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MINIMALITY OF THE VORTEX SOLUTION FOR
GINZBURG-LANDAU SYSTEMS

RADU IGNAT

Abstract. We consider the Ginzburg-Landau system for N -dimensional maps
defined in the unit ball for some parameter ε > 0. For a boundary data corre-
sponding to a vortex of topological degree one, the aim is to prove the symmetry
of the ground state of the system. We show this conjecture for every ε > 0 in any
dimension N ≥ 7, and then, we also prove it in dimension N = 4, 5, 6 provided
that the admissible maps are gradient fields.

This note represents the summary of the talk of the author given at the Workshop
“Calculus of Variations” in Oberwolfach, 11-16 August 2024. It is based on a series
of articles [8, 9, 5, 10, 6] in collaboration with Luc Nguyen (Oxford), Mickael Na-
hon (Grenoble), Mircea Rus (Cluj), Valeriy Slastikov (Bristol) and Arghir Zarnescu
(Bilbao). This report will be included in a volume Oberwolfach Reports (2024)
dedicated to that workshop.

The Ginzburg-Landau model. Let BN ⊂ RN be the unit ball, N ≥ 2. For
u : BN → RN , consider the Ginzburg-Landau functional for a parameter ε > 0:

Gε(u) =

∫
BN

1

2
|∇u|2 +

1

2ε2
W (1− |u|2) dx,

where W : (−∞, 1] → R+ is C1 convex, W (0) = 0, W (t) > 0 for t 6= 0. Typically,

W (t) = t2

2
. As ε → 0, the limit maps take values into the unit sphere SN−1, so

the limit model is the SN−1-harmonic map problem (HMP). Thus, our results are
expected to be closely related with those obtained for HMP.

We focus on critical points u of Gε for fixed ε > 0:

(1) −∆u =
1

ε2
W ′(1− |u|2)u in BN

under the boundary condition

(2) u(x) = x on ∂BN = SN−1.

Such critical points u (e.g., minimizers) exist. In particular, by the maximum prin-
ciple, |u| ≤ 1 in BN and then, the standard elliptic theory yields u ∈ W 2,p ∩ C1,α

for every p <∞ and α ∈ (0, 1). Moreover, the topological constraint in (2) implies
that u has a zero point inside BN that plays an important role in this theory. The
main question concerns the uniqueness of solutions in (1) & (2).

The vortex solution. For every ε > 0, there exists a unique solution to (1) & (2)
that is invariant under the special orthogonal group SO(N), i.e., the group action
u 7→ uR(x) = R−1u(Rx) for every R ∈ SO(N) that keeps invariant the functional Gε
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2 RADU IGNAT

and the boundary condition (2). This is the so-called vortex solution (of topological
degree 1) given by

uε(x) = fε(|x|)
x

|x|
, x ∈ BN \ {0}.

The radial profile fε : [0, 1]→ R is the unique solution to the singular ODE:

(3)

{
−f ′′ε − N−1

r
f ′ε + N−1

r2
fε = 1

ε2
W ′(1− f 2

ε )fε in (0, 1),

fε(0) = 0, fε(1) = 1,

where r = |x| (see [3, 4, 7]). In particular, 1 > fε > 0 and f ′ε > 0 in (0, 1). The aim
is to study the minimality of the vortex solution:

Question 1: Is uε(x) = fε(|x|) x
|x| the (unique) minimiser of Gε under the boundary

condition (2) for every ε > 0?

For large ε, i.e., ε ≥ εconv, the functional Gε is strictly convex yielding uniqueness
in (1) & (2) (in particular, the positive answer to Question 1), see [1, 9]. For
ε < εconv, there are only some partial results. In dimension N = 2, Bethuel-Brezis-
Hélein [1] proved in the regime ε → 0 that a minimizer u of Gε under (2) has a
unique topological zero converging to the origin, while Pacard-Rivière [17] proved
that uε is the unique solution to (1) & (2) for very small ε > 0; we also mention the
work of Mironescu [16] for the corresponding blow-up problem in the domain R2. In
dimension N ≥ 3, we quote the works of Millot-Pisante [14] and Pisante [18] for the
blow-up problem in the domain RN . Finally, for the SN−1-harmonic map problem,
u∗(x) = x

|x| is the unique minimizing harmonic map in BN under (2) if N ≥ 3 (see

Jäger-Kaul [11], Brezis-Coron-Lieb [2], Lin [13]).

Main results. Our first result gives a positive answer to Question 1 in dimension
N ≥ 7 (see [8, 9]):

Theorem 2 If N ≥ 7, then uε(x) = fε(|x|) x
|x| is the unique minimiser of Gε under

(2) for every ε > 0.

Sketch of the proof. The idea is to linearize the potential energy in Gε. More
precisely, the convexity of W yields for every v ∈ H1

0 (BN ,RN):

(4) Gε(uε + v)−Gε(uε) ≥
1

2
Fε(v)

where Fε(v) =
∫
BN |∇v|2 − 1

ε2
W ′(1 − |uε|2)|v|2 dx. To conclude, we need to prove

that for every ε > 0, Fε(v) =

∫
BN

Lεv · v dx ≥ 0, ∀v ∈ H1
0 (BN ,RN), where

Lε = −∆ − 1
ε2
W ′(1 − f 2

ε ). Let `(ε) = λ1(Lε, B
N) be the first eigenvalue of Lε

in BN under zero Dirichlet condition. The conclusion follows by:

Lemma 3 If N ≥ 7, then `(ε) ≥ cN = (N−2)2
4
− (N − 1) > 0, ∀ε > 0.

Sketch of the proof. For v ∈ C∞c (BN \ {0},R), we use the Hardy decomposition
v = fεs. Integration by parts combined with (3) imply

Fε(v) =

∫
BN

Lεv · v =

∫
BN

(f 2
ε |∇s|2 + s2Lεfε · fε) =

∫
BN

f 2
ε

(
|∇s|2 − N − 1

r2
s2
)
.
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The limit case ε → 0 follows from the fact that fε → 1 in (0, 1] combined with
Hardy’s inequality:∫

BN

Lεv · v →
∫
BN

|∇s|2 − N − 1

r2
s2 ≥

∫
BN

((N − 2)2

4
− (N − 1)

)s2
r2
≥ cN

∫
BN

s2.

For the general case ε > 0 (fixed), one decomposes s = φs̃ with φ = r−
N−2

2 and

obtains Fε(v) ≥ cN
∫
BN

v2

r2
yielding the conclusion of Lemma 3 together with the

uniqueness of the minimizer uε in Theorem 2. �

In dimension N ∈ [2, 6], the above argument does not yield the answer to Ques-
tion 1. Indeed, the first eigenvalue `(ε) of Lε in BN becomes negative for small ε > 0
if 2 ≤ N ≤ 6. However, the above argument improves the range of ε where uε is the
unique minimizer of Gε under (2) (with respect to εconv above which Gε is strictly
convex), see [5, 10]:

Lemma 4 If 2 ≤ N ≤ 6, then there is εN ∈ (0, εconv) such that `(εN) = 0 and
`(ε) < 0 if ε < εN (resp. `(ε) > 0 if ε > εN). In particular, if ε > εN , then the
vortex solution uε is the unique minimizer of Gε under (2).

The minimality of uε is still an open question if ε < εN and N ∈ [2, 6]. A partial
result is the local minimality of uε for every ε > 0. This is known in dimension
N = 2 thanks to the works of Mironescu [15] and Lieb-Loss [12], while in dimension
N ∈ [3, 6], this is proved by Ignat-Nguyen [5]:

Theorem 5 If 3 ≤ N ≤ 6, then uε = fε(|x|) x
|x| is a local minimizer of Gε under (2)

for every ε > 0.

Sketch of the proof. The aim is to prove that for every ε > 0, Gε(uε + v)−Gε(uε) ≥
C‖v‖2H1 if ‖v‖H1 ≤ δ for some δ = δ(ε) > 0 and C = C(ε) > 0 small. For that, we
analyse the second variation of Gε at uε in direction v ∈ H1

0 (BN ,RN):

Qε(v) =
d2

dt2

∣∣∣∣
t=0

Gε(uε + tv) = Fε(v) +
2

ε2

∫
BN

W ′′(1− f 2
ε )f 2

ε (v · x
|x|

)2 dx.

This is done by writing v(x) = s(x) x
|x|+ṽ(x) for some scalar function s and a tangent

vector field ṽ(x) · x = 0 and then use the Hodge decomposition in the tangent space
for every x ∈ BN \ {0}: ṽ(r, ·) = v◦(r, ·) + /∇ψ(r, ·) on SN−1 where /∇ · v◦(r, ·) = 0 in
SN−1 and ψ is a scalar function. (Here, /∇ is the covariant derivative.) The spectral
decomposition of s(r, ·) and ψ(r, ·) in L2(SN−1) yields a decomposition of v − v◦ in
modes vk and furthermore, the following decomposition of the second variation

Qε(v) = Qε(v
◦) +

∑
k≥0

Qε(vk).

Using Hardy decompositions for v◦ and each vk, we obtain Qε(v) ≥ C(ε)‖v‖2H1 for
every v ∈ H1

0 (BN ,RN) and ε > 0. An extra argument yields local minimality of
uε. �

The Aviles-Giga model. Note that the vortex solution is a gradient field, i.e.,
uε = ∇φε for some radial function φε : BN → R determined by φ′ε = fε in (0, 1).
Therefore, in dimension N ∈ [2, 6], it is natural to study the minimality of uε
restricted to the class of gradient fields.
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Question 2: Is uε the (unique) minimizer of Gε for every ε > 0 over gradient fields

V = {u = ∇φ : φ ∈ H2(BN ,R), ∇φ = Id on ∂BN}?

This is the so-called Aviles-Giga model corresponding to the functional

Gε(∇φ) =

∫
BN

1

2
|∇2φ|2 +

1

2ε2
W (1− |∇φ|2) dx.

We are able to improve Theorem 2 to the dimensions N = 4, 5, 6 in this restricted
class V , see Ignat-Nahon-Nguyen [6].

Theorem 6 If N ≥ 4, then uε is the unique global minimizer of Gε over V for every
ε > 0.

Sketch of the first proof. As before, for every ∇ψ ∈ H1
0 (BN ,RN), we have Gε(uε +

∇ψ)−Gε(uε) ≥ 1
2
Fε(∇ψ). As ∇ψ = 0 on ∂BN , we have

Fε(∇ψ) =

∫
BN

(∆ψ)2 − 1

ε2
W ′(1− f 2

ε )|∇ψ|2 dx.

In the limit case ε → 0, we expect that Fε(∇ψ) →
∫
BN (∆ψ)2 − N−1

r2
|∇ψ|2 and the

conclusion would follow by the Hardy inequality in V :∫
BN

(∆ψ)2 ≥ KN

∫
BN

|∇ψ|2

r2
with KN =


N2/4 if N ≥ 5

N − 1 if N = 4

25/36 if N = 3

.

For the general case ε > 0, we use the spherical harmonic decomposition for ψ
and based again on some Hardy decompositions, we get Fε(∇ψ) ≥ 0 provided that
N ≥ 4.

Sketch of the second proof if N ≥ 5: This second proof is based on the fol-
lowing symmetrization of gradient fields. More precisely, for the stream function
φ ∈ H1(BN ,R), we associate the radial function φ∗ = φ∗(r) defined by

φ′∗(r) =
(∫

SN−1

− |∇φ(rθ)|2dσ(θ)
)1/2
≥ 0, r ∈ (0, 1).

As W is convex, Jensen’s inequality yields∫
BN

W (1− |∇φ|2) dx ≥
∫
BN

W (1− |∇φ∗|2) dx.

Moreover, if ∇φ = Id on ∂BN and N ≥ 5 then∫
BN

|∇2φ|2 dx ≥
∫
BN

|∇2φ∗|2 dx

with equality if and only if φ is radial. Thus, for every N ≥ 5 and any ε > 0,
Gε(∇φ) ≥ Gε(∇φ∗) ≥ Gε(uε = ∇φε). �

RN+1-valued vortex solutions. We can solve completely Question 1 when we add
one target dimension, i.e., the admissible maps are U = (u, UN+1) : BN → RN+1

satisfying the boundary condition

(5) U(x) = (x, 0) ∈ SN−1 × {0} on ∂BN .
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We prove that for every ε > 0, minimizers of Gε under (5) are vortex type solutions
that are either non-escaping (i.e., their (N + 1)-component vanishes in BN), or
they are escaping, i.e., their (N + 1)-component is positive (or negative) in BN , see
Ignat-Rus [10].

Theorem 7 Every minimizer of Gε under (5) is symmetric of vortex type and the
following dichotomy holds in dimension 2 ≤ N ≤ 6:

a) if ε ≥ εN , then the non-escaping vortex solution Ūε = (fε(|x|) x
|x| , 0) is the

unique minimizer of Gε under (5).

b) if ε < εN , then the two escaping vortex solutions (f̃ε(|x|) x
|x| ,±gε(|x|)) with

gε > 0 are the only minimizers of Gε under (5). In this case, the non-escaping
solution Ūε is unstable.

The idea of the proof is the following: point a) is implied by the proof of Theorem 2.
For point b), if an escaping critical point U = (u, UN+1) of Gε exists under (5),
then it is a minimizer and the set of minimizers is given by {(u,±UN+1)} (this
phenomenon is explained in [9]). Restricting to the class of symmetric vortex type
maps, Lemma 4 implies that the non-escaping vortex solution Ūε is unstable if ε < εN
and therefore, an escaping symmetric vortex solution exists, which determines the
set of minimizers. Of course, by the proof of Theorem 2, the non-escaping vortex
solution Ūε is the unique minimizer of Gε under (5) in dimension N ≥ 7.

Acknowledgement. The author is partially supported by the ANR projects ANR-
21-CE40-0004 and ANR-22-CE40-0006-01.
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