Lipschitz Stability of an Inverse Problem of Transmission Waves with Variable Jumps - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Lipschitz Stability of an Inverse Problem of Transmission Waves with Variable Jumps

Résumé

This article studies an inverse problem for a transmission wave equation, a system where the main coefficient has a variable jump across an internal interface given by the boundary between two subdomains. The main result obtains Lipschitz stability in recovering a zeroth-order coefficient in the equation. The proof is based on the Bukhgeim-Klibanov method and uses a new one-parameter global Carleman inequality, specifically constructed for the case of a variable main coefficient which is discontinuous across a strictly convex interface. In particular, our hypothesis allows the main coefficient to vary smoothly within each subdomain up to the interface, thereby extending the preceding literature on the subject.
Fichier principal
Vignette du fichier
BIMOhal.pdf (1.26 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04688851 , version 1 (06-09-2024)

Licence

Identifiants

Citer

Lucie Baudouin, A Imba, A Mercado, A Osses. Lipschitz Stability of an Inverse Problem of Transmission Waves with Variable Jumps. 2024. ⟨hal-04688851⟩
35 Consultations
9 Téléchargements

Altmetric

Partager

More