Historical Printed Ornaments: Dataset and Tasks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Historical Printed Ornaments: Dataset and Tasks

Mathieu Aubry

Résumé

This paper aims to develop the study of historical printed ornaments with modern unsupervised computer vision. We highlight three complex tasks that are of critical interest to book historians: clustering, element discovery, and unsupervised change localization. For each of these tasks, we introduce an evaluation benchmark, and we adapt and evaluate state-of-the-art models. Our Rey's Ornaments dataset is designed to be a representative example of a set of ornaments historians would be interested in. It focuses on an XVIIIth century bookseller, Marc-Michel Rey, providing a consistent set of ornaments with a wide diversity and representative challenges. Our results highlight the limitations of state-of-the-art models when faced with real data and show simple baselines such as k-means or congealing can outperform more sophisticated approaches on such data. Our dataset and code can be found at https://printed-ornaments.github.io/.
Fichier principal
Vignette du fichier
2408.08633v1.pdf (21 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04720711 , version 1 (03-10-2024)

Licence

Identifiants

Citer

Sayan Kumar Chaki, Zeynep Sonat Baltaci, Elliot Vincent, Rémi Emonet, Fabienne Vial-Bonacci, et al.. Historical Printed Ornaments: Dataset and Tasks. ICDAR 2024 - International Conference on Document Analysis and Recognition, Aug 2024, Athens, Greece. pp.251-270, ⟨10.1007/978-3-031-70543-4_15⟩. ⟨hal-04720711⟩
67 Consultations
17 Téléchargements

Altmetric

Partager

More