Fast deconvolution using a combination of Richardson-Lucy iterations and diffusion regularization - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Fast deconvolution using a combination of Richardson-Lucy iterations and diffusion regularization

Résumé

This paper presents a novel hybrid approach to address the non-blind deconvolution inverse problem, from the viewpoint of a future application to medical imaging. Motivated by the efficiency of diffusion models applied to inverse problems, we propose to integrate Diffusion Posterior Sampling (DPS) with variational methods through Richardson-Lucy iterations. The benefit of our method is to reduce by a factor of 10 the number of sampling steps currently required by DPS. Several numerical experiments demonstrate that our framework achieves comparable performance to existing deconvolution strategies, while seemingly reducing the computing time and the hallucination effect, both particularly important for medical applications.

Fichier principal
Vignette du fichier
Eusipco_2024_paper_final_light.pdf (461.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04693188 , version 1 (11-09-2024)

Licence

Identifiants

  • HAL Id : hal-04693188 , version 1

Citer

Thibaut Modrzyk, Ane Etxebeste, Elie Bretin, Voichita Maxim. Fast deconvolution using a combination of Richardson-Lucy iterations and diffusion regularization. 32nd European Signal Processing Conference (EUSIPCO), EURASIP, Aug 2024, Lyon, France. ⟨hal-04693188⟩
43 Consultations
27 Téléchargements

Partager

More