Rates of convergence in the central limit theorem for Banach valued dependent variables. - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2024

Rates of convergence in the central limit theorem for Banach valued dependent variables.

Résumé

We provide rates of convergence in the central limit theorem in terms of projective criteria for adapted stationary sequences of centered random variables taking values in Banach spaces, with finite moment of order p ∈]2, 3] as soon as the central limit theorem holds for the partial sum normalized by n−1/2. This result applies to the empirical distribution function in Lp(μ),where p ⩾ 2 and μ is a real σ-finite measure: under some τ-mixing conditions we obtain a rate of order O(n−(p−2)/2). In the real case, our result leads to new conditions to reach the optimal rates of convergence in terms of Wasserstein distances of order p ∈]2, 3].
Fichier principal
Vignette du fichier
BIGOT_CLT-rates-Banach.pdf (656.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04703494 , version 1 (23-09-2024)

Identifiants

Citer

Aurélie Bigot. Rates of convergence in the central limit theorem for Banach valued dependent variables.. 2024. ⟨hal-04703494⟩
16 Consultations
14 Téléchargements

Altmetric

Partager

More