BWSNET: Automatic Perceptual Assessment of Audio Signals - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

BWSNET: Automatic Perceptual Assessment of Audio Signals

Résumé

This paper introduces BWSNet, a model that can be trained from raw human judgements obtained through a Best-Worst scaling (BWS) experiment. It maps sound samples into an embedded space that represents the perception of a studied attribute. To this end, we propose a set of cost functions and constraints, interpreting trial-wise ordinal relations as distance comparisons in a metric learning task. We tested our proposal on data from two BWS studies investigating the perception of speech social attitudes and timbral qualities. For both datasets, our results show that the structure of the latent space is faithful to human judgements.
Fichier principal
Vignette du fichier
ICASSP_2024-BWSNet_LeMoine.pdf (2.84 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04722037 , version 1 (07-10-2024)

Identifiants

Citer

Clément Le Moine Veillon, Victor Rosi, Pablo Arias Sarah, Léane Salais, Nicolas Obin. BWSNET: Automatic Perceptual Assessment of Audio Signals. International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024), Apr 2024, Séoul, South Korea. pp.10416 - 10420, ⟨10.1109/icassp48485.2024.10447014⟩. ⟨hal-04722037⟩
40 Consultations
15 Téléchargements

Altmetric

Partager

More