Unmasking Lies: A Literature Review on Facial Expressions and Machine Learning for Deception Detection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Unmasking Lies: A Literature Review on Facial Expressions and Machine Learning for Deception Detection

Monica Sen
  • Fonction : Auteur

Résumé

Is there observable behavior or evidence capable of distinguishing a liar from a truthful person? The question has intrigued for centuries, reflecting the inseparable nature of lying in our social interactions. Faced with the human inability to discern truth from falsehood and the limitations of polygraphs, the emergence of facial recognition technologies appears as a promising alternative. Although the use of facial expressions, including micro and macro-expressions, in lie detection is subject to debate, some researchers argue that these nonverbal cues could be revealing. This state-of-the-art review explores facial expression analysis through machine learning for lie detection, questioning the quality of data required to develop effective models.

Fichier principal
Vignette du fichier
k24-243.pdf (651.6 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04703927 , version 1 (20-09-2024)

Identifiants

  • HAL Id : hal-04703927 , version 1

Citer

Monica Sen, Rébecca Deneckère. Unmasking Lies: A Literature Review on Facial Expressions and Machine Learning for Deception Detection. International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES), Sep 2024, Seville, Spain. ⟨hal-04703927⟩

Collections

UNIV-PARIS1 CRI
67 Consultations
52 Téléchargements

Partager

More