the convex set defined by the following inequalities:

x1 + x3 < 3x2 x2 + x4 < 3x3 x1 + x4 < 3x2 x1 + x4 < 3x3

On the other hand, among the rooted circuits of A, only ({1, 2, 3}, 2) and ({2, 3, 4}, 3) are critical. The two first
inequalities above correspond to these two critical rooted circuits. These two inequalities are sufficient to have a
realization of A in R4. Indeed, from the two first inequalities, we obtain 3x1 + x4 < 8x2 and x1 + 3x4 < 8x3. This
implies that there is no point in the realization corresponding to the sets {1, 4}, {1, 2, 4}, and {1, 3, 4}, that are
precisely the subsets of U that are forbidden by the circuits ({1, 2, 4}, 2), and ({1, 3, 4}, 3).

From Proposition 10, we obtain the following corollary.

Corollary 33. Any convex geometry A = (U, C) admits a point representation M(U,Q0) where |Q0| is the number
of critical rooted circuits of A.
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Figure 1: A convex geometry represented in black as subgraph of the 4-dimensional hypercube (in gray)

5.2 Realization of convex geometries and convex dimension

In the spirit of Kashiwabara et al. [16], Richter and Rogers [24] established that every convex geometry of convex
dimension d := cdim(C) can be represented as a generalized convex shelling in Rd. The proof of the following result
can be seen as a dualization of the proof of [24].

Theorem 34. A convex geometry A = (U, C) of convex dimension d := cdim(C) is realizable in Rd.

Proof of Theorem 34. Let A = (U, C) be defined by a set of d total orders (≤i)1≤i≤d. For each e ∈ C, let ji(e) be the
index of e in ≤i, (i.e., there are precisely ji(e) elements e′ ∈ U such that e′ ≤i e). Consider the sequence of integers
(aj)0≤j≤|U | such that aj =

d+1
d−1 (d

j − 1) for each 0 ≤ j ≤ |U |. Observe that aj+1 = daj + d+ 1 for any 0 ≤ j < |U |.
For each e ∈ U , let bi(e) = aji(e) for each 1 ≤ i ≤ d and consider the hyperplane He = {x :

∑d
i=1

xi

bi(e)
= 1} and the

halfspaces H+
e = {x :

∑d
i=1

xi

bi(e)
< 1} and H−

e = {x :
∑d

i=1
xi

bi(e)
> 1}. We consider the hyperplane arrangement

H = {He : e ∈ U} and its intersection with the positive orthant K = {x : xi > 0,∀1 ≤ i ≤ d}. We assert that (K,H)
realizes A = (U, C). The proof is a consequence of the two following claims.

Claim 35. For each C ∈ C, there exists y ∈ K such that

(i) for each e ∈ C, y ∈ H+
e , i.e.,

∑d
i=1

yi

bi(e)
< 1, and

(ii) for each e /∈ C, y ∈ H−
e , i.e.,

∑d
i=1

yi

bi(e)
> 1.

Proof. If C = ∅, let y ∈ K such that yi = a|U | + 1 for all 1 ≤ i ≤ d. Observe that for each e ∈ U and each 1 ≤ i ≤ d,

bi(e) ≤ a|U | < yi. Consequently, for each e ∈ U ,
∑d

i=1
yi

bi(e)
> 1, and y ∈ H−

e . Thus the claim holds for C = ∅.

Assume now that C ∈ C \{∅}. For each 1 ≤ ℓ ≤ d, let eℓ = min≤ℓ
C. Observe that U \C =

⋃d
ℓ=1{e ∈ U : e ≤ℓ eℓ}.

Let cℓ = bℓ(eℓ). If eℓ = min≤ℓ
U , let c−ℓ = 0 and if eℓ ̸= min≤ℓ

U , let e−ℓ be the predecessor of eℓ in ≤ℓ and let
c−ℓ = bℓ(e

−
ℓ ). Consider the point y ∈ K such that yℓ = 1+ c−ℓ for each 1 ≤ ℓ ≤ d. For each e ∈ C, note that eℓ ≤ℓ e for

all 1 ≤ ℓ ≤ d. Consequently, cℓ = bℓ(eℓ) ≤ bℓ(e) for all 1 ≤ ℓ ≤ d. Note that cℓ = d+ 1 + dc−ℓ = d(1 + c−ℓ ) + 1 > dyℓ.

Consequently,
∑d

ℓ=1
yℓ

bℓ(e)
≤

∑d
ℓ=1

yℓ

cℓ
<

∑d
ℓ=1

1
d = 1, establishing (i). For each e /∈ C, there exists ℓ such that e ≤ℓ e

−
ℓ .

Therefore bℓ(e) ≤ bℓ(e
−
ℓ ) = c−ℓ < yℓ. Consequently,

yℓ

bℓ(e)
> 1 and since yi

bi(e)
> 0 for all 1 ≤ i ≤ d with i ̸= ℓ, we have∑d

i=1
yi

bi(e)
> 1, establishing (ii).
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Claim 36. Consider a point x ∈ K such that
∑d

i=1
xi

bi(e)
̸= 1 for all e ∈ U and let C = {e ∈ U :

∑d
i=1

xi

bi(e)
< 1}.

Then C ∈ C.

Proof. If C = ∅, then C ∈ C because ∅ is a convex of C. Assume now that C ≠ ∅. For each 1 ≤ ℓ ≤ d, let
eℓ = min≤ℓ

C. To prove the claim, we establish that C = {e ∈ U : eℓ ≤ℓ e,∀1 ≤ ℓ ≤ d}. If e ∈ C, then for all
1 ≤ ℓ ≤ d, eℓ ≤ℓ e and thus C ⊆ {e ∈ U : eℓ ≤ℓ e, ∀1 ≤ ℓ ≤ d}

Conversely, suppose that eℓ ≤ℓ e for all 1 ≤ ℓ ≤ d. If there exists ℓ such that e = eℓ, then by definition of eℓ,
we have e ∈ C. Assume now that for every 1 ≤ ℓ ≤ d, eℓ ≤ℓ e. For each 1 ≤ ℓ ≤ d, let e+ℓ be the successor of
eℓ in ≤ℓ and note that e+ℓ ≤ℓ e. Let cℓ = bℓ(eℓ) and let c+ℓ = bℓ(e

+
ℓ ). By the definition of eℓ, eℓ ∈ C and thus∑d

i=1
yi

bi(eℓ)
< 1. Since y ∈ K, we have yi

bi(eℓ)
> 0 for each 1 ≤ i ≤ d with i ̸= ℓ and consequently, yℓ

cℓ
= yℓ

bℓ(eℓ)
< 1.

Observe that cℓ < c+ℓ ≤ bℓ(e) for all 1 ≤ ℓ ≤ d. Moreover, c+ℓ = dcℓ + d+ 1 and thus bℓ(e) ≥ c+ℓ > dcℓ. Consequently,∑d
ℓ=1

yℓ

bℓ(e)
<

∑d
ℓ=1

yℓ

dcℓ
= 1

d

∑d
ℓ=1

yℓ

cℓ
< 1

dd = 1. Therefore, e ∈ C and thus we have C = {e ∈ U : eℓ ≤ℓ e,∀1 ≤ ℓ ≤ d},
establishing that C ∈ C.

By Claim 35, for any convex set C ∈ C, there exists a region corresponding to C in (K,H). By Claim 36, any
region of (K,H) corresponds to a convex C of A = (U, C), concluding the proof of the theorem.

5.3 Realization of ideals of convex geometries and VC-dimension

In this subsection, we consider the realizations of ideals I = (U, C′) of convex geometries by minimizing or bounding
the dimension of the realizing space Rd by a dimension parameter of I = (U, C′). Since such I = (U, C′) are ample [2],
the VC-dimension dimVC(I) of I coincides with the dimension of the largest cube of C′. We are motivated by the
following:

Corollary 37. For every distributive lattice L, we have dimVC(L) = dimE(L).

Proof. The inequality dimVC(L) ≤ dimE(L) follows from Theorem 8. For dimVC(L) ≥ dimE(L) we use the fact the
convex dimension and the VC-dimension of a distributive lattice coincide [11] together with Theorem 34.

This leads us to believe:

Conjecture 38. The Euclidean dimension dimE(I) of an ideal I = (U, C′) of a convex geometry is always upper
bounded by a function of its VC-dimension dimVC(I).

As a first approach we can get a bound for some situations:

Corollary 39. If A = (U, C) is an ideal semialignment with k facets or a median set systems with k maxima, then A
is realizable and dimE(A) ≤ min(|U |, k dimVC(A)).

Proof. From Corollaries 23 and 24 and Theorem 25 we get realizability and the dimension bound of |U |. Now,
using Corollary 37 we obtain the bounds of the form k dimVC(A)).

In this subsection we confirm Conjecture 38 for trees and multisimplicial complexes (alias, ideals of the grid).
Indeed, both our bounds are best-possible.

Trees are the simplest examples of ideals of convex geometries that are not convex geometries. They are also the
median set systems of VC-dimension 1.

Proposition 40. Every tree T can be realized in R2, i.e., dimE(T ) ≤ 2 holds.

Proof. Consider T rooted at r. We will use the basic observation that T can be constructed iteratively from the star
of r (i.e., r with all its neighbors) by picking a leaf ℓ of the current tree and attaching to it all its children in T at
once. We describe a representation of T following this construction sequence with the invariant that every current
leaf ℓ is represented by an isosceles triangular cell whose base is in H.

Let say deg(r) = k. Then we start with K as a convex k-gon and we use H to cut off, i.e., truncate, each vertex
of K such that an isosceles cell is created. Hence, we end up with a representation of the star of r satisfying the
invariant, i.e. there is a triangle with base in H. If ℓ has m children, then we add m halfspaces to K forming a convex
curve between the intersection points of H and K, and staying inside the triangular region for ℓ. Now, truncate each
corner with a new element of H such that isosceles regions are created. We have represented the children of ℓ in the
desired manner. See Figure 2 for an illustration.
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Figure 2: A two-dimensional Euclidean realization for trees.

Median set systems are realizable by Corollary 39. Since median systems are ample, their VC-dimension coincides
with the dimension of a largest cube, and thus with their (topological) dimension. Corollary 37 and Proposition 40
motivate the following strengthening of Conjecture 38 in the case of median systems:

Conjecture 41. Every median system of dimension d admits a realization in RO(d).

Recall that there exists a bijection between the ideals of the grid (Nn,≤) and the multisimplicial complexes on a
set X of size n.

Theorem 42. Every ideal L of Nn with dimVC(L) = d has a representation in R2d, i.e., dimE(L) ≤ 2 dimVC(L)
holds.

Proof. Let dimVC(L) = r. By Dilworth’s Theorem, L may be seen as a semilattice of ideals of a poset X consisting
of n disjoint chains of some length k, such that each ideal intersects at most r chains. Denote by Li the sublattice of
L consisting of all the ideals of L intersecting each chain in at most i elements.

Let P ⊆ R2r be the polar polytope of an r-neighborly polytope P ∗ ⊆ R2r on n vertices containing the origin. The
latter exists [15] and therefore P has the property that for any set of ℓ ≤ r facets of P , their intersection defines a face
of dimension r− ℓ of P . Now consider the dilates Pi := iP for all 1 ≤ i ≤ k and for each i, let Hi be the arrangement
of facet-defining hyperplanes of Pi. Set H :=

⋃k
i=1 Hi.

We will now proceed by induction on i = 1, . . . , k by introducing halfspaces of the convex set K and eventually
changing the dilation for some Pj with j > i in such a way that for any i we have M(

⋃i
j=1 Hj ,K) = Li. We start

with the basis case i = 1.

Case 43. i = 1, i.e., L1 is a simplicial complex.

Proof. First, note that every element of L1 is represented by a cell of H1. Namely, if x ∈ L1 corresponds to taking
one element from each of the chains Ci1 , . . . Ciℓ with ℓ ≤ r, then take the face f of P corresponding to the intersection
of facets fi1 , . . . fiℓ . The corresponding facet defining hyperplanes Hi1 , . . . Hiℓ define a cone over f whose intersection
with P is f . This cell represents x. Since the polytope P is simple (because it is the polar of the simplicial polytope
P ∗), in an ϵ-neighborhood of f we see the ideal of x in L1, where the minimum is represented by the interior of P .

Now, suppose that some cell C of H1 represents an ideal of X that does not correspond to an element of L1. Since
C and P are open and convex we can choose a hyperplane H that separates C and P and intersects the closure
P of P in P ∩ C. Thus, if we add to K the halfspace defined by H that contains P , then we remove C from the
arrangement and all cells of H1 that correspond to faces not included in P ∩C are still present. The only further cells
of H1 that are removed are those that correspond to ideals of X corresponding to supersets of the ideal corresponding
do C. Since L1 is an ideal, we did not want these regions. Consequently, taking as K the intersection of all open
halfspaces containing P and defined by hyperplanes separating P from cells C representing ideals of X that does not
correspond to elements of L1, we will obtain that L1 = M(H1,K).
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Case 44. i > 1.

Proof. By induction hypothesis, we can define the dilates P1, P2, . . . , Pi−1 of P , their arrangements of supporting
hyperplanes H1,H2, . . . ,Hi−1, and the convex set K in such a way that M(

⋃i−1
j=1 Hj ,K) = Li−1. First, suppose that

there exists an element x ∈ Li that is represented by a cell C touching Pi and that lies outside of K. Since L is an
ideal, the element y ∈ Li−1 cutting the ideal of x to height at most i− 1 on each chain is in L. In particular, this
point p is represented by a cell touching Pi−1 within K. Hence, if q is a point in the cell representing x, a line from p
to q must cross the boundary of K. We can thus dilate Pi to a smaller polytope such that the cell representing x
intersects the interior of K. In order to avoid now some of the regions touching Pi from the outside, we proceed as in
the case of P1 noting that all the hyperplanes that we add to K are disjoint from the interior of Pi hence they do not
interfere with the so far obtained representation of Li−1.

This concludes the proof of the theorem.

The full simplicial complex Ur,n of dimension r consists of all subsets of size at most r of a set of size n.

Theorem 45. For the full simplicial complex Ur,n of dimension r on a set X = {f1, . . . , fn}, we have dimE(Ur,n) ≥
min(2r, n− 1).

Proof. Let M(H,K) be a realization of Ur,n. We assume that K is full-dimensional, otherwise we intersect with
the affine hull of K. Consider the cell P representing the empty set ∅ ∈ Ur,n. Every 1-simplex of Ur,n must be
represented by a cell intersecting P in a facet. More generally, for any 1 ≤ ℓ ≤ r every ℓ-simplex σ = {fi1 , . . . , fiℓ}
must be represented by a cell that is separated exactly by the facet-defining hyperplanes Hi1 , . . . ,Hiℓ from P . Hence,
the intersection of Hi1 , . . . ,Hiℓ must be a face of dimension r− ℓ of P . Consider now the polyhedron P ′ by removing
all the facet-defining hyperplanes of K from P . Hence, the polar polytope P ∗ of P ′ must be r-neighborly. It is known,
that for all n, the smallest dimension in which an r-neighborly polytope P ∗ on n vertices exists is 2r or P ∗ is a
simplex and hence has dimension n− 1, see e.g. [15]. This lower bound carries over to P ′, hence also to P . Hence this
is a lower bound for the dimension of K.

6 Closing remarks

6.1 Concepts of dimension

We have shown that the Euclidean dimension dimE(A) of a convex geometry A = (U, C) lies between its VC-dimension
dimVC(A) and the minimum of |U | and cdim(A). It is known that convex geometries with bounded convex dimension
and unbounded |U | exist. On the other hand also there are convex geometries with cdim(A) exponential in |U |,
see [19]. Hence none of our bounds on dimE(A) dominates the other. It would be interesting to compare dimE(A)
with other concepts of dimension for convex geometries, e.g., Dushnik-Miller dimension, Boolean dimension, local
dimension, and fractional dimension. Their behavior on convex geometries has been studied recently in [19].

6.2 From ideals to bouquets

To finish we want to extend our vision from ideals of convex geometries. A pair A = (U, C) of a finite universe U and
a collection of convex sets C ⊆ 2U is called bouquet of convex geometries if it satisfies the following two conditions:

(C1′) ∅ ∈ C;

(C2) X ∩ Y ∈ C for all X,Y ∈ C;

(C3′) for all X,Y ∈ C with Y ⊂ X, there is e ∈ X \ Y such that Y ∪ e ∈ C; (locally extendable)

These structures were called conditional antimatroids in [2]. It is easy to see that ideals of convex geometries are
bouquets of convex geometries. Note that in a sense ideal semialignments were defined as bouquets of convex
geometries with the additional property of being locally union-closed. We then showed that they are indeed ideals of
convex geometries in Proposition 22. However, there are bouquets of convex geometries that are not ideals.

Proposition 46. There exist bouquets of convex geometries that are not ideals of convex geometries.
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Figure 3: A bouquet of convex geometries that is not an ideal of a convex geometry. The bouquets of convex
geometries is represented in black as isometric subgraph of the 4-dimensional hypercube (in gray)

Proof. Consider the bouquet of convex geometries in Figure 3, right, i.e., E′ = {1, 2, 3, 4} and

C′ = {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 4}, {2, 3}, {3, 4}, {1, 2, 3}, {2, 3, 4}}.

Suppose that A′ = (E′, C′) is an ideal of a convex geometry A = (E, C). One can remove elements from E′ until
E = E′. Hence, E ∈ C′ by (C1). By (C3) applied to {1, 4}, one of the sets {1, 2, 4} or {1, 3, 4} must be in C. Now
applying (C2) with respect to {1, 2, 4} and {2, 3, 4} or {1, 3, 4} and {1, 2, 3}, we get that {2, 4} or {1, 3} are in C.
Hence A′ = (E′, C′) is not an ideal of A.

We believe that bouquets as a generalization of ideals deserve further investigation in their own right as a
combinatorial structure. In the context of realizability we dare to state the following:

Conjecture 47. Every bouquet of convex geometries is realizable.
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