Pré-Publication, Document De Travail Année : 2024

Subexponential growth and C 1 actions on one-manifolds

Résumé

Let G be a countable group with no finitely generated subgroup of exponential growth. We show that every action of G on a countable set preserving a linear (respectively, circular) order can be realised as the restriction of some action by C 1 diffeomorphisms on an interval (respectively, the circle) to an invariant subset. As a consequence, every action of G by homeomorphisms on a compact connected one-manifold can be made C 1 upon passing to a semiconjugate action. The proof is based on a functional characterisation of groups of local subexponential growth.
Fichier principal
Vignette du fichier
2410.02614v1.pdf (193.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04726604 , version 1 (08-10-2024)

Licence

Identifiants

  • HAL Id : hal-04726604 , version 1

Citer

Sang-Hyun Kim, Nicolás Matte Bon, Mikael de La Salle, Michele Triestino. Subexponential growth and C 1 actions on one-manifolds. 2024. ⟨hal-04726604⟩
17 Consultations
16 Téléchargements

Partager

More