A Bayesian Lower Bound for Parameter Estimation of Poisson Data Including Multiple Changes (extended) - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

A Bayesian Lower Bound for Parameter Estimation of Poisson Data Including Multiple Changes (extended)

Résumé

This paper derives lower bounds for the mean square errors of parameter estimators in the case of Poisson distributed data subjected to multiple abrupt changes. Since both change locations (discrete parameters) and parameters of the Poisson distribution (continuous parameters) are unknown, it is appropriate to consider a mixed Cramer-Rao/Weiss-Weinstein bound for which we derive closed-form expressions and illustrate its tightness by numerical simulations.

Dates et versions

hal-04711842 , version 1 (27-09-2024)

Identifiants

Citer

Lucien Bacharach, Mohammed Nabil El Korso, Alexandre Renaux, Jean-Yves Tourneret. A Bayesian Lower Bound for Parameter Estimation of Poisson Data Including Multiple Changes (extended). 2024. ⟨hal-04711842⟩
12 Consultations
0 Téléchargements

Altmetric

Partager

More