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Rates of convergence in the central limit theorem for Banach
valued dependent variables

Aurélie Bigot∗

Abstract

We provide rates of convergence in the central limit theorem in terms of projective criteria
for adapted stationary sequences of centered random variables taking values in Banach spaces,
with finite moment of order p ∈]2, 3] as soon as the central limit theorem holds for the partial
sum normalized by n−1/2. This result applies to the empirical distribution function in Lp(µ),
where p ⩾ 2 and µ is a real σ-finite measure: under some τ -mixing conditions we obtain a rate
of order O(n−(p−2)/2). In the real case, our result leads to new conditions to reach the optimal
rates of convergence in terms of Wasserstein distances of order p ∈]2, 3].

Keywords: stationary sequences; Banach spaces; convergence in distribution; mixing coeffi-
cients; empirical processes; Zolotarev distances; Wasserstein distances.

Introduction

Throughout the paper, (B, ∥.∥B) is a real separable Banach space. Consider (Xi)i∈Z a stationary
sequence of B-valued centered random variables adapted to a non-decreasing and stationary filtration
(Fi)i∈Z and such that E ∥X0∥2B <∞. For any n ∈ N∗ write Sn = X1+ · · ·+Xn. In 2024, the author
(see [Big24]) proved a central limit theorem (in short CLT) for (n−1/2Sn)n⩾1 under the projective
condition

∥X0∥B E (Sn| F0) converges in L1
B, (0.1 )

provided that B is 2-smooth in the strong sense (see [Pin94, (2.2)]) with a Schauder basis. This
result can be viewed as an extension to the Banach space setting of Theorem 1 in [DR00].

Note that other projective criteria leading to a CLT for real-valued r.v.’s have been extended
to the Banach spaces setting. Cuny [Cun17] has extended the Maxwell-Woodroofe theorem (see
[MW00]) to the Banach setting proving that the condition context, the condition

∞∑
n=1

n−3/2(E[∥E (Sn| F0)∥2B])
1/2 <∞
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is enough to ensure the CLT for (n−1/2Sn)n⩾1 when the variables take values in a 2-smooth Banach
space B (see Definition 1.7). On another hand, in [DMP13] the authors extended the Hannan
theorem (see [Han73]) to random variables taking values in a 2-smooth Banach space having a
Schauder basis. Hence, they proved that in this context, the condition∑

n∈Z
(E ∥P0(Xn)∥2B)

1/2 <∞

is enough to ensure the CLT (here P0 is the operator defined by P0 = E (·| F0)− E (·| F−1)). It has
been proved in [DV08] that, in the real setting, all these conditions are of independent interest.

In this paper we are interested by conditions leading to rates of convergence in the CLT when
Banach-valued r.v.’s are considered. There are different ways to quantify the rate of convergence in
the CLT. In this paper, we are interested by quantifying the rate of convergence to zero of

∆n(f) :=
∣∣∣E [f(n−1/2Sn)− f(G)

]∣∣∣ (0.2 )

for f : B → R belonging to a certain class of functions and where G is a Gaussian B-valued r.v.
whose covariance operator is given in (b) of Theorem 1.1 below. In this paper, we shall consider
the following class of functions: for p ⩾ 1, let Λp(B,M) be the class of functions f : B → R l-times
continuously Fréchet-differentiable such that

∥∥f (l)(0)∥∥ ⩽M and f (l) is (p− l)-Hölder continuous in
the sense that ∥∥∥f (l)(x)− f (l)(y)

∥∥∥ ⩽ ∥x− y∥p−l
B , ∀x, y ∈ B,

where l is the greatest integer strictly less than p and ∥.∥ denotes the usual norm on multilinear
continuous forms. In the case of real valued r.v.’s, this class of functions allows to define the so-called
Zolotarev distances between probability laws (see our Section 2 for more details). However, in the
case of Banach valued r.v.’s, knowing if this class of functions is sufficient to yield the convergence
in distribution is not so clear (we refer to Račkauskas and Suquet [RS23] where the relation between
weak convergence of probabilities on a smooth Banach space and uniform convergence over certain
classes of smooth functions is established). In Section 3, we shall see that this holds in the case
where B = Lp(µ), p ⩾ 2 and µ is a σ-finite measure.

Let us now recall some previous results concerning rates in the CLT for Banach-valued r.v.’s in
terms of the quantity ∆n(f) with f belonging to different classes of functions. In the i.i.d. case, we
start with the following result due to [Pau76] and [Zol76] and leading to order O(n−1/2):

Theorem 0.1. Let (Xi)i∈Z be a sequence of i.i.d. B-valued centered random variables such that
E ∥X0∥3B <∞. Assume that the CLT applies for (n−1/2Sn)n⩾1 with convergence towards a Gaussian
B-valued random variable G. If a functional f : B → R admits a bounded third Fréchet differential,
then

E
[
f(n−1/2Sn)− f(G)

]
= O(n−1/2).

This result was extended by Bentkus ([Ben86]) still in the context of i.i.d. r.v.’s, by providing
for p ∈]2, 3] an estimate of ∆n(f) of order O(n(p−2)/2) if f(x) is bounded by 2p(2+∥x∥pB), f is thrice
Fréchet-differentiable with sufficiently bounded differentials and if E ∥X1∥pB <∞.

2



Now, let (Xi)i∈Z be a sequence of martingale differences taking values in a Banach space B with
a Schauder basis, admitting a finite moment of order 2 + δ (that is E ∥Xi∥2+δ

B < ∞), δ ∈]0, 1], and
whose first two conditional moments are constant. [BHR83, Theorem 3] proved that

∆n(f) ⩽ cn−(2+δ)/2
n∑

i=1

(E ∥Xi∥2+δ
B + E ∥G∥2+δ

B )

for any f : B → R two times Fréchet-differentiable, whose two first Fréchet-differentials are uniformly
continuous and bounded, and such that f (2) is δ-Hölder continuous. Note that this class of functions
is slightly more restrictive than Λ2+δ(B,M).

Next, in the context of ϕ-mixing sequences, Utev ([Ute91]) established a ∆n(f)-rate of conver-
gence with a slightly different class of functions than those previously mentioned. His proof is based
on blocking techniques and coupling arguments. Let us state [Ute91, Theorem 4.1]. Assume that
B is of type 2 and let f : B → R be a thrice-Fréchet differentiable function such that there exist
c1, c2 > 0 verifying |f(x)| ⩽ c1(1 + ∥x∥3B) and

∥∥f (i)(x)∥∥ ⩽ c1(1 + ∥x∥c2B ) for i = 1, 2, 3. Then, for
any stationary sequence (Xi)i∈Z of centered B-valued random variables such that E ∥X0∥3+δ

B < ∞
for some δ > 0,

∆n(f) = O(n−1/2)

provided that the following ϕ-mixing condition holds: ϕ(k) ⩽ ck−6+10δ−2 (here (ϕ(k))k⩾0 is the se-
quence of ϕ-mixing coefficients associated with (Xk)k⩾0, see for instance [MPU19] for the definition).

In this paper, we shall be interested in giving sufficient conditions in terms of projective criteria
to get rates of convergence for the quantity ∆n(f) where f belongs to the class of functions Λp(B,M)
for p ∈]2, 3] and M ⩾ 0. Our Theorem 1.1 of Section 1 is in this direction and can be viewed as an
extension to dependent sequences of Theorem 0.1. As we shall see in Section 2, even in the real case
our Theorem 1.1 leads to new conditions to reach the rate O(n−δ/2), 0 < δ ⩽ 1, when the r.v.’s have
a finite moment of order 2+ δ. The rest of the paper is organized as follows. We dedicate Section 3
to the case of Banach spaces Lp(µ) where p ⩾ 2 and µ is a real measure. Finally, the proofs of the
main results are postponed to Section 4. Annex A is devoted to the computations of the Fréchet
derivatives of some specific functions.

Throughout the paper, let us denote Lp
B the set of B-valued random variables X such that

E ∥X∥pB <∞ if p ∈ [1,∞[ and inf{c > 0 : ∥X∥B ⩽ c a.s.} <∞ if p = ∞.

1 Rates of convergence in the Banach setting

The main result of this paper is Theorem 1.1 below which provides estimates of ∆n(f) in terms
of projective conditions as soon as the CLT holds for (n−1/2Sn)n⩾1. In this section, (Xi)i∈Z is a
stationary sequence of B-valued centered random variables in L2

B, adapted to a non-decreasing and
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stationary filtration (Fi)i∈Z. Let us introduce the coefficients that will be used below:

γ(k) := E (sup |E (A(X0, Xk)| F0)|) , (1)

a(k) := sup
i⩾0

E
(
∥X−i∥δB sup |E [A(X0, Xk)| F0]− E[A(X0, Xk)]|

)
,

b(k) := sup
j⩾0

E
(
∥X0∥δB sup |E [A(Xk, Xk+j)| F0]− E(A(Xk, Xk+j))|

)
,

γ2,δ(k) := max(a(k), b(k)),

 (2)

where δ ∈]0, 1] and the suprema are taken over all bilinear continuous forms A such that ∥A∥ ⩽ 1.

Theorem 1.1. Assume that

(a)
∑

k⩾1 γ(k) <∞,

(b)
(

Sn√
n

)
n⩾1

converges in distribution to G where G is a Gaussian B-valued random variable whose

covariance operator is given by: for any x∗, y∗ ∈ B∗, KG(x
∗, y∗) =

∑
k∈Z cov(x

∗(X0), y
∗(Xk)),

(c)
(
∥Sn∥2B

n

)
n⩾1

is uniformly integrable.

Then, if X0 ∈ L2+δ
B , there exists a positive constant cδ such that for any M ⩾ 0 and any f ∈

Λ2+δ(B,M),

∆n(f) ⩽ n−δ/2

(cδ +M)
∑
k⩾1

kδ/2γ(k) +

n∑
k=1

(k + 2)γ2,δ(k) + E ∥X0∥2+δ
B + E ∥G∥2+δ

B

 (1.1 )

:= n−δ/2b(n,M, δ).

Remark 1.2. It is worth noting that under condition (a), the covariance series in condition (b) are
absolutely convergent.
Remark 1.3. The constant cδ only depends on δ, on the second order moment of ∥G∥B and on
λ = supk>0 E(∥Sk∥

2
B)/k (which is finite thanks to hypothesis (c)).

Remark 1.4. In the i.i.d. case, we recover Theorem 0.1 when δ = 1.
The above dependence coefficients can be estimated in terms of τ -mixing coefficients as intro-

duced in [DP05]. Let us recall their definition.

Definition 1.5. Consider a stationary sequence of random variables (Xi)i∈Z adapted to a non-
decreasing and stationary filtration (Fi)i∈Z. We define for any integer k,

τ1(k) =
∥∥sup{PXk|F0

(f)− PXk
(f) : f ∈ Λ1(B)

}∥∥
1

and

τ2(k) = max

(
τ1(k), sup

l⩾0
τ(F0, (Xk, Xk+l))

)
,

where τ(M, (X,Y )) = 1
2

∥∥sup{P(X,Y )|M(f)− P(X,Y )(f) : f ∈ Λ1(B× B)
}∥∥

1
and Λ1(E) is the space

of 1-Lipschitz functions from E to R. On B×B we put the following norm: ∥(u, v)∥B×B = 1
2(∥u∥B+

∥v∥B).
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Lemma 1.6. Let (Xi)i∈Z be a stationary sequence of B-valued centered random variables adapted to
a non-decreasing and stationary filtration (Fi)i∈Z and such that X0 ∈ L2+δ

B for some δ ∈]0, 1]. Then

max(γ(k), γ2,δ(k)) ⩽ 4

∫ τ2 (k)/2

0
Q1+δ

∥X0∥B
◦G∥X0∥B(u) du, (1.2 )

where Q∥X0∥B is the generalized inverse of the upper tail function t 7→ P(∥X0∥B > t) and G∥X0∥B is
the inverse of x 7→

∫ x
0 Q∥X0∥B(u)du.

Now to give sufficient conditions ensuring conditions (b) and (c) of Theorem 1.1, we shall consider
Banach spaces that are 2-smooth. Let us recall this notion.

Definition 1.7. A Banach space (B, ∥.∥B) is said to be 2-smooth if there exists L ⩾ 1 such that for
any x, y ∈ B,

∥x+ y∥2B + ∥x− y∥2B ⩽ 2 ∥x∥2B + 2L2 ∥y∥2B .

The notion of 2-smooth Banach spaces is very useful due to the martingale inequality below
(see for instance Proposition 1 in [Ass75]). Assume that (B, ∥·∥B) is (2,L)-smooth then for every
martingale differences (dk)1⩽k⩽n, writing Mn = d1 + · · ·+ dn, we have

E(∥Mn∥2B) ⩽ 2L2
n∑

k=1

E(∥dk∥2B). (1.3 )

As an example, for any p ⩾ 2 and any real measure µ, Lp(µ) is (2,
√
p− 1)-smooth (see for

instance [Pin94, Proposition 2.1]).
Starting from Theorem 1.1 and using Lemma 1.6 we can derive the following result whose proof

is postponed to Section 4.

Proposition 1.8. Assume that (B, ∥.∥B) is 2-smooth. Let (Xi)i∈Z be an ergodic stationary sequence
of B-valued centered random variables adapted to a non-decreasing and stationary filtration (Fi)i∈Z
and such that X0 ∈ L2+δ

B for some δ ∈]0, 1]. Assume that

∑
k⩾1

k

∫ τ2 (k)/2

0
Q1+δ

∥X0∥B
◦G∥X0∥B(u) du <∞. (1.4 )

Then conditions (a), (b) and (c) of Theorem 1.1 hold and, for any M ⩾ 0 and any f ∈ Λ2+δ(B,M),

∆n(f) = O(n−δ/2).

For the reader’s convenience, let us give the following result which specifies the rates of decrease
of (τ2(k))k⩾1 and the moments of ∥X0∥B for (1.4 ) to hold. Its proof follows from [DD03, Proof of
Lemma 2].

Corollary 1.9. Assume that (B, ∥.∥B) is 2-smooth. Let (Xi)i∈Z be an ergodic stationary sequence
of B-valued centered random variables adapted to a non-decreasing and stationary filtration (Fi)i∈Z
and such that X0 ∈ L2+δ

B for some δ ∈]0, 1]. Assume that one of the following conditions holds:
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(i) there exists r ∈]2 + δ,∞] such that X0 ∈ Lr
B and

∑
k>0 k

1+(2+2δ)/(r−2−δ)τ2(k) <∞

(ii) there exist r > 2 + δ and c > 0 such that for any x > 0, P (∥X0∥B > x) ⩽ (c/x)r and∑
k>0 kτ2(k)

1−(1+δ)/(r−1) <∞

(iii) E
(
∥X0∥2+δ

B ln(1 + ∥X0∥B)2
)
<∞ and τ2(n) = O(bn) for some b < 1.

Then
∑

k⩾1 k
∫ τ2 (k)
0 Q1+δ

∥X0∥B
◦G∥X0∥B(u) du <∞ and Proposition 1.8 applies.

For applications in mind, let us give a condition in terms of β-mixing coefficients that implies
(1.4 ). We first recall the definition of such coefficients.

Definition 1.10. Consider a stationary sequence of B-valued random variables (Xi)i∈Z adapted to
a non-decreasing and stationary filtration (Fi)i∈Z. We define for any integer k,

β2(k) = sup
l⩾0

β(F0, (Xk, Xk+l))

where β(M, (X,Y )) =
∥∥sup{P(X,Y )|M(f)− P(X,Y )(f) : ∥f∥∞ ⩽ 1

}∥∥
1
.

Lemma 1.11. Let (Xi)i∈Z be a stationary sequence of B-valued centered random variables adapted
to a non-decreasing and stationary filtration (Fi)i∈Z. Let δ > 0, assume that∑

k⩾1

k

∫ β2 (k)

0
Q2+δ

∥X0∥B
(u) du <∞. (1.5 )

Then (1.4) is satisfied.

Proof. For any k, from [DM06, Lemma 4],

τ2(k) ⩽ 2

∫ β2(k)

0
Q∥X0∥B(u) du ⩽ 2G−1

∥X0∥B
(β2(k)).

Thus by a change of variables,∫ τ2 (k)/2

0
Q1+δ

∥X0∥B
◦G∥X0∥B(u) du ⩽

∫ β2(k)

0
Q2+δ

∥X0∥B
(v) dv.

Remark 1.12. Let (Xi)i∈Z be a stationary sequence of B-valued centered random variables adapted
to a non-decreasing and stationary filtration (Fi)i∈Z. Assume that one the following condition holds:

(i) there exists r ∈]2 + δ,∞] such that X0 ∈ Lr
B and

∑
k>0 k

1+(4+2δ)/(r−2−δ)β2(k) <∞

(ii) there exist r > 2 + δ and c > 0 such that for any x > 0, P (∥X0∥B > x) ⩽ (c/x)r and∑
k>0 kβ2(k)

1−(2+δ)/r <∞

(iii) E
(
∥X0∥2+δ

B ln(1 + ∥X0∥B)2
)
<∞ and β2(n) = O(bn) for some b < 1.

Then (1.5 ) is satisfied.
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2 The case of real-valued random variables

In the real case, Theorem 1.1 gives some rates in the CLT in terms of Zolotarev distances. Let us
recall this notion: let p > 0, for two real probability measures µ and ν, the Zolotarev distance of
order p between µ and ν is given by:

ζp(µ, ν) = sup

{∣∣∣∣∫
R
fdµ−

∫
R
fdν

∣∣∣∣ : f ∈ Λ0
p(R)

}
where Λ0

p(R) := Λp(R, 0) ∩ {f : f (i)(0) = 0, i = 0, · · · , l}, with l the largest integer strictly less than
p. One the advantages of this quantity is that it can be compared with the so-called Wasserstein
distance as quoted in [Rio17] and recalled in what follows. Recall that the latter distance is defined
for any p > 0 by

Wp(µ, ν) = inf
{
[E |X − Y |p]

1
p : PX = µ, PY = ν

}
=
∥∥F−1

µ − F−1
ν

∥∥
Lp

where F−1
µ , F−1

ν are the generalized inverses of the cumulative distribution functions respectively
of the real probability measures µ and ν. Theorem 1 in [Rio98] states the following comparison
between Zolotarev and Wasserstein distances: for any p ⩾ 1 there exists a positive constant cp such
that

Wp(µ, ν) ⩽ cpζ
1/p
p (µ, ν). (2.1 )

In the real case, it is shown in [Bas80] that for sequences (Xn)n∈Z of martingale differences with
finite moment of order 3, the following estimate holds: for any uniformly continuous function f
2-times differentiable and such that f (2) is δ-Hölder continuous for some δ ∈]0, 1],

ζ2+δ(Pn−1/2Sn
, PG) = O(n−δ/2)

where G is a centered Gaussian r.v. with the same variance as X0.
Relaxing the martingale assumption, Dedecker, Merlevède and Rio ([DMR09]) have in particular

proved that for a stationary sequence of real random variables in Lp, with 2 < p < 3, adapted to a
non-decreasing stationary filtration (Fk)k and satisfying∑

n⩾1

E (Xn| F0) converges in Lp (2.2 )

and
∞∑
n=1

1

n2−p/2

∥∥∥∥E(S2
n

n
− σ2

∣∣∣∣F0

)∥∥∥∥
p/2

<∞, where σ2 = lim
n→+∞

n−1E(S2
n), (2.3 )

the following estimate holds: for any r ∈ [p− 2, p],

ζr(Pn−1/2Sn
, PG) = O(n1−p/2)
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where G is a centered Gaussian r.v. with variance σ2. We infer from (2.1 ) that

Wr(Pn−1/2Sn
, PG) = O(n−(p−2)/(2max(1,r))).

Since for real-valued r.v.’s the dependence coefficients defined in (1) and (2) simplify, let us give a
precise statement of Theorem 1.1 in this case.

Theorem 2.1. Let (Xi)i∈Z be an ergodic stationary sequence of real centered and square-integrable
random variables, adapted to a non-decreasing and stationary filtration (Fi)i∈Z. Let us consider for
some δ ∈]0, 1],

γ̃(k) := E (|X0E [Xk| F0]|) ,

ã(k) := sup
i⩾0

E
(
|X−i|δ |E [X0Xk| F0]− E[X0Xk]|

)
,

b̃(k) := sup
j⩾0

E
(
|X0|δ |E [XkXk+j | F0]− E(XkXk+j)|

)
,

and

γ̃2,δ(k) := max(ã(k), b̃(k)).

Assume that
∑

k⩾1 γ̃(k) <∞. Then, if E |X0|2+δ <∞, there exists a positive constant cδ such that

ζ2+δ(Pn−1/2Sn
, PG)

⩽ n−δ/2

cδ ∑
k⩾1

kδ/2γ̃(k) +
n∑

k=1

(k + 2)γ̃2,δ(k) + E |X0|2+δ + E |G|2+δ

 ,

where G is a centered Gaussian random variable whose variance is given by EG2 =
∑

k∈Z cov(X0, Xk).

In the real case, the dependence coefficients can be estimated with the help of the α-dependent
coefficients as introduced in [DP07] (see also [MPU19, Section 5]). For the reader’s convenience, let
us recall their definition.

Definition 2.2. Consider a stationary sequence of real-valued r.v.’s (Xi)i∈Z adapted to a non-
decreasing and stationary filtration (Fi)i∈Z. For any k ⩾ 0, let

α2(k) = sup
l⩾0

α (F0, (Xk, Xk+l))

where, denoting Z(0) = Z − E(Z),

α(M, (X,Y )) = sup
x,y∈R

∥∥∥E(1(0)X⩽x1
(0)
Y ⩽y

∣∣∣M)
− E

(
1
(0)
X⩽x1

(0)
Y ⩽y

)∥∥∥
1
.

Corollary 2.3. Let (Xi)i∈Z be a stationary sequence of centered real-valued r.v.’s adapted to a
non-decreasing and stationary filtration (Fi)i∈Z. Assume that (γ̃2,δ(k))k⩾1 decreases towards 0 and
E |X0|2+δ <∞ for some δ ∈]0, 1] and consider the conditions

8



(i)
∑

k⩾1 k
∫ α2 (k)
0 Q2+δ

|X0|(u) du <∞

(ii)
∑

k⩾1 k
∫ τ2 (k)/2
0 Q1+δ

|X0| ◦G|X0|(u) du <∞.

If either (i) or (ii) is satisfied, the CLT applies for
(
n−1/2Sn

)
n⩾1

and

ζ2+δ(Pn−1/2Sn
, PG) = O(n−δ/2)

where the Gaussian random variable G is as in Theorem 2.1.

Remark 2.4. To prove that under condition (i) the series
∑

k⩾1 k
δ/2γ̃(k) and

∑
k⩾1 kγ̃2,δ(k) are

convergent, we can use the arguments developed in [MPU19, pages 201-204].

Remark 2.5. In this theorem, we do not need to assume the sequence to be ergodic. Indeed, the fact
that (α2(k))k decreases towards 0 implies 2-ergodicity as defined in [DS17, Definition 1.2].

Recalling the inequality (2.1 ), it follows that under the assumptions of Corollary 2.3,

W2+δ(Pn−1/2Sn
, PG) = O(n−δ/(4+2δ)). (2.4 )

This bound was obtained by Sakhanenko ([Sak85]) in the independent case. Furthermore this rate
cannot be improved as indicated in [Rio09].

Remark 2.6. Conditions (2.2 ) and (2.3 ) involved in [DMR09, Theorem 3.1] are not comparable
with those of our Theorem 2.1. However, proceeding as in [MPU19, pages 203-204], note that (2.2 )
holds with p = 2 + δ provided that

∑
k⩾1 k

p−1
∫ α2(k)
0 Qp

|X0|(u) du < ∞ which is a more restrictive
condition than those involved in our Corollary 2.3.

3 The case of Lp(µ)-valued random variables

Let p ⩾ 2 and µ a σ-finite measure on R. The space Lp(µ) equipped with its usual norm is 2-smooth
(even in the strong sense, see Section 2 in [Pin94]). Hence, Proposition 1.8 can be applied with
B = Lp(µ). Moreover, for any p > 1, in B = Lp(µ) the class of functions Λp(B,M) characterizes the
convergence in distribution as we explain in what follows.
Let (µn)n⩾1 and µ be some probability laws on Lp(µ). Applying Theorem 1 in [Bau99], as Lp(µ)
admits a continuous modulus of convexity for any p > 1, if the following conditions are verified

(i) µn(f)
L−−−→

n→∞
µ(f), for any continuous linear form f on Lp(µ)

(ii) µn(φ ◦ ∥·∥Lp(µ))
L−−−→

n→∞
µ(φ ◦ ∥·∥Lp(µ)), for any φ ∈ C0

b

then (µn)n⩾1 converges in distribution towards µ on Lp(µ). Combining this result with Proposition
5 in [BF66] and considering C∞-smooth functions with compact support, we derive the following
result whose proof is postponed to Section 4.
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Proposition 3.1. Let p > 1 and µ a σ-finite real measure, then for any 1 ⩽ r ⩽ p, Λr(L
p(µ), 0)

characterizes the convergence in distribution on Lp(µ). In other words, the metric defined by

(µ, ν) 7→ sup

{∣∣∣∣∫
R
fdµ−

∫
R
fdν

∣∣∣∣ : f ∈ Λr(L
p(µ), 0)

}
is a distance for the convergence in distribution on Lp(µ).

Thus in Lp(µ), Theorem 1.1 quantifies the convergence in distribution in the CLT.

Let us now apply Theorem 1.1 to the specific functions x 7→ ∥x∥qLp(µ) for some p ⩾ 2 and q > 2.

First, when p = 2, ∥.∥2L2(µ) ∈ Λ2+δ(L
2(µ), 2) for any 0 < δ ⩽ 1. Indeed, it is easy to see that

∥.∥2L2(µ) is infinitely Fréchet-differentiable and its second order Fréchet-differential at point x ∈ L2(µ)

is given by (u, v) 7→ 2⟨u, v⟩L2(µ). Then if E ∥X0∥2+δ
L2(µ) <∞ and if (a), (b) and (c) are verified,∣∣∣∣E∥∥∥n−1/2Sn

∥∥∥2
L2(µ)

− E ∥G∥2L2(µ)

∣∣∣∣
⩽ n−δ/2

(cδ + 2)
∑
k⩾1

kδ/2γ(k) +
n∑

k=1

(k + 2)γ2,δ(k) + E ∥X0∥2+δ
L2(µ) + E ∥G∥2+δ

L2(µ)

 . (3.1 )

Next, for p ∈]2, 3], according to [BF66, Section 4], ∥.∥pp ∈ Λp(Lp(µ), 0). Consequently, for any
Lp(µ)-valued stationary sequence of random variables with finite moment of order p with 2 < p ⩽ 3,
if (a), (b) and (c) are verified,∣∣∣∣E∥∥∥n−1/2Sn

∥∥∥p
Lp(µ)

− E ∥G∥pLp(µ)

∣∣∣∣
⩽ n−(p−2)/2

cp−2

∑
k⩾1

k(p−2)/2γ(k) +
n∑

k=1

(k + 2)γ2,p−2(k) + E ∥X0∥pLp(µ) + E ∥G∥pLp(µ)

 . (3.2 )

We now turn to the case p > 3. In this case, we need a preliminary result.

Lemma 3.2. For any p ⩾ 3 and any q > 0, ψq
p : x 7→ ∥x∥qLp(µ) is three times Fréchet-differentiable

on Lp(µ) \ {0} and for any x ∈ Lp(µ) \ {0} and any h1, h2, h3 ∈ Lp(µ),

ψq
p
(2)(x)(h1, h2) = q(p− 1) ∥x∥q−p

Lp(µ)

∫
h1h2 |x|p−2 dµ

+ q(q − p) ∥x∥q−2p
Lp(µ)

∫
h1x |x|p−2 dµ

∫
h2x |x|p−2 dµ

10



and

ψq
p
(3)(x)(h1, h2, h3) = q(p− 1)(p− 2) ∥x∥q−p

Lp(µ)

∫
h1h2h3x |x|p−4 dµ

+q(p− 1)(q − p) ∥x∥q−2p
Lp(µ)

(∫
h1x |x|p−2 dµ

∫
h2h3 |x|p−2 dµ

+

∫
h2x |x|p−2 dµ

∫
h1h3 |x|p−2 dµ+

∫
h3x |x|p−2 dµ

∫
h1h2 |x|p−2 dµ

)
+q(q − p)(q − 2p) ∥x∥q−3p

Lp(µ)

∫
h1x |x|p−2 dµ

∫
h2x |x|p−2 dµ

∫
h3x |x|p−2 dµ.

In addition, if q > 2 then ψq
p is twice-differentiable at 0 with ψq

p
(1)

(0)(h1) = 0 and ψq
p
(2)

(0)(h1, h2) =
0.

We postpone the proof to the Annex A. As a consequence, we have the following result.

Proposition 3.3. For any p ⩾ 3, there exists a constant cp > 0 such that c−1
p ψ3

p is an element of
Λ3(L

p(µ), 0).

Consequently, for any p ⩾ 3 and any Lp(µ)-valued stationary sequence of random variables with
finite moment of order 3, if (a), (b) and (c) are satisfied,∣∣∣∣E∥∥∥n−1/2Sn

∥∥∥3
Lp(µ)

− E ∥G∥3Lp(µ)

∣∣∣∣
⩽ n−1/2cp

cδ ∑
k⩾1

k1/2γ(k) +
n∑

k=1

(k + 2)γ2,1(k) + E ∥X0∥3Lp(µ) + E ∥G∥3Lp(µ)

 . (3.3 )

Proof of Proposition 3.3. According to Lemma 3.2 with q = 3, for any x, h1, h2, h3 ∈ Lp(µ) with
x ̸= 0,

ψ3
p
(3)

(x)(h1, h2, h3) = 3(p− 1)(p− 2) ∥x∥3−p
Lp(µ)

∫
h1h2h3x |x|p−4 dµ

+3(p− 1)(3− p) ∥x∥3−2p
Lp(µ)

(∫
h1x |x|p−2 dµ

∫
h2h3 |x|p−2 dµ

+

∫
h2x |x|p−2 dµ

∫
h1h3 |x|p−2 dµ+

∫
h3x |x|p−2 dµ

∫
h1h2 |x|p−2 dµ

)
+3(3− p)(3− 2p) ∥x∥3−3p

Lp(µ)

∫
h1x |x|p−2 dµ

∫
h2x |x|p−2 dµ

∫
h3x |x|p−2 dµ. (3.4 )

Applying Hölder’s inequality, for any w, y, z ∈ Lp(µ),∣∣∣∣∫ wyzx |x|p−4 dµ

∣∣∣∣ ⩽ ∥w∥Lp(µ) ∥y∥Lp(µ) ∥z∥Lp(µ) ∥x∥
p−3
Lp(µ)∣∣∣∣∫ yx |x|p−2 dµ

∣∣∣∣ ⩽ ∥y∥Lp(µ) ∥x∥
p−1
Lp(µ)∣∣∣∣∫ yz |x|p−2 dµ

∣∣∣∣ ⩽ ∥y∥Lp(µ) ∥z∥Lp(µ) ∥x∥
p−2
Lp(µ) .
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Using these upper bounds in (3.4 ), we get∣∣∣ψ3
p
(3)

(x)(h1, h2, h3)
∣∣∣ ⩽ 6(p− 1)2 ∥h1∥Lp(µ) ∥h2∥Lp(µ) ∥h3∥Lp(µ) .

Hence ψ3
p
(3) is bounded by 6(2p2 − 8p+ 7) on Lp(µ) \ {0} and for any x, y ∈ Lp(µ) \ {0},∥∥∥ψ3

p
(2)

(x)− ψ3
p
(2)

(y)
∥∥∥ ⩽ 6(2p2 − 8p+ 7) ∥x− y∥Lp(µ) .

Furthermore, applying Hölder’s inequality, for any x ∈ Lp(µ)\{0},
∥∥∥ψ3

p
(2)

(x)− ψ3
p
(2)

(0)
∥∥∥ ⩽ 6 ∥x∥Lp(µ).

The result follows with cp = 6(2p2 − 8p+ 7).

3.1 Application to the empirical distribution function in Lp(µ)

Let us consider (Yi)i∈Z a stationary and ergodic sequence of real random variables, whose cumulative
distribution function is denoted F , and define Fn(t) = 1

n

∑n
k=1 1Yk⩽t the empirical distribution

function. We suppose that ∫
R−

F (t)p dµ(t) +

∫
R+

(1− F (t))p dµ(t) <∞

so that Fn − F is an element of Lp(µ), with µ a σ-finite real measure on R and p ⩾ 2. Define the
random process:

∀k ∈ Z, Xk = {1Yk⩽t − F (t) : t ∈ R}

which takes values in Lp(µ). With such a notation, the study of the asymptotic behavior of
(
√
n(Fn − F ))n⩾1 is equivalent to the study of the asymptotic behavior of (n−1/2Sn)n⩾1 in Lp(µ)

where Sn = X1 + · · ·+Xn. The CLT for empirical distribution functions in Lp(µ) has already been
studied in some papers, we can mention for instance [Ded09], [DM07], [DM17], [Cun17] or [Big24].

In [DM07] the link between the convergence in distribution of
√
n(Fn−F ) in Lp(µ) and Donsker

classes has been clearly established. More precisely, let us denote

W1,q(µ) :=

{
f : R → R : f(x) = f(0) + 1x>0

∫
[0,x[

g dµ − 1x⩽0

∫
[x,0[

g dµ , ∥g∥Lq(µ) ⩽ 1

}
, (3.5 )

where q is the conjugate exponent of p. Then according to [DM07, Lemma 1] the following conver-
gences are equivalent:

(i) {
√
n(Fn − F )(t)}t

L−→ {G(t)}t in Lp(µ)

(ii)
{√

n
(
1
n

∑n
i=1 f(Yi)− Ef(Y0)

)} L−→ {G1(f)} in ℓ∞(W1,q(µ))

where ℓ∞(W1,q(µ)) is the space of all functions ϕ : W1,q(µ) → R such that supf∈W1,q(µ) |ϕ(f)| is
finite, and G1(f) =

∫
g(t)G(t)dµ(t) where g is defined in (3.5 ). Hence, proving that W1,q(µ) is a

Donsker class for (Yn)n⩾1 is equivalent to proving that
(
n−1/2Sn

)
n⩾1

satisfies the CLT. Rewriting
(3.1 ), (3.2 ) and (3.3 ) in terms of Donsker classes, it follows that if (a), (b) and (c) in Theorem
1.1 are verified,
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• if p = 2 and E ∥X0∥2+δ
L2(µ) <∞ with some 0 < δ ⩽ 1,∣∣∣∣∣∣E

sup

{
√
n

∣∣∣∣∣ 1n
n∑

i=1

f(Yi)− µ(f)

∣∣∣∣∣ : f ∈W1,2(µ)

}2
− E ∥G∥2L2(µ)

∣∣∣∣∣∣ ⩽ n−δ/2b(n, 2, δ),

• if 2 < p < 3 and E ∥X0∥pLp(µ) <∞,∣∣∣∣∣E
(
sup

{
√
n

∣∣∣∣∣ 1n
n∑

i=1

f(Yi)− µ(f)

∣∣∣∣∣ : f ∈W1,q(µ)

}p)
− E ∥G∥pLp(µ)

∣∣∣∣∣ ⩽ n−(p−2)/2b(n, 0, p− 2),

• if p ⩾ 3 and E ∥X0∥3Lp(µ) <∞,∣∣∣∣∣∣E
sup

{
√
n

∣∣∣∣∣ 1n
n∑

i=1

f(Yi)− µ(f)

∣∣∣∣∣ : f ∈W1,q(µ)

}3
− E ∥G∥3Lp(µ)

∣∣∣∣∣∣ ⩽ n−1/2b(n, 0, 1).

Let us consider the same notations as in [DM07]:

Notations 3.4. Define the function Fµ by: Fµ(x) = µ(]0, x]) if x ⩾ 0 and Fµ(x) = −µ([x, 0[) if
x ⩽ 0. Define also the nonnegative random variable Yp,µ = |Fµ(Y0)|1/p.

Since Lp(µ) is 2-smooth, p ⩾ 2, as a consequence of Proposition 1.8 and Lemma 1.11 we get in
particular the following results.

Corollary 3.5. Let δ ∈]0, 1]. Assume that EY 2+δ
2,µ < ∞ and

∑
k⩾1 k

∫ β2,Y (k)
0 Q2+δ

Y2,µ
(u) du < ∞.

Then W1,2(µ) is a Donsker class for (Yn)n and for any M ⩾ 0 and any f ∈ Λ2+δ(L
2(µ),M),

∆n(f) = O(n−δ/2). Moreover,∣∣∣∣∣∣E
sup

{
√
n

∣∣∣∣∣ 1n
n∑

i=1

f(Yi)− µ(f)

∣∣∣∣∣ : f ∈W1,2(µ)

}2
− E ∥G∥2L2(µ)

∣∣∣∣∣∣ = O(n−δ/2).

Corollary 3.6. Let p > 2 and r = min(p, 3). Assume that EY r
p,µ <∞ and

∑
k⩾1

k

∫ β2,Y (k)

0
Qr

Yp,µ
(u) du <∞. (3.6 )

Then W1,q(µ) is a Donsker class for (Yn)n and for any f ∈ Λr(L
p(µ),M), ∆n(f) = O(n−(r−2)/2).

Moreover,∣∣∣∣∣E
(
sup

{
√
n

∣∣∣∣∣ 1n
n∑

i=1

f(Yi)− µ(f)

∣∣∣∣∣ : f ∈W1,q(µ)

}r)
− E ∥G∥rLp(µ)

∣∣∣∣∣ = O(n−(r−2)/2).
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Let us only prove Corollary 3.6.

Proof. First, by definition of the β-mixing coefficients, β2,X(k) ⩽ β2,Y (k) for any k ⩾ 1. Now, note
that Q∥X0∥Lp(µ)

⩽ QYp,µ + EYp,µ. Hence

∫ β2,Y (n)

0
Qr

∥X0∥Lp(µ)
(u)du ⩽ 2r−1

(∫ β2,Y (n)

0
Qr

Yp,µ
(u)du+ β2,Y (n)(EYp,µ)r

)

⩽ 2r−1

(∫ β2,Y (n)

0
Qr

Yp,µ
(u)du+ β2,Y (n)EY r

p,µ

)
.

Since EY r
p,µ =

∫ 1
0 QY r

p,µ
(u)du and QY r

p,µ
is a non-increasing function, and using [Rio17, Lemma 2.1],

we get ∫ β2,Y (n)

0
Qr

∥X0∥Lp(µ)
(u)du ⩽ 2r

∫ β2,Y (n)

0
Qr

Yp,µ
(u)du.

Therefore condition (1.5 ) is derived from (3.6 ) and the result follows combining Lemma 1.11 and
the discussion before the statement of Corollary 3.5.

3.2 Application to empirical processes associated with intermittent maps.

For γ ∈]0, 1[, let Tγ : [0, 1] → [0, 1] be the intermittent map defined by [LSV99] as follows:

Tγ(x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[
2x− 1 if x ∈ [1/2, 1]

.

As shown in [LSV99], for all γ ∈]0, 1[, there exists a unique absolutely continuous Tγ-invariant
probability measure νγ on [0,1] whose density hγ satisfies: there exist two finite constants c1, c2 > 0
such that for all x ∈ [0, 1], c1 ⩽ xγhγ(x) ⩽ c2. If there is no confusion, we will omit the index γ for
the sake of clarity. Let us fix γ and consider K the Perron-Frobenius operator of T with respect to
ν defined by

ν(f ◦ T.g) = ν(f.Kg), for any f, g ∈ L2(ν).

Then, by considering (Zi)i∈Z a stationary Markov chain with invariant measure ν and transition
kernel K, for any positive integer n, on the probability space ([0, 1], ν), (T, T 2, · · · , Tn) is distributed
as (Zn, Zn−1, · · · , Z1) on a probability space (Ω,A,P) (see for instance Lemma XI.3 in [HH01]).
Consequently, the two following empirical processes have the same distribution

•
{
Gn(t) =

1√
n

∑n
k=1[1Tk⩽t − F (t)] ; t ∈ [0, 1]

}
•
{
Ln(t) =

1√
n

∑n
k=1[1Zk⩽t − F (t)] ; t ∈ [0, 1]

}
where F (t) = ν([0, t]).
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Corollary 3.7. For any γ ∈]0, 1/3[,

{Gn(t) : t ∈ [0, 1]} L−−−→
n→∞

{G(t) : t ∈ [0, 1]} in L2([0, 1]),

and for any M ⩾ 0, any δ ∈]0, 1] and any f ∈ Λ2+δ(L
2([0, 1]),M), ∆n(f) = O(n−δ/2). Moreover,∣∣∣E ∥Gn∥2L2([0,1]) − E ∥G∥2L2([0,1])

∣∣∣ = O(n−1/2).

Corollary 3.8. Let p > 2 and r = min(p, 3). For any γ ∈]0, 1/3[,

{Gn(t) : t ∈ [0, 1]} L−−−→
n→∞

{G(t) : t ∈ [0, 1]} in Lp([0, 1]),

and for any M ⩾ 0 and any f ∈ Λr(L
p([0, 1]),M), ∆n(f) = O(n−(r−2)/2). Moreover,∣∣∣E ∥Gn∥rLp([0,1]) − E ∥G∥rLp([0,1])

∣∣∣ = O(n−(r−2)/2).

Proof. Since we are interested in the behavior of the partial sum, we can work on (Zn)n⩾1 rather
than (Tn)n⩾1. Let us denote Xk = {1Zk⩽t − F (t) : t ∈ [0, 1]} which takes values in Lp(ν) for any
p ⩾ 2. Since ν is supported on [0, 1], condition (1.4 ) of Proposition 1.8 reads as

∑
k⩾1 kτ2,X(k) <∞.

Let us estimate τ2,X(k) in order to apply Proposition 1.8. To this aim, we would apply results
of [DP09] and [DM15] whose main argument is the modelling of the dynamical system by Young
towers. We refer to [DM15, Section 4.1] for the construction of the tower X associated to T and
for the mappings π from X to [0, 1] and F from X to X such that T ◦ π = π ◦ F . On X there
is a probability measure m0 and a unique F -invariant probability measure ν̄ with density h0 with
respect to m0. Note that the unique T -invariant probability measure ν is then given by ν = ν̄ ◦π and
denote P the Perron-Frobenius operator of F with respect to ν̄. Moreover, there exists a distance d
onX such that for any x, y ∈ X, d(x, y) ⩽ 1 and |π(x)−π(y)| ⩽ κd(x, y) for some positive constant κ.

For any k, l ⩾ 0, let us consider (Z∗
k , Z

∗
k+l) the coupling associated with

τ|.|1/p(F0, (Zk, Zk+l)) :=
1

2
ν
(
sup

{
|E [f(Zk, Zk+l)|Z0]− E [f(Zk, Zk+l)]| : f ∈ Λ1(R2, |.|1/p)

})
that is

inf
{
E
∣∣Zk − Z ′

k

∣∣1/p + E
∣∣Zk+l − Z ′

k+l

∣∣1/p : (Z ′
k, Z

′
k+l)

L
= (Zk, Zk+l), (Z

′
k, Z

′
k+l) ⊥⊥ Z0

}
= E |Zk − Z∗

k |
1/p + E

∣∣Zk+l − Z∗
k+l

∣∣1/p .
Let X∗

k = {1Z∗
k⩽t − F (t) : t ∈ [0, 1]} and X∗

k+l = {1Z∗
k+l⩽t − F (t) : t ∈ [0, 1]}. By definition of

τ2,X(k),

τ2,X(k) ⩽ sup
l⩾0

1

2
Eν

(
∥Xk −X∗

k∥Lp([0,1]) +
∥∥Xk+l −X∗

k+l

∥∥
Lp([0,1])

)
⩽ sup

l⩾0

1

2
Eν

(
|Zk − Z∗

k |
1/p +

∣∣Zk+l − Z∗
k+l

∣∣1/p)
⩽ sup

l⩾0
τ|.|1/p(F0, (Zk, Zk+l)). (3.7 )
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Proceeding in a similar way as in the proof of Theorem 2.1 in [DP09] and taking into account the
inequality (4.3) in [DM15] rather than Lemma 2.3 in [DP09], we derive the following lemma whose
proof will be done in Section 4.

Lemma 3.9. There exists a positive constant c such that for any k, l ⩾ 0,

τ|.|1/p(F0, (Zk, Zk+l)) ⩽ ck−(1−γ)/γ .

Combining Lemma 3.9 with (3.7 ), we get τ2,X(k) ⩽ ck−(1−γ)/γ . Hence
∑

k⩾1 kτ2,X(k) < ∞
provided that γ < 1/3. The result follows from Proposition 1.8.

4 Proofs

4.1 Proof of Theorem 1.1

Lemma 4.1. Under conditions (a), (b) and (c), for any symmetric bilinear continuous form φ,

E [φ(G,G)] = E [φ(X0, X0)] + 2
∑
k⩾1

E [φ(X0, Xk)] .

Proof of Lemma 4.1. From (b) and (c), since φ is continuous,

E [φ(G,G)] = lim
n→+∞

E
[
φ

(
Sn√
n
,
Sn√
n

)]
.

By stationarity, for any n > 1,

E
[
φ

(
Sn√
n
,
Sn√
n

)]
= E [φ(X0, X0)] +

2

n

n∑
i=1

n∑
k=i

E [φ(Xi, Xk)]

= E [φ(X0, X0)] +
2

n

n−1∑
l=1

n− l

n
E [φ(X0, Xl)] .

From (a), the dominated convergence theorem applies and infers that

lim
n→+∞

E
[
φ

(
Sn√
n
,
Sn√
n

)]
= E [φ(X0, X0)] + 2

∑
k⩾1

E [φ(X0, Xk)] .

Proof of Theorem 1.1. We shall apply the Lindeberg method. In case of a triangular array of inde-
pendent random variables taking values in a Banach space of type 2, this method has been recently
used by Račkauskas and Suquet [RS23] to get rates in the central limit theorem (see their Theorem
21). Consider (εk)k⩾1 a sequence of i.i.d. centered gaussian random variables distributed as G and

16



independent of (Xk)k. Let n ⩾ 1. For any i ⩽ n, set Γi =
∑n

k=i εk. In order to simplify the
calculation lines, write

f
(i)
j,k(·) = f (i)

(
k−1/2 [ ·+ Γj ]

)
.

Applying Taylor’s formula,

E
[
f(n−1/2Sn)− f(n−1/2Γ1)

]
=

1√
n

n∑
i=1

E
[
f
(1)
i+1,n(Si−1)(Xi)

]
+

1

2n

n∑
i=1

E
[
f
(2)
i+1,n(Si−1)(Xi, Xi)− f

(2)
i+1,n(Si−1)(εi, εi)

]
+

1

n

n∑
i=1

E[Ri − R̃i],

where

Ri =

∫ 1

0
(1− s)

[
f
(2)
i+1,n (Si−1 + sXi)− f

(2)
i+1,n(Si−1)

]
(Xi, Xi) ds

and

R̃i =

∫ 1

0
(1− s)

[
f
(2)
i+1,n (Si−1 + sεi)− f

(2)
i+1,n(Si−1)

]
(εi, εi) ds.

As by independence E[f (1)i+1,n(0)(Xi)] = E[f (1)i+1,n(0)(EXi))] = 0, we can write

1√
n

n∑
i=1

E
[
f
(1)
i+1,n(Si−1)(Xi)

]
=

1√
n

n∑
i=1

i−1∑
k=1

E
[
f
(1)
i+1,n(Si−k)(Xi)− f

(1)
i+1,n(Si−k−1)(Xi)

]
=

1

n

n∑
i=1

i−1∑
k=1

E
[
f
(2)
i+1,n(Si−k−1)(Xi−k, Xi)

]
+

1

n

n∑
i=1

i−1∑
k=1

∫ 1

0
E
[{
f
(2)
i+1,n(Si−k−1 + tXi−k)− f

(2)
i+1,n(Si−k−1)

}
(Xi−k, Xi)

]
dt.

Furthermore, according to Lemma 4.1 and since f (2)i+1,n(Si−1) is symmetric, for (X∗
i )i an independent

copy of (Xi)i, independent of (εi)i, we can write

E
[
f
(2)
i+1,n(Si−1)(εi, εi)

]
= E

[
f
(2)
i+1,n(Si−1)(X

∗
0 , X

∗
0 )
]
+ 2

∑
k⩾1

E
[
f
(2)
i+1,n(Si−1)(X

∗
0 , X

∗
k)
]
.

Thus,

E
[
f(n−1/2Sn)− f(n−1/2Γ1)

]
= D1 −D2 +D3 +D4 +D5 (4.1 )

17



where

D1 =
1

n

n∑
i=1

i−1∑
k=1

E
[
f
(2)
i+1,n(Si−k−1)(Xi−k, Xi)− f

(2)
i+1,n(Si−k−1)(X

∗
i−k, X

∗
i )
]

+
1

n

n∑
i=1

i−1∑
k=1

E
[
f
(2)
i+1,n(Si−k−1)(X

∗
i−k, X

∗
i )− f

(2)
i+1,n(Si−1)(X

∗
0 , X

∗
k)
]
,

D2 =
1

n

n∑
i=1

∑
k⩾i

E
[
f
(2)
i+1,n(Si−1)(X

∗
0 , X

∗
k)
]
,

D3 =
1

2n

n∑
i=1

i−1∑
k=1

E
[
f
(2)
i+1,n(Si−1)(Xi, Xi)− f

(2)
i+1,n(Si−1)(X

∗
0 , X

∗
0 )
]
,

D4 =
1

n

n∑
i=1

i−1∑
k=1

∫ 1

0
E
[{
f
(2)
i+1,n(Si−k−1 + tXi−k)− f

(2)
i+1,n(Si−k−1)

}
(Xi−k, Xi)

]
dt

D5 =
1

n

n∑
i=1

E[Ri − R̃i].

Let us deal with D1. Taking into account stationarity and independence,

E
[
f
(2)
i+1,n(Si−k−1)(Xi−k, Xi)− f

(2)
i+1,n(Si−k−1)(X

∗
i−k, X

∗
i )
]

=
i−k−1∑
l=1

E
[
{f (2)i+1,n(Si−k−l)− f

(2)
i+1,n(Si−k−l−1)}(Xi−k, Xi)

−{f (2)i+1,n(Si−k−l)− f
(2)
i+1,n(Si−k−l−1)}(X∗

i−k, X
∗
i )
]

=
i−k−1∑
l=1

E (E [Ai,k,l(X0, Xk)−Ai,k,l(X
∗
0 , X

∗
k)| F0])

where Ai,k,l = f
(2)
i+1,n

(∑i−k−l
j=1 Xj−(i−k)

)
− f

(2)
i+1,n

(∑i−k−l−1
j=1 Xj−(i−k)

)
is a continuous bilinear form

whose norm is bounded by n−δ/2 ∥X−l∥δB since f ∈ Λ2+δ(B,M). Hence,

∆ :=

∣∣∣∣∣ 1n
n∑

i=1

i−1∑
k=1

E
[
f
(2)
i+1,n(Si−k−1)(Xi−k, Xi)− f

(2)
i+1,n(Si−k−1)(X

∗
i−k, X

∗
i )
]∣∣∣∣∣ ⩽ n−δ/2

n−1∑
k=1

n−k−1∑
l=1

a(k).

On another hand

∆ =

∣∣∣∣∣
i−k−1∑
l=1

E
(
E
[
Bi,k,l(Xl, Xl+k)−Bi,k,l(X

∗
l , X

∗
l+k)

∣∣F0

])∣∣∣∣∣
18



where Bi,k,l = f
(2)
i+1,n

(∑i−k−l
j=1 Xj−(i−k−l)

)
− f

(2)
i+1,n

(∑i−k−l−1
j=1 Xj−(i−k−l)

)
is a continuous bilinear

form whose norm is bounded by n−δ/2 ∥X0∥δB since f ∈ Λ2+δ(B,M). Thus,

∆ ⩽ n−δ/2
n−1∑
k=1

n−k−1∑
l=1

b(l).

Combining both controls of ∆, we get

∆ ⩽ n−δ/2
n−1∑
k=1

n−k−1∑
l=1

min(γ2,δ(k), γ2,δ(l)) ⩽ n−δ/2
n−1∑
k=1

kγ2,δ(k).

On another hand, taking into account independence and stationarity,

∆∗ :=

∣∣∣∣∣ 1n
n∑

i=1

i−1∑
k=1

E
[
f
(2)
i+1,n(Si−k−1)(X

∗
i−k, X

∗
i )− f

(2)
i+1,n(Si−1)(X

∗
0 , X

∗
k)
]∣∣∣∣∣

⩽
1

n

n∑
i=1

i−1∑
k=1

n−δ/2

∣∣∣∣∣∣∣E

∥∥∥∥∥∥

i−1∑
j=i−k

Xj

∥∥∥∥∥∥
δ

B

E
[
Ãi,k,n(X

∗
0 , X

∗
k)
∣∣∣F∗

0

]
∣∣∣∣∣∣∣

where n−δ/2

∥∥∥∥∥∥
i−1∑

j=i−k

Xj

∥∥∥∥∥∥
δ

B

 Ãi,k,l = f
(2)
i+1,n (Si−k−l)− f

(2)
i+1,n (Si−k) .

Since f ∈ Λ2+δ(B,M),
∥∥∥Ãi,k,l

∥∥∥ ⩽ 1. Hence,

∆∗ ⩽ n−δ/2
n−1∑
k=1

E
(
∥Sk∥δB

)
E

(
sup

∥A∥⩽1
|E (A(X0, Xk)| F0)|

)
.

Since
(
∥Sn∥2B /n

)
n

is a uniformly integrable family, there exists λ > 0 such that E ∥Sk∥2B ⩽ λk for
any k. Applying Jensen’s inequality, we get

∆∗ ⩽ λδ/2 n−δ/2
n∑

k=1

kδ/2γ(k).

We derive

|D1| ⩽ n−δ/2
n−1∑
k=1

kγ2,δ(k) + λδ/2 n−δ/2
n∑

k=1

kδ/2γ(k). (4.2 )
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We turn to the control of D2. Since f ∈ Λ2+δ(B,M),∥∥∥f (2)i+1,n(Si−1)
∥∥∥ ⩽

∥∥∥f (2)i+1,n(Si−1)− f (2)(0)
∥∥∥+ ∥∥∥f (2)(0)∥∥∥ ⩽ n−δ/2 ∥Si−1 + Γi+1∥δB +M,

with

E(∥Si−1 + Γi+1∥δB) ⩽
(
[λ(i− 1)]1/2 + [(n− i)E ∥G∥2B]

1/2
)δ

⩽ [λδ/2 + (E ∥G∥2B)
δ/2].[(i− 1)1/2 + (n− i− 1)1/2]δ

⩽ 2δ(λδ/2 + (E ∥G∥2B)
δ/2)nδ/2.

By independence between (Xi)i and (X∗
i )i, we derive

|D2| ⩽
1

n

n∑
i=1

∑
k⩾i

E
(
n−δ/2 ∥Si−1 + Γi+1∥δB +M

)
E

(
sup

∥A∥⩽1
|E (A(X∗

0 , X
∗
k)| F∗

0 )|

)

⩽ (2δλδ/2 + 2δ(E ∥G∥2B)
δ/2 +M)

1

n

∑
k⩾1

min(n, k)E

(
sup

∥A∥⩽1
|E (A(X0, Xk)| F0)|

)
⩽ (2δλδ/2 + 2δ(E ∥G∥2B)

δ/2 +M)n−δ/2
∑
k⩾1

kδ/2γ(k). (4.3 )

We can write D3 as

1

2n

n∑
i=1

i−1∑
k=1

E
[
{f (2)i+1,n(Si−k)− f

(2)
i+1,n(Si−k−1)}(Xi, Xi)− {f (2)i+1,n(Si−k)− f

(2)
i+1,n(Si−k−1)}(X∗

0 , X
∗
0 )
]

=
1

2n

n∑
i=1

i−1∑
k=1

E (E [Ai,k(Xk, Xk)−Ai,k(X
∗
0 , X

∗
0 )| F0])

where Ai,k = f
(2)
i+1,n

(∑i−k
j=1Xj−(i−k)

)
−f (2)i+1,n

(∑i−k−1
j=1 Xj−(i−k)

)
is a continuous bilinear form whose

norm is bounded by n−δ/2 ∥X0∥δB.
Thus,

|D3| ⩽
n−δ/2

2

n∑
k=1

E

(
∥X0∥δB sup

∥A∥⩽1
|E [A(Xk, Xk)| F0]−A(X0, X0)|

)
⩽
n−δ/2

2

n∑
k=1

b(k). (4.4 )

We turn to the control of D4. By stationarity

D4 =
1

n

n∑
i=1

i−1∑
k=1

∫ 1

0
E (E [Ci,k,t(X0, Xk)| F0]) dt
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where Ci,k,t = f
(2)
i+1,n

(∑i−k−1
j=1 Xj−(i−k) + tX0

)
− f

(2)
i+1,n

(∑i−k−1
j=1 Xj−(i−k)

)
is a continuous bilinear

form whose norm is bounded by tδn−δ/2 ∥X0∥δB. Consequently,

|D4| ⩽ n−δ/2
n−1∑
k=1

E

(
∥X0∥δB sup

∥A∥⩽1
|E [A(X0, Xk)| F0]|

)
.

Now,

E

(
∥X0∥δB sup

∥A∥⩽1
|E [A(X0, Xk)| F0]|

)
⩽ a(k) + E(∥X0∥δB)γ(k) ⩽ a(k) + λδ/2γ(k).

Hence

|D4| ⩽ n−δ/2
n−1∑
k=1

γ2,δ(k) + λδ/2n−δ/2
n−1∑
k=1

γ(k). (4.5 )

It remains to control D5. Taking into account δ-Hölder continuity,

|D5| ⩽ n−δ/2
(
E ∥X0∥2+δ

B + E ∥G∥2+δ
B

)
. (4.6 )

Combining decomposition (4.1 ) with the upper bounds obtained in (4.2 ), (4.3 ), (4.4 ), (4.5 ) and
(4.6 ), we derive∣∣∣E [f(n−1/2Sn)− f(n−1/2Γ1)

]∣∣∣
⩽n−δ/2

n−1∑
k=1

(k + 2)γ2,δ(k) + (cδ +M)
∑
k⩾1

kδ/2γ(k) + E ∥X0∥2+δ
B + E ∥G∥2+δ

B


with cδ = (2δ + 2)λδ/2 + 2δ(E ∥G∥2B)δ/2, which proves the theorem.

4.2 Proof of Lemma 1.6

Here we control the coefficients involved in Theorem 1.1. To this end, we apply a coupling lemma
for τ -mixing coefficients.
First, according to [DM06, Lemma 1] with d(x, y) = ∥x− y∥B, for any n there exists a random
variable X∗

n distributed as Xn, independent of F0 and such that

E(∥Xn −X∗
n∥B) = τ1(n).

On the other hand according to [DM06, Lemma 1] with d((x, x′), (y, y′)) = ∥x− y∥B + ∥x′ − y′∥B,
for any k, l there exists (X∗∗

l , X
∗∗
k+l) distributed as (Xl, Xk+l), independent of F0 and such that

1

2

[
E
(
∥Xl −X∗∗

l ∥B +
∥∥Xl+k −X∗∗

l+k

∥∥
B
)]

= τ (F0, (Xl, Xl+k)) .
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In what follows, all the suprema below are taken over bilinear continuous forms whose norm is
bounded by 1.
Let us begin by the control of γ(k). For any k ⩾ 0, applying Proposition 1 in [DD03],

E (sup |E [A(X0, Xk)| F0]|) = E (sup |E [A(X0, Xk −X∗
k)| F0]|)

⩽ E(∥X0∥B ∥Xk −X∗
k∥B)

⩽
∫ τ1 (k)

0
Q∥X0∥B ◦G∥Xk−X∗

k∥B
(u) du.

Hence, taking into account properties of the function G and stationarity,

γ(k) ⩽ 2

∫ τ1 (k)/2

0
Q∥X0∥B ◦G∥X0∥B(v) dv. (4.7 )

It remains to control γ2,δ(k), to this end let us bound a(k) in one hand and b(l) on the other
hand. For any k ⩾ 0 and l ⩾ 0,

E
(
∥X−l∥δB sup |E [A(X0, Xk)| F0]− E[A(X0, Xk)]|

)
⩽ E

(
∥X−l∥δB sup {E [|A(X0, Xk −X∗

k)|| F0] + E[|A(X0, Xk −X∗
k)|}

)
⩽ 2E

(
∥X−l∥δB ∥X0∥B ∥Xk −X∗

k∥B
)

⩽ 2

∫ τ1 (k)

0
Q∥X−l∥δB∥X0∥B

◦G∥Xk−X∗
k∥B

(u) du

⩽ 4

∫ τ1 (k)/2

0
Q∥X−l∥δB∥X0∥B

◦G∥X0∥B(v) dv.

Hence, taking the supremum over l and applying [Rio17, Lemma 2.1],

a(k) ⩽ 4

∫ τ1 (k)/2

0
Q1+δ

∥X0∥B
◦G∥X0∥B(v) dv. (4.8 )

Now, for any k, j ⩾ 0,

E
(
∥X0∥δB sup |E [A(Xk, Xk+j)| F0]− E [A(Xk, Xk+j ]|

)
= E

(
∥X0∥δB sup

∣∣E [A(Xk −X∗∗
k , Xk+j) +A(X∗∗

k , Xk+j −X∗∗
k+j)

∣∣F0

]∣∣)
⩽ E

(
∥X0∥δB ∥Xk −X∗∗

k ∥B ∥Xk+j∥B
)
+ E

(
∥X0∥δB ∥X

∗∗
k ∥B

∥∥Xk+j −X∗∗
k+j

∥∥
B

)
⩽
∫ E∥Xk−X∗∗

k ∥B

0
Q∥X0∥δB∥Xk+j∥B

◦G∥Xk−X∗∗
k ∥B

(u) du

+

∫ E∥Xk+j−X∗∗
k+j∥B

0
Q∥X0∥δB∥X∗∗

k ∥B
◦G∥Xk+j−X∗∗

k+j∥B
(u) du.
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As min(E ∥Xk −X∗∗
k ∥B ,E

∥∥∥Xk+j −X∗∗
k+j

∥∥∥
B
) ⩽ (E ∥Xk −X∗∗

k ∥B + E
∥∥∥Xk+j −X∗∗

k+j

∥∥∥
B
)/2, we infer

that

E
(
∥X0∥δB sup |E [A(Xk, Xk+j)| F0]− E [A(Xk, Xk+j ]|

)
⩽ 4

∫ τ(F0,(Xk,Xk+j))/2

0
Q1+δ

∥X0∥B
(u) ◦G∥X0∥B(v) dv.

Hence,

b(k) ⩽ 4

∫ τ2 (k)/2

0
Q1+δ

∥X0∥B
(u) ◦G∥X0∥B(v) dv. (4.9 )

Combining (4.7 ), (4.8 ) and (4.9 ) with the fact that τ1(k) ⩽ τ2(k), the result follows.

4.3 Proof of Proposition 1.8

As a first step, let us prove that under (1.4 ), (E (Sn| F0))n⩾1 converges in L2
B. To this end, let us

prove that this sequence is a Cauchy sequence that is

lim
m→∞

sup
n>m

∥∥∥∥∥
n∑

i=m+1

E (Xi| F0)

∥∥∥∥∥
2,B

= 0. (4.10 )

Let (X∗
i )i⩾1 be the sequence constructed via the coupling lemma [DM06, Lemma 1] with d(x, y) =

∥x− y∥B, i.e. X∗
i distributed as Xi, independent of F0 and such that E(∥Xi −X∗

i ∥B) = τ1(i). Write∥∥∥∥∥
n∑

i=m+1

E (Xi| F0)

∥∥∥∥∥
2

2,B

=

∥∥∥∥∥
n∑

i=m+1

E (Xi −X∗
i | F0)

∥∥∥∥∥
2

2,B

⩽
n∑

i=m+1

E

∥Xi −X∗
i ∥B

∥∥∥∥∥∥
n∑

j=m+1

E
(
Xj −X∗

j

∣∣F0

)∥∥∥∥∥∥
B

 .

Let us denote Yn,m :=
∑n

i=m+1 E (Xi −X∗
i | F0). Proceeding as in the proof of Proposition 1 in

[DD03] and using stationarity,

∥Yn,m∥22,B ⩽
n∑

i=m+1

∫ τ1(i)

0
QYn,m ◦G∥Xi−X∗

i ∥B
(u) du

⩽ 2
n∑

i=m+1

∫ G∥X0∥B (τ1(i)/2)

0
QYn,m(u)Q∥X0∥B(u) du

⩽ 2

(∫ 1

0
Q2

Yn,m
(u)du

)1/2
∫ 1

0
Q2

∥X0∥B
(u)

[
n∑

i=m+1

1u⩽G∥X0∥B (τ1(i)/2)

]2
du

1/2

.
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Hence,

∥Yn,m∥2,B ⩽ 2

∫ 1

0
Q2

∥X0∥B
(u)

[
n∑

i=m+1

1u⩽G∥X0∥B (τ1(i)/2)

]2
du

1/2

.

Since [
n∑

i=m+1

1u⩽G∥X0∥B (τ1(i)/2)

]2
⩽

∞∑
i=m+1

(i+ 1)21G∥X0∥B (τ1(i+1)/2)⩽u⩽G∥X0∥B (τ1(i)/2)

⩽ 2
∞∑

i=m+1

1G∥X0∥B (τ1(i+1)/2)⩽u⩽G∥X0∥B (τ1(i)/2)

i∑
k=0

(k + 1)

⩽ 2

∞∑
k=0

(k + 1)1u⩽G∥X0∥B (τ1(m+1)/2)1u⩽G∥X0∥B (τ1(k)/2)
,

we derive∥∥∥∥∥
n∑

i=m+1

E (Xi| F0)

∥∥∥∥∥
2,B

⩽ 23/2

( ∞∑
i=0

(i+ 1)

∫ min(G∥X0∥B (τ1(i)/2),G∥X0∥B (τ1(m+1)/2))

0
Q2

∥X0∥B
(u)du

)1/2

⩽ 23/2

( ∞∑
i=0

(i+ 1)

∫ min(τ1(i),τ1(m+1))/2

0
Q∥X0∥B ◦G∥X0∥B(u)du

)1/2

.

Consequently, since (1.4 ) is verified, (4.10 ) holds.
Recall that if (E (Sn| F0))n⩾1 converges in L2

B then there exist a stationary sequence (zn)n⩾0 ∈ L2
B

and a stationary martingale differences sequence (dn)n⩾1 ∈ L2
B such that

Xn = dn + zn−1 − zn

(see for instance [Vol93]). Let us denote Mn the martingale associated to (dn)n: Mn = d1+ · · ·+dn.
Then, according to [Cun17, Proposition 3.2], condition (b) is verified. It remains to prove that(
n−1 ∥Sn∥2B

)
n

is uniformly integrable. First, note by stationarity of (zn)n that

E

(
∥Sn −Mn∥2B

n

)
=

E(∥z0 − zn∥2B)
n

⩽ 4
E(∥z0∥2B)

n
−−−→
n→∞

0.

Thus,
(
∥Sn−Mn∥2B

n

)
n⩾1

is uniformly integrable as a bounded family and it is sufficient to prove that(
n−1 ∥Mn∥2B

)
n⩾1

is uniformly integrable. Let B > 0 and Mn =M ′
n +M ′′

n where

M ′
n =

n∑
k=1

d′k, d′k = dk1∥dk∥B⩽B − E
(
dk1∥dk∥B⩽B

∣∣∣Fk−1

)
,

M ′′
n =

n∑
k=1

d′′k, d′′k = dk1∥dk∥B>B − E
(
dk1∥dk∥B>B

∣∣∣Fk−1

)
.
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In the one hand, from (1.3 ),

1

n
E
(∥∥M ′′

n

∥∥2
B 1∥M ′′

n∥B>A
√
n

)
⩽ 2

L2

n

n∑
k=1

E(
∥∥d′′k∥∥2B) ⩽ 4L2E(∥d0∥2B 1∥d0∥B>B),

which converges to 0 as B tends to infinity since d0 ∈ L2
B.

On another hand, for any a > 0,

1

n
E
(∥∥M ′

n

∥∥2
B 1∥M ′

n∥B>A
√
n

)
⩽ A−an−(2+a)/2E(

∥∥M ′
n

∥∥2+a

B ). (4.11 )

Applying [Pin94, Theorem 2.6] with g : x 7→ x2+a and the martingale defined by M̃ ′
i = M ′

i if i ⩽ n

and M̃ ′
i =M ′

n if i > n,

E(
∥∥M ′

n

∥∥2+a

B ) ⩽ cE

(
n∑

k=1

∥∥d′k∥∥2B
) 2+a

2

⩽ c(2B)2+an
2+a
2 . (4.12 )

Combining (4.11 ) and (4.12 ), we infer that

1

n
E
(∥∥M ′

n

∥∥2
B 1∥M ′

n∥B>A
√
n

)
⩽ c(2B)2+aA−a −−−−→

A→∞
0.

Finally,

lim
A→∞

lim sup
n→∞

1

n
E
(
∥Mn∥2B 1∥Mn∥B>A

√
n

)
= 0,

that is
(
n−1 ∥Mn∥2B

)
n⩾1

is uniformly integrable, so that condition (c) holds.
So, overall, applying Theorem 1.1 and considering Lemma 1.6, Proposition 1.8 follows.

4.4 Proof of Proposition 3.1

In this subsection, we prove Proposition 3.1 for p ∈]1, 2]. The general case can be handled in the
same way.
It appears immediately that any continuous linear form f on Lp(µ) is an element of Λ1+α(L

p(µ), 0)
for any α ∈]0, p− 1]. Moreover, proving (ii) is equivalent to proving that E[φ(∥Xn∥pLp(µ))] converges
towards E[φ(∥X∥pLp(µ)]) as n → +∞ for any φ ∈ C∞

c (R). Hence, it remains to prove that for any
φ ∈ C∞

c (R), there exists a constant K > 0 such that K.φ ◦ ψp
p ∈ Λq(L

p(µ), 0) with ψp
p(·) = ∥·∥pLp(µ).

According to the proof of Proposition 5 in [BF66], ψp
p is Fréchet-differentiable with ψp

p
(1)

(0) = 0 and
for any x, h, u ∈ Lp(µ), ∣∣∣ψp

p
(1)(x+ h)(u)− ψp

p
(1)(x)(u)

∣∣∣ ⩽ p ∥h∥p−1
p ∥u∥p .
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On the other hand, as φ ∈ C∞
c (R), there exists B > 0 such that for any i ∈ N, φ(i)(ψp

p(x)) = 0 as soon
as ∥x∥p > B. Denote m = sup

{∣∣∣ψp
p
(1)

(x)(u)
∣∣∣ : ∥x∥p ⩽ B, ∥u∥p ⩽ 1

}
and consider fm : x ∈ R 7→

max(min(x,m),−m), which is 1-Lipschitz and bounded by m on R. Then, for any x, h, u ∈ Lp(µ),

(φ ◦ ψp
p)

(1)(x+ h)(u)− (φ ◦ ψp
p)

(1)(x)(u)

= φ′(ψp
p(x+ h)).fm(ψp

p
(1)(x+ h)(u))− φ′(ψp

p(x)).fm(ψp
p
(1)(x)(u))

= φ′(ψp
p(x+ h)).[fm(ψp

p
(1)(x+ h)(u))− fm(ψp

p
(1)(x)(u))]

+ [φ′(ψp
p(x+ h))− φ′(ψp

p(x))].fm(ψp
p
(1)(x)(u)).

On the one hand, for any α ∈]0, p− 1] there exists cα such that for any ∥u∥p ⩽ 1,∣∣∣φ′(ψp
p(x+ h)).[fm(ψp

p
(1)(x+ h)(u))− fm(ψp

p
(1)(x)(u))

∣∣∣ ⩽ ∥∥φ′∥∥
∞min(2m, p ∥h∥p−1

p ∥u∥p)

⩽ cα
∥∥φ′∥∥

∞ ∥h∥αp .

On the other hand, note that∣∣∣(φ′ ◦ ψp
p)

(1)(x)(u)
∣∣∣ = ∣∣∣φ′′(ψp

p(x)).ψ
p
p
(1)(x)(u)

∣∣∣ ⩽ ∥∥φ′′∥∥
∞ p ∥u∥pB

p−1,

so that φ′ ◦ ψp
p is Lipschitz. Hence, for any α ∈]0, 1] there exists c̃α > 0 such that for any ∥u∥p ⩽ 1,∣∣∣[φ′(ψp
p(x+ h))− φ′(ψp

p(x))].fm(ψp
p
(1)(x)(u))

∣∣∣ ⩽ min
(
pBp−1

∥∥φ′′∥∥
∞ ∥h∥p , 2

∥∥φ′∥∥
∞

)
m

⩽ c̃αm ∥h∥αp .

Finally, for any α ∈]0, p− 1], there exists c > 0 such that for any x, h ∈ Lp(µ)∥∥∥(φ ◦ ψp
p)

(1)(x+ h)− (φ ◦ ψp
p)

(1)(x)
∥∥∥ ⩽ c ∥h∥αp .

Then, 1
cφ ◦ ψp

p ∈ Λ1+α(L
p(µ), 0).

4.5 Proof of Lemma 3.9

Let f ∈ Λ1(R2, |·|1/p), setting hl(x) = K l(f(x, ·))(x), we have

E [f(Zk, Zk+l)|Z0]− E [f(Zk, Zk+l)] = Kk(hl)(Z0)− ν(Kk(hl)).

Let φ be a bounded measurable function. One has

ν(φKkhl) =

∫
φ ◦ T k(x)K l(f(x, ·))(x) ν(dx)

=

∫
φ ◦ T k+l(z)f(T l(z), z) ν(dz)

=

∫
φ ◦ π ◦ F k+l(x)f(π ◦ F l(x), π(x)) ν̄(dx)

=

∫
φ ◦ π(z)P kh̃l(z) ν̄(dz)

=

∫
φ(z)Eν̄(P

kh̃l|π = z) ν̄(dz)
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where h̃l(x) = P l(f(π(x), π(·)))(x). Therefore, Kkhl ◦ π = ν̄(P kh̃l|π) so that

sup
f∈Λ1(R2,|·|1/p)

∣∣∣Kk(hl)(x)− ν(Kkhl)
∣∣∣ ⩽ Eν̄

(
sup

f∈Λ1(R2,|·|1/p)

∣∣∣P k(h̃l)(Y0)− ν̄(P k(h̃l))
∣∣∣∣∣∣∣∣π = x

)
.

It follows that

2τ|·|1/p(F0, (Zk, Zk+l)) ⩽ Eν̄

(
sup

f∈Λ1(R2,|·|1/p)

∣∣∣P k(h̃l)(Y0)− ν̄(P k(h̃l))
∣∣∣) (4.13 )

where (Yn)n∈Z is a Markov chain with stationary law ν̄ and Kernel operator P . Now, for any
x, y ∈ X, ∣∣∣h̃l(x)− h̃l(y)

∣∣∣ ⩽ ∣∣∣P lf(π(x), π(·))(x)− P lf(π(y), π(·))(x)
∣∣∣

+
∣∣∣P lf(π(y), π(·))(x)− P lf(π(y), π(·))(y)

∣∣∣ . (4.14 )

For any f ∈ Λ1(R2, |·|1/p), since π is Lipschitz with respect to d,∣∣∣P lf(π(x), π(·))(x)− P lf(π(y), π(·))(x)
∣∣∣ ⩽ κ1/pd1/p(x, y). (4.15 )

On the other hand,∣∣∣P lf(π(y), π(·))(x)− P lf(π(y), π(·))(y)
∣∣∣ = ∣∣∣P lψy(x)− P lψy(y)

∣∣∣
with ψy(·) = f(π(y), π(·)). But if f ∈ Λ1(R2, |·|1/p), ψy is Lipschitz with respect to the distance
d1/p. Hence, applying Lemma 2.2 in [DP09] it follows that there exists c > 0 such that for any
f ∈ Λ1(R2, |·|1/p), ∣∣∣P lf(π(y), π(·))(x)− P lf(π(y), π(·))(y)

∣∣∣ ⩽ (cκ)1/pd1/p(x, y). (4.16 )

Finally combining (4.14 ), (4.15 ) and (4.16 ), h̃l is Lipschitz with respect to the distance d1/p with
Lipschitz constant κ1/p + (cκ)1/p. Thus, from Lemma 2.2 in [DP09] applied to h̃l, there exists c > 0
such that

ν̄
(
sup

{∣∣∣P kh̃l(Z0)− ν̄(P kh̃l)
∣∣∣ : f ∈ Λ1(R2, |·|1/p

})
(4.17 )

⩽ cν̄
(
sup

{∣∣∣P kφ(Z0)− ν̄(φ)
∣∣∣ : φ ∈ Λ1(X, d

1/p)
})

.

Consequently, combining (4.13 ) and (4.17 ) with estimate (4.3) in [DM15], there exists c > 0
independent of k and l such that

τ|·|1/p(F0, (Zk, Zk+l)) ⩽ ck−(1−γ)/γ .
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A Fréchet-derivative of order 3 of ∥·∥qLp(µ)

In this section, we prove Lemma 3.2. For the sake of clarity, in what follows let us use the notation
∥·∥p to refer to ∥·∥Lp(µ).
Define the function ℓ from Lp(µ) to R by

ℓ(x) = ∥x∥qp .

By combining a second order Taylor’s integral formula and Hölder’s inequality, we first note that
for any x, u ∈ Lp(µ)\{0},

∥x+ u∥pp − ∥x∥pp = p

∫
u.sgn(x). |x|p−1 dµ+O(∥u∥2p).

Consequently, applying a first order Taylor’s formula,

ℓ(x+ u)− ℓ(x) = (∥x+ u∥pp)
q/p − (∥x∥pp)

q/p = qℓ(x)1−p/q

∫
u.x |x|p−2 dµ+ o(∥u∥p). (A.1 )

Moreover, ℓ(u)− ℓ(0) = o(∥u∥p) if q > 1. Therefore, as soon as p ⩾ 1, ℓ is Fréchet-differentiable on
Lp(µ) with

ℓ(1)(0)(u) = 0 and ℓ(1)(x)(u) = qℓ(x)1−p/q

∫
u.x |x|p−2 dµ if x ̸= 0. (A.2 )

Let us prove that ℓ is two times Fréchet-differentiable. Write, for any x, u, v ∈ Lp(µ) with
x ̸= 0, v ̸= 0,

ℓ(1)(x+ v)(u)− ℓ(1)(x)(u)

=qℓ(x+ v)1−p/q

∫
u.(x+ v) |x+ v|p−2 dµ− qℓ(x)1−p/q

∫
u.x |x|p−2 dµ

=q
[
ℓ(x+ v)1−p/q − ℓ(x)1−p/q

] ∫
u.
[
(x+ v) |x+ v|p−2 − x |x|p−2

]
dµ

+ qℓ(x)1−p/q

∫
u.
[
(x+ v) |x+ v|p−2 − x |x|p−2

]
dµ

+ q
[
ℓ(x+ v)1−p/q − ℓ(x)1−p/q

] ∫
u.x. |x|p−2 dµ. (A.3 )

On the one hand, combining a second order Taylor’s integral formula with (A.1 ),

ℓ(x+ v)1−p/q − ℓ(x)1−p/q =

(
1− p

q

)
ℓ(x)−p/q [ℓ(x+ v)− ℓ(x)]

+

(
1− p

q

)(
−p
q

)
[ℓ(x+ v)− ℓ(x)]2

∫
[ℓ(x) + t(ℓ(x+ v)− ℓ(x))]−p/q−1 dt

=(q − p)ℓ(x)1−2p/q

∫
vx |x|p−2 dµ+ o(∥v∥p). (A.4 )
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On the other hand, on R,

(x+ v) |x+ v|p−2 − x |x|p−2 = (p− 1)v |x|p−2 + o(|v|). (A.5 )

Hence, combining (A.3 ), (A.4 ) and (A.5 ),

ℓ(1)(x+ v)(u)− ℓ(1)(x)(u) =q(p− 1)ℓ(x)1−p/q

∫
uv |x|p−2 dµ

+q(q − p)ℓ(x)1−2p/q

∫
vx |x|p−2 dµ

∫
ux |x|p−2 dµ+ o(∥v∥p).

Moreover, ℓ(1)(v)(u) − ℓ(1)(0)(u) = o(∥v∥p) if q > 2. We deduce that provided that p ⩾ 2, ℓ is two
times Fréchet-differentiable on Lp(µ) with ℓ(2)(0)(u, v) = 0 and for x ̸= 0,

ℓ(2)(x)(u, v) = q(p− 1)ℓ(x)1−p/q

∫
uv |x|p−2 dµ+ q(q − p)ℓ(x)1−2p/q

∫
vx |x|p−2 dµ

∫
ux |x|p−2 dµ.

(A.6 )

Finally, let us prove that ℓ is three times Fréchet-differentiable on Lp(µ). For any x, u, v, w ∈
Lp(µ), with x ̸= 0, w ̸= 0,

ℓ(2)(x+ w)(u, v)− ℓ(2)(x)(u, v) (A.7 )

= q(p− 1)ℓ(x+ w)1−p/q

∫
uv |x+ w|p−2 dµ− q(p− 1)ℓ(x)1−p/q

∫
uv |x|p−2 dµ

+ q(q − p)ℓ(x+ w)1−2p/q

∫
v(x+ w) |x+ w|p−2 dµ

∫
u(x+ w) |x+ w|p−2 dµ

− q(q − p)ℓ(x)1−2p/q

∫
vx |x|p−2 dµ

∫
ux |x|p−2 dµ

= q(p− 1)ℓ(x+ w)1−p/q

∫
uv
[
|x+ w|p−2 − |x|p−2

]
dµ

+ q(p− 1)
[
ℓ(x+ w)1−p/q − ℓ(x)1−p/q

] ∫
uv |x|p−2 dµ

+ q(q − p)ℓ(x+ w)1−2p/q

∫
v
[
(x+ w) |x+ w|p−2 − x |x|p−2

]
dµ

∫
u
[
(x+ w) |x+ w|p−2 − x |x|p−2

]
dµ

+ q(q − p)ℓ(x+ w)1−2p/q

∫
v
[
(x+ w) |x+ w|p−2 − x |x|p−2

]
dµ

∫
ux |x|p−2 dµ

+ q(q − p)ℓ(x+ w)1−2p/q

∫
vx |x|p−2 dµ

∫
u
[
(x+ w) |x+ w|p−2 − x |x|p−2

]
dµ

+ q(q − p)
[
ℓ(x+ w)1−2p/q − ℓ(x)1−2p/q

] ∫
vx |x|p−2 dµ

∫
ux |x|p−2 dµ.

Note that

ℓ(x+ w)1−2p/q − ℓ(x)1−2p/q = (q − 2p)ℓ(x)1−3p/q

∫
wx |x|p−2 dµ+ o(∥w∥p) (A.8 )
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and on R,

|x+ w|p−2 − |x|p−2 = (p− 2)wx |x|p−4 + o(|w|). (A.9 )

Applying (A.4 ), (A.5 ), (A.8 ) and (A.9 ) in (A.7 ) infers that

ℓ(2)(x+ w)(u, v)− ℓ(2)(x)(u, v) (A.10 )

= q(p− 1)(p− 2)ℓ(x)1−p/q

∫
uvwx |x|p−4 dµ

+ q(p− 1)(q − p)ℓ(x)1−2p/q

∫
wx |x|p−2 dµ

∫
uv |x|p−2 dµ

+ q(p− 1)(q − p)ℓ(x)1−2p/q

∫
vx |x|p−2 dµ

∫
uw |x|p−2 dµ

+ q(p− 1)(q − p)ℓ(x)1−2p/q

∫
ux |x|p−2 dµ

∫
vw |x|p−2 dµ

+ q(q − p)(q − 2p)ℓ(x)1−3p/q

∫
wx |x|p−2 dµ

∫
vx |x|p−2 dµ

∫
ux |x|p−2 dµ

+ o(∥w∥p).

Therefore, as soon as p ⩾ 3, ℓ is three times Fréchet-differentiable on Lp(µ) \ {0} and for x ̸= 0

ℓ(3)(x)(u, v, w) = q(p− 1)(p− 2) ∥x∥q−p
p

∫
uvwx |x|p−4 dµ

+ q(p− 1)(q − p) ∥x∥q−2p
p

(∫
wx |x|p−2 dµ

∫
uv |x|p−2 dµ +

∫
vx |x|p−2 dµ

∫
uw |x|p−2 dµ

+

∫
ux |x|p−2 dµ

∫
vw |x|p−2 dµ

)
+ q(q − p)(q − 2p) ∥x∥q−3p

p

∫
wx |x|p−2 dµ

∫
vx |x|p−2 dµ

∫
ux |x|p−2 dµ. (A.11 )
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