MINIMALITY OF THE VORTEX SOLUTION FOR GINZBURG-LANDAU SYSTEMS - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

MINIMALITY OF THE VORTEX SOLUTION FOR GINZBURG-LANDAU SYSTEMS

Résumé

We consider the Ginzburg-Landau system for N-dimensional maps defined in the unit ball for some parameter ε > 0. For a boundary data corresponding to a vortex of topological degree one, the aim is to prove the symmetry of the ground state of the system. We show this conjecture for every ε > 0 in any dimension N ≥ 7, and then, we also prove it in dimension N = 4, 5, 6 provided that the admissible maps are gradient fields.
Fichier principal
Vignette du fichier
report-mfo2024.pdf (272.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04722724 , version 1 (07-10-2024)

Identifiants

  • HAL Id : hal-04722724 , version 1

Citer

Radu Ignat. MINIMALITY OF THE VORTEX SOLUTION FOR GINZBURG-LANDAU SYSTEMS. Workshop “Calculus of Variations” in Oberwolfach, Aug 2024, Oberwolfach, Germany. ⟨hal-04722724⟩
35 Consultations
40 Téléchargements

Partager

More