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Abstract—This paper presents a novel hybrid approach to
address the non-blind deconvolution inverse problem, from the
viewpoint of a future application to medical imaging. Motivated
by the efficiency of diffusion models applied to inverse problems,
we propose to integrate Diffusion Posterior Sampling (DPS) with
variational methods through Richardson-Lucy iterations. The
benefit of our method is to reduce by a factor of 10 the number of
sampling steps currently required by DPS. Several numerical ex-
periments demonstrate that our framework achieves comparable
performance to existing deconvolution strategies, while seemingly
reducing the computing time and the hallucination effect, both
particularly important for medical applications.

Index Terms—Inverse Problems, Non-blind Deconvolution, Dif-
fusion models, Richardson-Lucy

I. INTRODUCTION

In many situations it is necessary to recover an image x from
its blurry and noisy version y. A relatively easy situation is
when the blur is produced by convolution with a known filter
k, and the problem is modeled as

y = k ∗ x+ n (1)

with ∗ the convolution operation and n some noise, often
considered as independent and identically distributed (i.i.d.)
following a zero-mean Gaussian distribution, although non-
additive Poisson noise is also frequent. Recovering x from y
is a particular case of inverse problem, called deconvolution.
The kernel k may be a smooth function, as the point spread
function (PSF) of some imaging device, often modelled as a
Gaussian function, or some sparse motion filter. For smooth fil-
ters, it is easy to see by considering the Fourier transform that
the high frequencies of the signal x are strongly attenuated. A
Gaussian noise however will equally affect all frequencies. To
prevent noise from high frequencies to be enhanced through
deconvolution and to hide the signal, prior information has to
be included in the process. The deconvolution problem may
be written in a variational form as finding x̂ solution of the
minimization problem

min
x

d(k ∗ x, y) + λR(x) (2)

where d(k ∗x, y) is the data fidelity term, often considered to
be the square of the ℓ2 norm or the Kullback-Leibler distance,
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R(x) is a penalty expressing prior on data, and λ is a constant
balancing the two terms.

Both Wiener filtering [1] and the Richardson-Lucy (RL)
algorithm [2], aim to recover the low frequencies of the
signal and as much high frequencies as possible, while still
controlling the signal to noise ratio (SNR). For the latter, this
is possible either by early stopping or by adding some regular-
ization term. Total variation (TV) regularization coupled with
RL iterations allows to enhance edges and thus contributes
to recovery of high frequencies [3]. However, small details
are still removed and texture is modified. Other works use
dictionaries and redundancies in images [4].
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Fig. 1. Diagram illustrating our proposed Richardson-Lucy diffusion algo-
rithm. Firstly, we obtain an estimate of the deconvolved image using several
RL iterations. Next, we add noise to the image according to the forward
diffusion process and then apply the diffusion model as a score-matching
regularizer. This process can be repeated to further deconvolve the image.

Recently the success of deep learning in various image
processing tasks has inspired efforts to develop new methods
for solving inverse problems. Deep learning methods allow
to learn either the entire deconvolution process in an end-
to-end network [5] [6], or to combine the convolution model
from Equation (1) with some learned processing/regularization
[7] [8]. The former consist in learning a filter that could be
successfully applied to any image of interest. This means that
in principle a training should be done for each convolution
filter k that may occur. The latter consists to exploit the learned
prior distribution p(x) as a regularizer for the inverse problem.
In both cases a large data base is required for training, in order
to accurately sample p(x). The learning process is however



independent on the convolution kernel and potentially more
robust to distribution shifts, i.e., out-of-distribution samples.

In this work we focus on priors expressed as trained diffu-
sion models [9]. Diffusion models can sample from the prior
images with impressive detail. Data fidelity optimization aims
to keep the solution in agreement with the data and prevent
network hallucinations. This idea was previously explored for
instance in [10], where sampling from the posterior p(x|y) is
done by taking a gradient descent step on the data fidelity
at each diffusion time step. However, this algorithm can
be slow, as diffusion models typically require training with
1000 time steps. Additionally, the low effectiveness of the
gradient descent in deconvolution problems makes that the
diffusion prior takes over the data-fidelity constraint, resulting
in hallucinated details. These are not rare, as diffusion models
produce samples from a distribution and these samples may
be outliers.

We propose a formulation based on the Richardson-Lucy
algorithm, known to be faster for operating deconvolution, and
diffusion models, leading to an algorithm in the flavour of
plug-and-play methods.

II. RELATED WORKS

A. Classical approaches

Traditionally, computing the ground-truth image x from the
measurement y is done by minimizing an objective function
comprising a data-fidelity term and regularization term as
expressed in equation (2). Standard resolution methods in-
clude Wiener filtering and iterative methods such as the RL
algorithm which can be written, for a symmetric kernel, as:

x(i+1) = x(i) · k ∗ y

k ∗ x(i)
, (3)

with x(0) set to strictly positive values. Here · is the matrix
Hadamard product which represents an element-wise multipli-
cation. The division is also performed element-wise.

The RL algorithm is slower compared to Wiener filtering
due to its iterative nature but usually performs better. It is still
sensitive to noise and can produce visible artefacts. A solution
to this issue is early stopping of iterations, at the cost of an
insufficient recovery of high frequencies. An other solution is
to incorporate regularization into the reconstruction process.
Although there are numerous regularization techniques em-
ployed in image processing inverse problems, they frequently
result in the smoothed edges. TV regularization, which was
initially introduced by Rudin et al. [11] for optical images, has
the advantage of preserving sharp edges and has been widely
used for various inverse problems, including deconvolution [3].

B. Diffusion models

Diffusion models are a class of generative models which aim
to approximate the reverse of the noising process known as
the diffusion process. Diffusion models are also called score-
matching models and were introduced in [9] and [12]. The
diffusion process, or forward process, is a noising process
that increasingly adds noise to the input data x following

the variance schedule βt. It can formally be described as a
stochastic differential equation:

dx = −1

2
βtxdt+

√
βtdw (4)

where t ∈ {0, . . . , T} with T often chosen to be 1000, and
dw is the standard Wiener process. This process is designed
such that the distribution xT converges to a normal Gaussian
distribution, i.e. xT ∼ N (0, 1). The reverse process is usually
defined as:

dx =

[
−1

2
βtx− βt∇xt

log p(xt)

]
dt+

√
βtdw̄ (5)

where ∇xt
log p(xt) is the score function, and dw̄ is the re-

verse standard Wiener process. The score function is estimated
by denoising score matching:

argmin
θ

Et,xt,x0 [||sθ(xt, t)−∇xt logp(xt|x0)||22] (6)

The trained model sθ∗ is then used as a surrogate for the score
function.

C. Diffusion models for inverse problems

While diffusion models gained popularity with their success
in generative tasks, they have also been adapted to solve
inverse problems by sampling from the posterior p(x|y). Using
Bayes’ formula, the corresponding score of the posterior can
be written as:

∇xt
log p(xt|y) = ∇xt

log p(xt) +∇xt
log p(y|xt), (7)

where the prior term can easily be obtained using the trained
model sθ∗ , while the likelihood term is intractable in general.
To be able to sample from the posterior, a previous work by
Chung et al. [10] uses the approximation p(y|xt) ≈ p(y|x̂0)
where x̂0 is the denoised estimate of the image at step t. This
estimate can be computed using Tweedie’s formula as follows:

x̂0 =
1√
ᾱt

(xt + (1− ᾱt)sθ∗(xt, t)) (8)

More precisely they also choose this expression for the gradi-
ent of the log-likelihood:

∇xt
log p(y|xt) = −∇xt

||y − k ∗ x̂0||22 (9)

Finally, the reverse process reads as:

dx = −1

2
βtxdt− βt∇xt log p(xt|y) +

√
βtdw̄. (10)

Referred as Diffusion Posterior Sampling (DPS), the algorithm
by Chung et al. is detailed in Algorithm 1 under the ”DPS
refinement” section.

Song et al. [13] also developed a method inspired both by
diffusion models and variational approaches. They propose
a loss where the diffusion model is a regularizer as in the
RED framework, with a weighting mechanism that balance
the effects of regularization and data-fidelity.
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Fig. 2. Examples of deconvolutions using several deconvolution methods, including diffusion based methods (DPS). Note the improved consistency of our
method compared to DPS, for instance on the shirt in the first row or on the hat on the second row.

D. Limitations of diffusion approaches

While these methods give impressive results on several in-
verse problems, such as impainting, super-resolution or Gaus-
sian deconvolution, the sampling time could be a limitation for
many applications. In fact, sampling through 1000 steps using
DPS takes about 90 seconds to reconstruct a single image on
our system (see section IV-A for details).

Although posterior sampling can produce high-resolution
reconstructions on datasets such as FFHQ or ImageNet, it
often generates details that are not present in the original
image. Those details are coherent with the produced image,
making them difficult to detect and are commonly referred to
as ’hallucinations’. In the field of medical imaging, halluci-
nations are considered as a major drawback of deep learning
methods. Iterative algorithms are considered safer because they
utilize the physics of the inverse problem, and any artifacts
they produce are easier to identify.

III. PROPOSED METHOD

The main inspiration for our method is plug-and-play, where
the iterative algorithm and the deep learning regularizer are
decoupled. We combine the RL algorithm, which is well-
adapted for data-fidelity minimization, with a diffusion model
that provides a strong information on the prior distribution.

A natural mathematical framework is that of the Expectation
Maximization (EM) algorithm [14], which allows to numer-
ically compute a solution x′

0 of the maximum a posteriori
(MAP) problem:

argmax
x

log p(x|y) = argmax
x

(log p(y|x) + log p(x)), (11)

where p(x) is the prior distribution learned by the diffusion
model and p(y|x) is the likelihood of the observations y. Note
that, contrary to the likelihood p(y|xt) from equation (7), this
likelihood is tractable and related to the forward model.

This solution x′
0 is computed iteratively. Each iteration is

splitted in two steps: an expectation (E) step which is in

practice a step from the RL algorithm, and a maximization
(M) step. The objective of the second one is to find x̂0 that is
more likely than x′

0 in the sense of the prior p(x). This can
be obtained by solving:

argmax
x

(log p(x′
0|x) + log p(x)) = argmax

x
p(x|x′

0). (12)

Instead of computing the maximum in Equation (12), we
perform one sampling step of the diffusion model. We also
run several RL iterations before each diffusion sampling. This
strategy leads us to the first half of Algorithm 1.

Algorithm 1 Our algorithm

Require: k, y,N,M,L, {ζi}Nt=1 , {σ̃i}Ni=1

1: x̂0 = y
2: for t = M +N − 1 to M do ▷ Our contribution
3: for j = 1 to L do
4: x′

0 = x̂0 · k ∗ y
k∗x̂0

5: end for
6: z ∼ N (0, I)
7: xt ←

√
ᾱtx

′
0 +
√
1− ᾱtz

8: x̂0 ← 1√
ᾱt

(xi + (1− ᾱi)sθ∗(xt, t))
9: end for

10: for t = M − 1 to 0 do ▷ DPS Refinement
11: x̂0 ← 1√

ᾱt
(xt + (1− ᾱt)sθ∗(xt, t))

12: z ∼ N (0, I)

13: x′
t−1 ←

√
αt(1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1βt

1−ᾱt
x̂0 + σ̃tz

14: xt−1 ← x′
t−1 − ζt∇xt ∥y − k ∗ x̂0∥22

15: end for
16: return x0

We start the algorithm from the observation y rather than
Gaussian noise. This idea comes from the simple observation
that most of the sampling process is spent forming basic
shapes and semantic objects, while only the last steps are
responsible for the formation of high frequency details, as
it was already observed in [15]. We thus begin the diffusion
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Fig. 3. Ablation study: comparison of reconstructions using different deconvolution algorithms before and after the refinement step using DPS. On the bottom
right is the reconstruction using DPS for 1000 steps for reference.

sampling at timestep t = 100 instead of T = 1000, enabling us
to bypass most of the sampling process. The noise schedule of
the diffusion model is adjusted to maintain a balance between
preserving the information in intermediate reconstructions and
masking the RL artefacts with noise, allowing the prior of
the diffusion model to eliminate them. We use the parameter
βT = 0.002 instead of the usual value βT = 0.02.

Although our method enforces strengthened data-
consistency compared with DPS, we have observed that
it struggles to reconstruct high-frequency details. For this
reason we refine our solution with a small number of DPS
steps in order to recover high frequencies. It may seem that
applying the refining step to the observation y or another
reconstruction would yield similar results. We have verified
that this is not the case by conducting an ablation study.

IV. EXPERIMENTS

A. Experimental setup

Dataset We tested our algorithm’s capabilities on the FFHQ
256 × 256 dataset [16] using the corresponding pre-trained
diffusion model from [10]. The model was trained by Chung et
al. on 49k images of FFHQ, leaving 1k images for validation.

Blurry images were produced by convolution with a kernel
of size 61× 61 pixels and a standard deviation of 3.0 pixels.
Gaussian noise with a σ = 0.05 was then added to the blurry
images. The convolution was applied using a padding of 30
pixels replicating the values on the border of the image.

Metrics We report the average peak signal-to-noise ratio
(PSNR) and structural similarity index measure (SSIM) to
measure the fidelity of the reconstruction to the original image.
We also measure the perceptual quality of the output images
using the Learned Perceptual Image Patch Similarity (LPIPS)
and the Fréchet Inception Distance (FID). This ensures the
quality of our reconstruction by accounting for aspects of the
reconstruction that may be overlooked by pixel-wise metrics.
For instance blurry reconstruction are known to have an ad-
vantage in terms of PSNR and SSIM while being perceptually

worse. All experiments were run on an RTX 6000 Ada GPU
with 48GB RAM.

B. Methods for comparison

We compared our method with three other approaches:
Diffusion Posterior Sampling [10] For DPS we adopted

the same configuration as Chung et al. with β1 = 0.0001 and
βT = 0.02 with T = 1000.

Richardson-Lucy with TV regularization [17] For RL-TV
we tried to optimize the number of steps and the regularization
parameter λTV on a few images that were not part of the
validation set, based on the PSNR of the reconstruction. We
found that 25 steps with a regularization parameter λTV =
0.005 provided the best results.

Plug-and-play alternating direction method of multipli-
ers [18] We used the implementation provided in the scico
library for Python (Balke et al., 2022). We employed the pre-
trained DnCNN [19] model to replace the proximal operator.
We used the default parameters provided in the library, which
are ρ = 0.2 with ρ the ADMM penalty parameter, and the
maximum number of iterations was set to 12.

To implement our algorithm, we applied N = 20 steps of
the first reconstruction stage with L = 20 RL steps at each
iteration and M = 80 refinement steps using DPS. These
parameters were chosen empirically to achieve satisfactory
performance, but we did not perform a thorough grid search
to determine the best hyper-parameters.

C. Results

The objective of the first experiment is to compare our
method with other conventional reconstruction methods. Re-
garding DPS, it was found that reconstructed images contained
high-frequency details that may appear impressive at first
glance, but a significant part of these details were actually
hallucinated and not present in the original image. Although
the reconstruction remains believable, its faithfulness to the
label is limited as can be seen in Figure 2. This can be



observed in Table I through distortion metrics, where DPS
performs worse than the other tested methods. It should also
be noted that variational methods often yield results that are
unsatisfactory from a perceptual standpoint, despite achieving
good distortion metrics.

Again the benefit of our method is that it runs significantly
faster than DPS to perform the deconvolution. Indeed, it takes
around 90 s for DPS to reconstruct the image while for
our method it takes only 30 s. The main reason for this
improvement is that we perform only 100 Neural Function
evaluations compared to the 1000 evaluations required by
DPS.

TABLE I
COMPARISON OF SEVERAL DECONVOLUTION METHODS ON THE TEST

DATASET

Method PSNR (dB) ↑ SSIM ↑ LPIPS ↓ FID ↓
RL-TV 23.15 0.72 0.21 95.90

PNP-ADMM 25.50 0.73 0.21 79.80
DPS 24.33 0.68 0.14 32.42
Ours 24.40 0.73 0.14 44.23

Ablation study The aim of our second experiment is to
determine whether the refinement step is responsible for our
method’s good performances. As the refinement step can be
applied to any intermediate reconstruction, we replaced our
method by (i) the measurement y, (ii) the result of the TV-
regularized RL algorithm, (iii) the result of the PnP-ADMM
deconvolution. We performed 80 refinement steps with DPS
on the output of each method.

Under visual inspection, our method offers the best compro-
mise between pixel-wise precision and perceptual qualities. It
can be seen in Figure 3 that applied to other approximates,
for instance the observation y, the refinement results in blurry
reconstructions. In table II, it can be seen that our method
strikes the best balance between all considered metrics. It is
worth noting that RL-TV, close to one multiple (E) iteration
of our method, provides comparable performances.

TABLE II
ABLATION OF THE MAIN ALGORITHM WITH THE SAME REFINEMENT

TECHNIQUE

Input PSNR (dB) ↑ SSIM ↑ LPIPS ↓ FID ↓
y + DPS 24.11 0.69 0.22 64.74

PNP-ADMM + DPS 23.09 0.66 0.17 40.85
RL-TV + DPS 24.97 0.72 0.17 53.89

Ours + DPS 24.40 0.73 0.14 44.23

V. CONCLUSION AND DISCUSSIONS

We propose a method for fast non-blind deconvolution
using Richardson-Lucy iterations combined with diffusion
regularization. The method strikes a balance between diffusion
prior and consistent variational methods. The method involves
alternating RL with a diffusion step in the first phase, followed
by a refinement method using pure DPS with limited iterations
in the second phase. Numerical experiments showed that our
method reduces the number of steps required by the sampling

process while remaining more efficient than variational meth-
ods. Our method produces results comparable to the state of
the art and it could be a first step towards utilizing diffusion
models in a plug-and-play fashion. Although there is currently
no mathematical formalism for our algorithm, we believe it is
possible to justify its consistency with the EM framework [14].

Although our method enforces strengthened data-
consistency compared with DPS, we have observed that
it struggles to reconstruct high-frequency details. We
are uncertain about the cause of this behaviour, but an
efficient mechanism to balance between diffusion prior and
deconvolution could be necessary to improve the performance
of our method. Instead, a more straightforward approach is
used, which involves refining the reconstruction by applying
DPS for a small number of steps. It may seem that applying
the refining step to the observation y or another reconstruction
would yield similar results, but our experiments demonstrate
otherwise. We have verified that our method is crucial to
the quality of the reconstructions by conducting an ablation
study, as shown in Table II.
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