LARGEMED: a Resource for Identifying and Generating Paraphrases for French Medical Terms - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

LARGEMED: a Resource for Identifying and Generating Paraphrases for French Medical Terms

Résumé

This article presents a method extending an existing French corpus of paraphrases of medical terms RefoMed (Buhnila, 2023) with new data from Web archives created during the Covid-19 pandemic. Our method semi-automatically detects new terms and paraphrase markers introducing paraphrases from these Web archives, followed by a manual annotation step to identify paraphrases and their lexical and semantic properties. The extended large corpus LARGEMED could be used for automatic medical text simplification for patients and their families. To automatise data collection, we propose two experiments. The first experiment uses the new LARGEMED dataset to train a binary classifier aiming to detect new sentences containing possible paraphrases. The second experiment aims to use correct paraphrases to train a model for paraphrase generation, by adapting T5 Language Model to the paraphrase generation task using an adversarial algorithm.
Fichier principal
Vignette du fichier
2024.determit-1.14.pdf (350.53 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04709321 , version 1 (25-09-2024)

Licence

Identifiants

  • HAL Id : hal-04709321 , version 1

Citer

Ioana Buhnila, Amalia Todirascu. LARGEMED: a Resource for Identifying and Generating Paraphrases for French Medical Terms. Proceedings of the Workshop on DeTermIt! Evaluating Text Difficulty in a Multilingual Context @ LREC-COLING 2024, May 2024, Torino, Italy. pp.141-151. ⟨hal-04709321⟩
22 Consultations
9 Téléchargements

Partager

More