MINIMALITY OF THE VORTEX SOLUTION FOR GINZBURG-LANDAU SYSTEMS
Résumé
We consider the Ginzburg-Landau system for N-dimensional maps defined in the unit ball for some parameter ε > 0. For a boundary data corresponding to a vortex of topological degree one, the aim is to prove the symmetry of the ground state of the system. We show this conjecture for every ε > 0 in any dimension N ≥ 7, and then, we also prove it in dimension N = 4, 5, 6 provided that the admissible maps are gradient fields.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|