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Abstract. This article studies an inverse problem for a transmission wave
equation, a system where the main coefficient has a variable jump across an
internal interface given by the boundary between two subdomains. The main
result obtains Lipschitz stability in recovering a zeroth-order coefficient in the
equation. The proof is based on the Bukhgeim-Klibanov method and uses a new
one-parameter global Carleman inequality, specifically constructed for the case of
a variable main coefficient which is discontinuous across a strictly convex interface.
In particular, our hypothesis allows the main coefficient to vary smoothly within
each subdomain up to the interface, thereby extending the preceding literature
on the subject.
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1. Introduction

We consider an open and bounded set Ω ⊂ Rd, where d ≥ 2, with a smooth boundary
∂Ω, and a time T > 0. We are interested in the wave equation given by ∂2

t u− div(a(x)∇u) + p(x)u = f in (0, T )× Ω,
u = g on (0, T )× ∂Ω,

u(0, ·) = u0, ∂tu(0, ·) = u1 in Ω,
(1)

where the potential p belongs to L∞(Ω) and themain coefficient a has the particularity
of presenting a jump across an internal interface, in such a way that the system can be
viewed as a transmission wave equation. More precisely, for a bounded set Ω1 ⊂ Rd

satisfying Ω1 ⊂ Ω and Ω2 := Ω \ Ω1, the main coefficient is given by

a(x) =

{
a1(x), x ∈ Ω1,

a2(x), x ∈ Ω2,
(2)
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where each a1 and a2 is smooth in Ω1 and Ω2, respectively.
Therefore, the main point of this framework is that the main coefficient a has

a jump discontinuity on Γ∗ := ∂Ω1, which will be called the interface, supposed to
be strictly convex, in the sense that the open set Ω1 is a strictly convex domain.
We denote by up the dependence of u with respect p. The goal of this article is to
investigate the stability in the following inverse problem:

Given the boundary and source terms g and f and given the initial data
(u0, u1), can we determine the potential p = p(x) from boundary observations
of the flux of the solution up through the boundary ∂Ω?

The process of determining p = p(x) from flux measurements in a wave equation
with a constant main coefficient has been extensively studied across the last decades.
However, the same cannot be said for the case of discontinuous variable main
coefficients, where variable jumps are present. This is precisely the main motivation
behind this article.

Our approach for proving Lipschitz stability in this type of inverse problem
is based on Carleman estimates and the Bukhgeim-Klibanov method, which was
introduced in [9]. This strategy has also been successfully applied to various inverse
problems arising in wave equations that involve identifying sources [20],[19], potentials
(zeroth order terms) [12], main coefficients [7], [13] [14, Chapter 8] and other essential
parameters within wave equations. The book by Bellassoued and Yamamoto [8]
presents the applications of Carleman estimates for hyperbolic inverse problems in
a systematic and clear manner. Additionally, the book by Klivanov and Timonov
[16] can be helpful for the numerical treatment of related inverse problems. One can
also read [2] for other approaches of the numerical reconstruction associated to wave
equation inverse problems.

1.1. Review of related literature

The study of inverse problems associated with the wave equation with discontinuous
main coefficient is relevant to both real-world phenomena and from a theoretical
perspective. From a mathematical viewpoint, it has attracted a lot of attention, in
particular in control and inverse problems. Exact controllability issues for transmission
waves with piecewise constant velocities were introduced by J. L. Lions in [18] using
the duality between observability and controllability under typical geometric and
time assumptions. Employing the multiplier method, Lions proved observability
inequalities for the corresponding adjoint problem for inner domains that are star-
shaped, assuming that the inner velocity is greater than the exterior one, i.e., a1 ≥ a2.
The exact controllability results given by Lions can be easily adapted for waves with
variable jumps under monotonicity of the traces

a1(x) ≥ a2(x), ∀x ∈ Γ∗,

and for star-shaped inner domains with respect to x0 ∈ Ω1, with a1 ∈ W 1,∞(Ω1),
a2 ∈ W 1,∞(Ω2), and the quite usual multiplier condition. Specifically, for ρ ∈ (0, 1],
this condition is given by

∇a · (x− x0) ≤ 2a(1− ρ) in Ω1 ∪ Ω2. (3)

It is well known that Carleman estimates for wave equations can provide more
powerful and more robust estimates than the multiplier technique. In this regard,
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in [6], it was obtained new global two-parameter estimates and Lipschitz stability
for potential recovery. More precisely, assuming the inner domain in R2 is strictly
convex and the velocity possesses a sign on the jump, a Carleman weight function was
constructed. The spatial part of the function defined in that work is essentially given
by the square of the Minkowski functional of the inner subdomain, a function whose
particular properties allow to obtain a convex function with non-vanishing gradient
and fullfiling the same transmission conditions as the solution of the system. Later,
in [5], within the context of a Schrödinger equation, the construction was extended
to address the case of a transmission system in Rd, d ≥ 2. It is noteworthy that
the assumption of constant coefficients within each subdomain was essential for the
approach presented in [6]. This leaves open the question of whether the results can be
extended to a broader class of discontinuous coefficients or geometries. In this work,
we aim to address the case of variable jumps.

Other works on Carleman estimates for transmission waves include: [4] for non-
convex geometries of Ω1, [10] proving quantitative unique continuation results (non
Lipschitz-stability) employing a pseudodifferential approach, and [11] using microlocal
analysis. We mention also [15] and [23] for similar inverse problems. In [21], B.
Riahi maintains the geometric and jump assumptions from [6] and the study achieves
Hölder stability in determining a discontinuous main coefficient. One of the conditions
requires that a1 and a2 can vary on each subdomain, but they must remain constant
in a neighborhood of the interface Γ∗.

It has been observed that when trying to effectively reconstruct parameters, such
as using the Carleman-based recontruction (Cb-Rec) algorithm presented in [3], it is
advantageous to consider one-parameter Carleman estimates instead of two-parameter
ones, mainly for numerical complexity reasons. Currently there are no references
addressing inverse problems for transmission waves using one-parameter Carleman
estimates. Therefore, this is a clear motivation to explore and establish such a novel
Carleman estimates that can be effectively applied to ensure uniqueness, stability and
reconstruction issues in inverse problems of waves with variable jumps. Theorem 1.4
presents one first step towards addressing these questions.

Our main objective in order to prove Theorem 1.4 and to make completely precise
the conditions under which it is valid, is to establish a new one-parameter global
Carleman estimate for waves with variable jumps. Indeed, we aim to achieve this goal
for a specific set of admissible coefficients as described in assumptions (A.1)-(A.4) in
Section 1.2. It is worth noting that this set of admissible coefficients goes beyond
the results previously obtained by [6]. Furthermore, we believe that our findings can
also be applied to the results presented in [21]. It is important to mention that we
strive to provide a clearer understanding of the specific conditions under which our
inverse problem and such a new Carleman estimate can be constructed for waves with
variable jumps.

The rest of this introduction gives the construction of the main assumptions in
Section 1.2 and the main results of the article in Section 1.3.

1.2. Basic properties, weight function and admissible set of coefficients

Let us recall that if a = a(x) given in (2) with a1 ∈ W 1,∞(Ω1), a2 ∈ W 1,∞(Ω2) is
such that

inf
x∈Ω

a(x) ≥ α0 > 0,
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for some α0 > 0 and if u0 ∈ H1(Ω), u1 ∈ L2(Ω), p ∈ L∞(Ω), g ∈ H1(0, T ;H1(∂Ω)),
and f ∈ L1(0, T ;L2(Ω)), then, under the compatibility condition g(0, ·) = u0 on ∂Ω,
we can prove that problem (1) admits a unique weak solution lying in the class

u ∈ C([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)),

and is such that ∂νu(t) ∈ L2(∂Ω). This follows from [17, Theorem 4.1].
Moreover, assuming Ω1 is smooth, it is usual to consider an equivalent formulation

of (1) in terms of uj = u|Ωj
, j = 1, 2. The formulation in the corresponding

subdomains is given by
∂2
t u1 − div(a1(x)∇u1) + p(x)u1 = f1 in (0, T )× Ω1,

∂2
t u2 − div(a2(x)∇u2) + p(x)u2 = f2 in (0, T )× Ω2,

u2 = g on (0, T )× ∂Ω,
u(0) = u0(x), ∂tu(0) = u1(x) in Ω,

with the transmission conditions:

u1 = u2 and a1
∂u1

∂ν1
+ a2

∂u2

∂ν2
= 0 on (0, T )× Γ∗. (4)

Here, ν1 denotes the unit exterior normal vector to ∂Ω1 = Γ∗, and since ∂Ω2 = Γ∗∪∂Ω,
we can denote ν2 = −ν1. Additionally, ν denotes the normal exterior vector to ∂Ω.

In order to construct the new Carleman estimates of this work, we must introduce
a suitable weight function and a set of assumptions on the main coefficients a1 and
a2. To begin with, let us take x1 ∈ Ω1 and consider the translated convex set
Ωx1

1 := Ω1 − x1. We introduce the Minkowski functional associated to Ωx1
1 , defined

for each x ∈ Rd as follows:

pΩx1
1
(x) := inf

{
h > 0 :

x

h
∈ Ωx1

1

}
. (5)

Notice that pΩx1
1

has several well-known properties which can be found for example

in [22, Proposition 5.1]. One of these properties is that it remains constant when
restricted to the boundary of Ωx1

1 . We can make this property valid at the original Ω1

by composing pΩx1
1

with x− x1. Moreover from [6], if Ω1 is strictly convex, then the
square of Minkowski functional is strictly convex outside a ball of radius ε > 0 small
enough (to be specified later), that is, denoting D2 the Hessian matrix:

∃m1 > 0 : D2
[
pΩx1

1
(x− x1)

]2
(ξ, ξ) ≥ m1|ξ|2, ∀ξ ∈ Rd\{0}, ∀x ∈ (Ω1∪Ω2)\Bε(x1).

(6)
Additionally, given constants 0 < α0 ≤ α0 we suppose that the main coefficient

a = a(x), as given in equation (2), fulfills the following

- bounds conditions:

α0 ≤ inf
x∈Ω

a(x) ≤ sup
x∈Ω

a(x) ≤ α0, (A.1)

- regularity conditions:

a1 ∈ C2(Ω1),

a2 ∈ C2(Ω2).
(A.2)
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It has been noted that for obtaining Carleman estimates when a1 and a2 are constants,
there is a sign restriction on the jump of the main coefficient. This jump condition is
a1 > a2 and the details can be found in reference [6]. In our case, as a1 and a2 vary
up to the interface, we need to introduce a sign assumption regarding the traces of a1
and a2 at the interface. The jump assumption we introduce writes as follows. If we
define the ratio

λ(x) :=
a1(x)

a2(x)
, x ∈ Γ∗, (7)

we assume the following :

- jump condition: there exists a constant γ > 1 such that

max
x∈Γ∗

λ(x) < γ < min
x∈Γ∗

λ2(x). (A.3)

The assumption (A.3) arises precisely to obtain that certain integrals at the
interface are positively dominant. More precisely, this assumption will arise for
example for obtaining strictly positive terms of s|w|2, s|∂tw|2 and s|∇τw|2. We refer
to the expressions in (35) and (36) concerning this point.

Furthermore, in connection to assumption (3), we introduce another assumption
on a1 and a2 that typically arises when deriving global Carleman estimates for waves

with a variable main coefficient. Given
[
pΩx1

1
(x− x1)

]2
, satisfying (6) with m1 and

given constants ρ ∈ (0, 1] and γ fom (A.3), we set a

- multiplier condition (with respect to x1 ∈ Ω1 and m1 > 0):

∇a(x) · ∇
[
pΩx1

1
(x− x1)

]2
≤ 2

γ
a(x)(1− ρ)m1, x ∈ (Ω1 ∪ Ω2) \Bε(x1).

(A.4)

Remark 1.1 It is worth noting that, in the case that each one of a1 and a2 is constant
on the interface, we fix γ = a1

a2
and then hypothesis (A.3) is given by λ = γ < λ2,

it is equivalent to have a2 < a1. This is the case considered in [6], where a1 and a2
are constants, and also of [21], where it is supposed that the coefficients are constants
in a neighborhood of the interface. Therefore, assumption (A.3) provides a sufficient
condition for coefficients a1 and a2 that vary up to the interface, significantly expanding
the range of coefficients for which Carleman estimates can be obtained.

We define the weight function of our Carleman estimate as

φ(t, x) = µx1(x)− βt2, (t, x) ∈ R× Ω, (8)

which is a common approach (usually with µx1(x) = |x− x1|2). We will explain how
we construct the spatial part µx1 of our weight using a method similar to the one in
[6], but adapted for variable jumps satisfying (A.3). This construction will be detailed
in the following paragraphs.

First, in view of the singularity of the Minkowski functional at x1, where the
function is not regular, we introduce a convenient cut-off function. More precisely, for
ε1 and ε small enough (to be specified later) and such that 0 < ε1 < ε, we consider a
cut-off function ηx1 ∈ C∞(Ω1) such that

0 ≤ ηx1 ≤ 1, x ∈ Ω1,

ηx1(x) = 0, x ∈ Bε1(x1),

ηx1(x) = 1, x ∈ Ω1 \Bε(x1).
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Then, using γ > 1 given in (A.3) we finally define the spatial part of the weight
as

µx1(x) =

 ηx1(x)
[
pΩx1

1
(x− x1)

]2
+M1 x ∈ Ω1,

γ
[
pΩx1

1
(x− x1)

]2
+M2, x ∈ Ω2 \ Ω1,

(9)

for pΩx1
1

defined in (5) and constants

M1 > γ − 1 and M2 := M1 − γ + 1. (10)

Remark 1.2 We highlight the dependence on x1 by introducing it as a superscript.
The function µx1 , defined in (9), follows a similar approach than [5] and [6]. In these

works,
[
pΩx1

1
(x− x1)

]2
is expressed as

[
pΩx1

1
(x− x1)

]2
=

|x− x1|2

|y(x)− x1|2
, (11)

where, for each x ∈ Rd \{x1}, y(x) is the unique point such that y(x) ∈ ∂Ω1∩ℓ(x1, x),
and ℓ denotes the segment joining x1 and x; also, as a1 and a2 are constants on Γ∗,
the constant γ is simply fixed as γ = a1

a2
.

The next result is established in [6, Lemma 7] and [5, Proposition 8].

Proposition 1.3 If Ω1 ⊂ Rd is a C3 strictly convex domain, then:

∃ δ1 > 0 : µx1(x) ≥ δ1 > 0 ∀x ∈ (Ω1 ∪ Ω2) \Bε(x1), (12)

∃ m1 > 0 : D2µx1(x)(ξ, ξ) ≥ m1|ξ|2, ∀ξ ∈ Rd \ {0}, ∀x ∈ (Ω1 ∪ Ω2) \Bε(x1), (13)

∃ c1 > 0 : |∇µx1(x)|2 ≥ c21 > 0, ∀x ∈ (Ω1 ∪ Ω2) \Bε(x1). (14)

It is important to note that the function µx1 constructed here satisfies, in addition
to the properties stated in Proposition 1.3, convenient transmission conditions. Those
conditions are local properties near the interface Γ∗ and will be discussed in detail in
Proposition 2.1.

1.3. Main results

The following theorem gives the main result of this article. It answers both the
uniqueness and the Lipschitz stability of the stated inverse problem.

Theorem 1.4 (Lipschitz Stability) Let Ω1 ⊂ Ω be a C3 strictly convex domain
and x1, x2 ∈ Ω1 with x1 ̸= x2. Consider Ωxi

1 := Ω1 − xi, for i = 1, 2 and pΩxi
1

the

Minkowski functional associated to Ωxi
1 defined according (5). Let 0 < α0 ≤ α0 ,

ρ ∈ (0, 1], m > 0. Assume that the discontinuous main coefficient a = a(x) given by
(2) satisfies the bounds and regularity conditions detailed in (A.1) and (A.2). Further,
suppose that λ defined in (7) satisfies the jump condition (A.3) and the multiplier
condition (A.4) with respect to both pΩxi

1
, i = 1, 2 . Consider µx1 and µx2 given by

(9) allowing to define

Γ+
µxi := {x ∈ ∂Ω : ∂νµ

xi > 0} , i = 1, 2. (15)
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Defining L∞
≤m(Ω) =

{
p ∈ L∞(Ω) : ∥p∥L∞(Ω) ≤ m

}
, assume that p ∈ L∞

≤m(Ω) and the

initial datum u0 ∈ H1(Ω) is such that

|u0(x)| ≥ δ > 0, a.e in Ω

and that the solution up of (1) satisfies the regularity assumption

up ∈ H1(0, T ;L∞(Ω)).

Then there exists T0 > 0 such that for any T > T0 there exists C > 0 such that, for
any q ∈ L∞

≤m(Ω), we have

∥p− q∥L2(Ω) ≤ C∥∂ν∂t(up − uq)∥L2(0,T ;Γ0),

where Γ0 := Γ+
µx1 ∪ Γ+

µx2 .

The next result concerns Carleman estimates for the operator Lq = (∂2
t −

div(a(x)∇) + q), where a = a(x) is given in (2) and satisfies assumptions (A.1)-(A.4).
We will use the notation v(±T ) to denote the evaluation of functions at t = T and
t = −T . The precise statement of the Carleman estimates is the following result.

Theorem 1.5 (Carleman estimates) Assume Ω1 is a C3 strictly convex domain.
Let x1 ∈ Ω1 and pΩx1

1
the Minkowski functional associated to Ωx1

1 := Ω1−x1, satisfying

(6) with m1 > 0 and any ε > 0. Let 0 < α0 ≤ α0 , ρ ∈ (0, 1], m ≥ 0 and γ > 1.
Assume that a = a(x) satisfies (A.1), (A.2), (A.3) and (A.4). That is a = a(x)
belongs to

Aγ :=


a|Ωj

∈ C2, j = 1, 2. α0 ≤ infx∈Ω a(x) ≤ supx∈Ω a(x) ≤ α0,
√
γa2(x) < a1(x) < γa2(x), ∀x ∈ Γ∗,

∇a(x) · ∇
[
pΩx1

1
(x− x1)

]2
≤ 2

γ a(x)(1− ρ)m1, x ∈ (Ω1 ∪ Ω2) \Bε(x1)

 ,

and let µx1 defined in (9) and Γ+
µx1 defined in (15). Consider φ(t, x) = µx1(x)− βt2.

Then, for any q ∈ L∞
≤m(Ω), there exist a parameter β1 > 0, such that ∀β ∈ (0, β1)

there exists s0 > 0 and C > 0 such that

s

∫ T

−T

∫
Ω

e2sφ(|∂tv|2 + a|∇v|2 + s2|v|2) dxdt

≤ C

∫ T

−T

∫
Ω

e2sφ(Lqv)
2 dxdt+ Cs

∫ T

−T

∫
Γ+

µx1

e2sφ |∂νv|2 dσdt

+ Cs

∫∫
{(t,x)∈(−T,T )×Ω: φ<0}

e2sφ(|∂tv|2 + a|∇v|2 + s2|v|2) dxdt

+ Cs

∫ T

−T

∫
Bε(x1)

e2sφ(|∂tv|2 + a|∇v|2 + s2|v|2) dxdt

+ Cs

∫
Ω

e2sφ(±T )(|∂tv(±T )|2 + |∇v(±T )|2 + s2|v(±T )|2) dx

+ Cs3
∫∫

{(t,x)∈(−T,T )×Γ∗: φ<0}
e2sφ|v|2 dσdt

+ Cs2
∫
Γ∗

e2sφ(±T )|v(±T )|2dσ, (16)
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for all s ≥ s0, for all v ∈ L2(−T, T ;H1
0 (Ω)) satisfying the transmission conditions (4)

with Lqv ∈ L2(−T, T ;L2(Ω)) and ∂νv ∈ L2((−T, T )× ∂Ω)).

We will apply the above Carleman estimates to obtain Lipschitz stability of our
inverse problem. However, that is not a straightforward process due to some additional
observations on the right-hand side of (16), In order to deal with this problem, we shall
carefully combine these estimates with the inequalities provided by another weight
function. More precisely, we define a function similar to (8) by

ϕ(t, x) = µx2(x)− βt2, (t, x) ∈ R× Ω, (17)

where µx2 is associated with some x2 ∈ Ω1, with x2 ̸= x1 and is given by (9) and (10),
(replacing x1 by x2 in the definition). Beware that Remark 1.2 and Proposition 1.3 are
thus also satisfied by µx2 , and that (13) is satisfied with a constant m2 (instead of m1).

Finally, the Carleman estimates with weights φ and ϕ hold for β ∈ (0, β1) and
β ∈ (0, β2), respectively. Denoting β0 = min{β1, β2}, and

L := max

{
sup
Ω

√
µx1(x), sup

Ω

√
µx2(x)

}
, (18)

the assumption T > T0 reads T > L/
√
β0, where

T0 :=
max

{
supΩ

√
µx1(x), supΩ

√
µx2(x)

}
√
β0

. (19)

Remark 1.6 In (19), estimating the required time for Lipschitz stability is generally
not optimal. We can see that our estimate for T0 depends on L and β0. This is an
expected dependence, since L is given by the size of the domain and β0 depends on
α0, which is the lower bound for the wave speed a. However, β0 also depends on other
constants (see (56) below). Providing a sharp estimate of the minimal time in terms
of size of the domain and the velocity a would be a very interesting issue.

The next parts of the article are structured as follows: In Section 2, we present
the proof of the main tool of this work, Theorem 1.5. The proof consists of four steps,
being the second one a crucial part of this work. There, we use the assumption (A.3)
to deal with interface integrals that contain traces of the coefficients a1 = a1(x) and
a2 = a2(x), which vary up to Γ∗. In the same section, we will prove a Carleman
estimate with initial kinetic energy. Finally, in Section 3, we present the proof
of Lipschitz stability for the potential recovery in transmission waves with variable
jumps, which mainly focuses on two key steps: the construction of a convenient cut-
off function and the application of the Bukhgeim-Klibanov method.

2. Carleman estimates

2.1. A one-parameter global Carleman estimate for discontinuous wave operator

In this section, we aim to prove Theorem 1.5. Our strategy is based on four main steps,
following [4]. Firstly, we conduct computations in a generic domain while considering
all the traces at the boundary resulting from the integration by parts. Secondly, we
adapt the computations to the specific situation of variable jumps and carefully study
the resulting terms at the interface. Thirdly, we establish a weighted norm in the
interior of the domains, adopting the approach from [3]. Finally, we combine the
estimations from the previous steps and absorb negligible terms.
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Step 1 Generic computations We denote the operator Lu = ∂2
t u− div(a(x)∇u) and

we perform the change of variables

w = esφv, s > 0,

Pw = esφL(e−sφw).

We will perform various computations in a generic set Q = (−T, T ) × U without
making any assumptions regarding the boundary condition for w on Σ = (−T, T )×∂U .
At the same time, let us assume that a is a smooth wave speed and that µx1 in
φ(t, x) = µx1(x)−βt2 is also smooth in such a way that all the upcoming computations
make sense. Later on, we will see that it is sufficient to consider µx1 given by (9), and
that the computations can be carried out even if a is discontinuous. Computing Pw,
we write

Pw = P1w + P2w +Rw,

where, for some function α = α(x) to be fixed later,

P1w = ∂2
tw − a∆w + s2(|∂tφ|2 − a|∇φ|2)w − 2∇a · ∇w, (20)

P2w = −2s∂tφ∂tw + 2sa∇φ · ∇w + αasw,

Rw = −s(∂2
t φ− div(a∇φ))w − αasw +∇a · ∇w. (21)

As usual, we have∫ T

−T

∫
U

|P1w|2 dxdt+
∫ T

−T

∫
U

|P2w|2 dxdt+ 2(P1w,P2w)L2(Q)

=

∫ T

−T

∫
U

|Pw −Rw|2 dxdt.
(22)

Let us compute (P1w,P2w)L2(Q), and denote by Ii,j the inner product of the

i-th term of P1w with the j-th term of P2w. Denoting
∫∫

Q
dxdt :=

∫ T

−T

∫
U

dxdt and∫∫
Σ
dσdt :=

∫ T

−T

∫
∂U

dσdt, we obtain, using integration by parts in time, that

I1,1 = −2s

∫∫
Q

∂tφ∂tw∂
2
tw dxdt = s

∫∫
Q

|∂tw|2∂2
t φdxdt− s

∫
U

|∂tw|2∂tφdx

∣∣∣∣T
−T

.

Similarly, integrating by parts in time and using that ∂t∇φ = 0, we get

I1,2 = 2s

∫∫
Q

∂2
twa∇φ · ∇w dxdt

= −2s

∫∫
Q

∂twa∇φ · ∇∂tw dxdt+ 2s

∫
Ω

∂twa∇φ · ∇w

∣∣∣∣T
−T

dx

= s

∫∫
Q

|∂tw|2div(a∇φ) dxdt− s

∫∫
Σ

|∂tw|2a
∂φ

∂ν
dσdt+ 2s

∫
U

∂twa∇φ · ∇w dx

∣∣∣∣T
−T

.

Noticing that a = a(x) and α = α(x) do not depend on time, we have

I1,3 = s

∫∫
Q

αa∂2
tww dxdt = −s

∫∫
Q

αa|∂tw|2 dxdt+ s

∫
U

αa∂tww dx

∣∣∣∣T
−T

,
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and in the same way, using integration by parts in space and time, we get

I2,1 = 2s

∫∫
Q

a∆w∂tφ∂tw dxdt

= −2s

∫∫
Q

∇w · ∇(a∂tφ∂tw) dxdt+ 2s

∫∫
Σ

∂w

∂ν
a∂tφ∂tw dσdt

= s

∫∫
Q

a|∇w|2∂2
t φdxdt− 2s

∫∫
Q

∂tφ∂tw∇a · ∇w dxdt− s

∫
U

|∇w|2a∂tφdx

∣∣∣∣T
−T

+ 2s

∫∫
Σ

a
∂w

∂ν
∂tφ∂tw dσdt.

Integration by parts in space also gives

I2,2 = −2s

∫∫
Q

a2∆w∇φ · ∇w dxdt

= 2s

∫∫
Q

∇w · ∇(a2∇φ · ∇w) dxdt− 2s

∫∫
Σ

∂w

∂ν
a2∇φ · ∇w dσdt

= 2s

∫∫
Q

a2D2 φ(∇w,∇w) dxdt+ 2s

∫∫
Q

∇w · ∇a2∇φ · ∇w dxdt

− s

∫∫
Q

|∇w|2div(a2∇φ) dxdt− 2s

∫∫
Σ

a2∇φ · ∇w
∂w

∂ν
dσdt

+ s

∫∫
Σ

|∇w|2a2 ∂φ
∂ν

dσdt,

and

I2,3 = −s

∫∫
Q

αa2∆ww dxdt = s

∫∫
Q

∇w · ∇(αa2w) dxdt− s

∫∫
Σ

αa2
∂w

∂ν
w dσdt

= s

∫∫
Q

α∇w · ∇a2w dxdt+ s

∫∫
Q

a2∇w · ∇αw dxdt

+ s

∫∫
Q

αa2|∇w|2 dxdt− s

∫∫
Σ

αa2
∂w

∂ν
w dσdt.

Integration by parts in time, allows us to obtain

I3,1 = −2s3
∫∫

Q

∂tφ∂tw(|∂tφ|2 − a|∇φ|2)w dxdt

= s3
∫∫

Q

|w|2∂t(∂tφ(|∂tφ|2 − a|∇φ|2)) dxdt− s3
∫
U

|w|2∂tφ(|∂tφ|2 − a|∇φ|2) dx
∣∣∣∣T
−T

= s3
∫∫

Q

|w|2[3∂2
t φ(|∂tφ|2 − a|∇φ|2) + 2a|∇φ|2∂2

t φ] dxdt

− s3
∫
U

|w|2∂tφ(|∂tφ|2 − a|∇φ|2) dx
∣∣∣∣T
−T

,
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and similarly, integration in space gives

I3,2 = 2s3
∫∫

Q

a∇φ · ∇w(|∂tφ|2 − a|∇φ|2)w dxdt

= −s3
∫∫

Q

|w|2div(a∇φ(|∂tφ|2 − a|∇φ|2)) dxdt

+ s3
∫∫

Σ

|w|2a(|∂tφ|2 − a|∇φ|2)∂φ
∂ν

dσdt

= −s3
∫∫

Q

|w|2[∇a · ∇φ(|∂tφ|2 − a|∇φ|2)] dxdt

− s3
∫∫

Q

|w|2[a∆φ(|∂tφ|2 − a|∇φ|2)] dxdt+ 2s3
∫∫

Q

|w|2a2D2 φ(∇φ,∇φ) dxdt

+ s3
∫∫

Σ

|w|2a(|∂tφ|2 − a|∇φ|2)∂φ
∂ν

dσdt.

Direct computations give us

I3,3 = s3
∫∫

Q

αa
(
|∂tφ|2 − a|∇φ|2

)
|w|2 dxdt,

and

I4,1 = 4s

∫∫
Q

∂tφ∂tw∇a · ∇w dxdt.

Finally, note also that

I4,2 = −4s

∫∫
Q

a∇a · ∇w∇φ · ∇w dxdt = −2s

∫∫
Q

∇w · ∇a2∇φ · ∇w dxdt,

and

I4,3 = −2s

∫∫
Q

αa∇a · ∇ww dxdt = −s

∫∫
Q

α∇w · ∇a2w dxdt.

Gathering all the computed terms and recalling Q = (−T, T )× U , we write

(P1w,P2w)L2(Q) = AU + YU +B∂U + EU (±T ), (23)

where AU is defined as the sum of the so-called dominating interior terms, B∂U is the
sum of all the boundary terms , YU contains a negligible interior term and EU (±T )
in (27) are integrals evaluated in ±T . Taking into account the powers of s we deduce

AU =s

∫∫
Q

|∂tw|2(∂2
t φ+∇a · ∇φ+ a∆φ− αa) dxdt

+ s

∫∫
Q

a|∇w|2(∂2
t φ− 2∇a · ∇φ− a∆φ+ αa) dxdt

+ 2s

∫∫
Q

a2D2 φ(∇w,∇w) dxdt+ 2s

∫∫
Q

∂tφ∂tw∇a · ∇w dxdt

+ s3
∫∫

|w|2[(|∂tφ|2 − a|∇φ|2)(3φtt −∇a · ∇φ− a∆φ+ αa)] dxdt

+ 2s3
∫∫

Q

|w|2a2D2 φ(∇φ,∇φ) dxdt+ 2s3
∫∫

Q

|w|2a|∇φ|2∂2
t φdxdt.

(24)
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The negligible term is

YU = s

∫∫
Q

a2∇w · ∇αw dxdt, (25)

and the sum of the boundary terms is given by

B∂U

= −s

∫∫
Σ

|∂tw|2a
∂φ

∂ν
dσdt+ 2s

∫∫
Σ

a
∂w

∂ν
∂tφ∂tw dσdt− 2s

∫∫
Σ

a2∇φ · ∇w
∂w

∂ν
dσdt

+ s

∫∫
Σ

|∇w|2a2 ∂φ
∂ν

dσdt− s

∫∫
Σ

αa2
∂w

∂ν
w dσdt

+ s3
∫∫

Σ

|w|2a(|∂tφ|2 − a|∇φ|2)∂φ
∂ν

dσdt.

(26)

Finally, the sum of the terms evaluated at ±T is

EU (±T )

= − s

∫
U

|∂tw|2∂tφdx

∣∣∣∣T
−T

+ 2s

∫
U

∂twa∇φ · ∇w dx

∣∣∣∣T
−T

+ s

∫
U

αa∂tww dx

∣∣∣∣T
−T

− s

∫
U

|∇w|2a∂tφdx

∣∣∣∣T
−T

− s3
∫
U

|w|2∂tφ(|∂tφ|2 − a|∇φ|2) dx
∣∣∣∣T
−T

.

(27)

Step 2 At the interface In this step, we first apply the computations performed in
the previous step to each of the subdomains, considering Ω1 and Ω2 with the main
coefficients given by a1 = a1(x) and a2 = a2(x) respectively. We then sum up the
resulting terms. At this stage, we consider φ(t, x) = µx1(x) − βt2 with µx1 given by
(9). From (23), we can express the inner product as follows:

(P1w,P2w)L2((−T,T )×Ω) = AΩ1 +AΩ2 + YΩ1 + YΩ2 +B∂Ω1 +B∂Ω2 + EΩ1(±T )

+ EΩ2
(±T ).

We write the sum of the boundary terms as follows

B∂Ω1
+B∂Ω2

= B∂Ω + [BΓ∗ ],

where [BΓ∗ ] denotes the six integrals of (26) supported on Σ∗ = (−T, T )×(∂Ω1∩∂Ω2),
coming from the integration by parts in Ω1 and Ω2. More precisely, we introduce the
notation

[BΓ∗ ] =

6∑
i=1

(Bi(Ω1,Γ∗) +Bi(Ω2,Γ∗)) =

6∑
i=1

[Ji].

We will bound by below [BΓ∗ ] using the properties that µx1 satisfies at the
interface. First, let us write µx1 given in (9) in the following way

µx1(x) =

{
µx1
1 (x), x ∈ Ω1,

µx1
2 (x), x ∈ Ω2 \ Ω1,
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where µx1
1 = µx1 |Ω1

and µx1
2 = µx1 |Ω2

. The next result follows as a direct consequence
of [4, Proposition 2.1].

Proposition 2.1 If Ω1 is a C3 strictly convex domain and γ is defined in (A.3), then
it holds µx1

1 ∈ C3(Ω1), µ
x1
2 ∈ C3(Ω2) and

µx1
1 = µx1

2 = cte, on Γ∗, (28)

γ
∂µx1

1

∂ν1
+

∂µx1
2

∂ν2
= 0, on Γ∗, (29)

∂µx1
1

∂ν1
≥ 2

diam(Ω)
, on Γ∗. (30)

Remark 2.2 The transmission conditions (28) and (29) are proved in [4] and [6] in
the case of γ = a1

a2
, with a1 and a2 constants at the interface. Here, we emphasize that

even though a1 and a2 are not constants on Γ∗, we have γ > 1 as a constant thanks
to (A.3).

Precisely, in Ω1 \Bε(x1) we have

µx1
1 (x) =

[
pΩx1

1
(x− x1)

]2
+M1

and
Γ∗ =

{
x ∈ Rd : pΩx1

1
(x− x1) = 1

}
.

This last assertion comes from the definition of the Minkowski functional satisfying
pΩx1

1
(x− x1) = 1 if and only if x ∈ Γ∗. In addition, in Ω2 we have

µx1
2 (x) = γ

[
pΩx1

1
(x− x1)

]2
+M2.

Then, thanks to choosing M1 and M2 as in (10) we readily obtain (28) which reads

µx1
1 (x) = 1 +M1 = µx1

2 (x), x ∈ Γ∗. (31)

The transmission conditions (29) and the condition (30) follow by noting that Γ∗

is contained in the level curve
{
pΩx1

1
(x− x1) = 1

}
and in this case we have

ν1 =
∇pΩx1

1
(x− x1)∣∣∣∇pΩx1

1
(x− x1)

∣∣∣ = −ν2 and
∂µx1

1

∂ν1
(x) = 2

∣∣∣∇pΩx1
1
(x− x1)

∣∣∣ , x ∈ Γ∗,

with

∣∣∣∇pΩx1
1
(x− x1)

∣∣∣2 ≥

[
pΩx1

1
(x− x1)

]2
|x− x1|2

≥ 1

[diam(Ω)]2
, x ∈ Γ∗.

Proposition 2.3 (Interface Integrals) Assume Ω1 is a C3 strictly convex domain.
Let 0 < α0 ≤ α0 such that a = a(x) defined in (2) satisfies (A.1), (A.2) and (A.3).
Let x1 ∈ Ω1, and let φ(t, x) = µx1(x) − βt2 with µx1 satisfying (28), (29), and (30).
If

0 < β <
2α0

[diam(Ω)]2(1 +M1)
, (32)
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then there exist s0 > 0 and C > 0 such that

−Cs3
∫∫

{(t,x)∈(−T,T )×Γ∗: φ<0}
|w|2 dσdt− Cs2

∫
Γ∗

|w(±T )|2dσ ≤
6∑

j=1

[Ji] = [BΓ∗ ],

(33)

for all s ≥ s0.

Remark 2.4 Actually, it is possible to add, at the left-hand side of (33), the terms

s

∫ T

−T

∫
Γ∗

(
|∂tw|2 + s2|w|2 + |∇τw|2 +

∣∣∣∣∂w1

∂ν1

∣∣∣∣2
)

dσdt,

where ∇τ denotes the tangential first-order operator of w over Γ∗. This follows directly
from the proof of Proposition 2.3. See (38).

Proof of Proposition (2.3) Let us recall the notation

λ(x) =
a1(x)

a2(x)
, x ∈ Γ∗,

and Σ∗ = (−T, T )× Γ∗.
Recalling also the notation v1 = v|Ω1

, v2 = v|Ω2
and the transmission conditions

for v as in (4)

v1 = v2, and a1
∂v1
∂ν1

+ a2
∂v2
∂ν2

= 0, on (0, T )× Γ∗,

we can use the fact that w = esφv and the transmission conditions (28) and (29)
satisfied by µx1 to obtain

w1 = w2, and a1
∂w1

∂ν1
+ a2

∂w2

∂ν2
= sa2w(λ− γ)

∂µx1
1

∂ν1
, (t, x) ∈ (−T, T )× Γ∗.

(34)

To illustrate how we deal with each term of [BΓ∗ ], we provide details for [J1]. The
remaining terms are treated in a similar way. First, from (26), we write

[J1] = −s

∫∫
Σ∗

|∂tw1|2a1
∂φ1

∂ν1
dσdt− s

∫∫
Σ∗

|∂tw2|2a2
∂φ2

∂ν2
dσdt.

Using (34) and the transmission conditions (29), we have

[J1] = −s

∫∫
Σ∗

|∂tw|2
(
a1

∂µx1
1

∂ν1
+ a2

∂µx1
2

∂ν2

)
dσdt

= s

∫∫
Σ∗

|∂tw|2(a2γ − a1)
∂µx1

1

∂ν1
dσdt = s

∫∫
Σ∗

a2|∂tw|2
∂µx1

1

∂ν1
(γ − λ) dσdt. (35)
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We can obtain, using (29), (34), the decomposition ∇w =
(
∇τw τ⃗ + ∂w

∂ν ν⃗
)
, and

some straightforward computations, that

[J3] + [J4] = s

∫∫
Σ∗

a22

∣∣∣∣∂w1

∂ν1

∣∣∣∣2 ∂µx1
1

∂ν1
λ2(γ − 1) dσdt

+ s3
∫∫

Σ∗

a22|w|2
(
∂µx1

1

∂ν1

)3

γ(λ− γ)2 dσdt+ s

∫∫
Σ∗

a22 |∇τw|2
∂µx1

1

∂ν1
(λ2 − γ) dσdt

− 2s2
∫∫

Σ∗

a22w
∂w1

∂ν1

∣∣∣∣∂µx1
1

∂ν1

∣∣∣∣2 λγ(λ− γ) dσdt

and

[J6]

= s3
∫∫

Σ∗

a2|w|2
∂µx1

1

∂ν1
|∂tφ|2(λ− γ) dσdt+ s3

∫∫
Σ∗

a22|w|2
(
∂µx1

1

∂ν1

)3

(γ3 − λ2) dσdt.

These expressions imply

[J6] + [J3] + [J4] = s3
∫∫

Σ∗

a2|w|2
∂µx1

1

∂ν1
|∂tφ|2(λ− γ) dσdt

+ s3
∫∫

Σ∗

a22|w|2
(
∂µx1

1

∂ν1

)3 (
(γ3 − λ2) + γ(λ− γ)2

)
dσdt

+ s

∫∫
Σ∗

a22

∣∣∣∣∂w1

∂ν1

∣∣∣∣2 ∂µx1
1

∂ν1
λ2(γ − 1) dσdt+ s

∫∫
Σ∗

a22 |∇τw|2
∂µx1

1

∂ν1
(λ2 − γ) dσdt

− 2s2
∫∫

Σ∗

a22w
∂w1

∂ν1

∣∣∣∣∂µx1
1

∂ν1

∣∣∣∣2 λγ(λ− γ) dσdt.

(36)

Moreover, using Young’s inequality and noticing that Assumption (A.3) implies

γ > max
x∈Γ∗

λ(x) ≥ min
x∈Γ∗

λ(x) > 1,

we can estimate the last term on the right-hand side of (36) as follows:∣∣∣∣∣−2s2
∫∫

Σ∗

a22w
∂w1

∂ν1

∣∣∣∣∂µx1
1

∂ν1

∣∣∣∣2 λγ(λ− γ) dσdt

∣∣∣∣∣
≤ 2s2

∫∫
Σ∗

a22|w|
∣∣∣∣∂w1

∂ν1

∣∣∣∣ ∣∣∣∣∂µx1
1

∂ν1

∣∣∣∣2 λγ(γ − λ)dσdt

≤ s3
∫∫

Σ∗

a22|w|2
∣∣∣∣∂µx1

1

∂ν1

∣∣∣∣3 γ2(γ − λ) dσdt+ s

∫∫
Σ∗

a22

∣∣∣∣∂w1

∂ν1

∣∣∣∣2 ∂µx1
1

∂ν1
λ2(γ − λ)dσdt

≤ s3
∫∫

Σ∗

a22|w|2
∣∣∣∣∂µx1

1

∂ν1

∣∣∣∣3 γ2(γ − 1) dσdt+ s

∫∫
Σ∗

a22

∣∣∣∣∂w1

∂ν1

∣∣∣∣2 ∂µx1
1

∂ν1
λ2(γ − λ)dσdt.

(37)

Directly from (37), (36), (A.3) and (30) we get that there exists a constant C > 0
depending in particular on α0, minx∈Γ∗ λ(x), γ and diam(Ω) and changing from line
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to line such that

[J1] + [J3] + [J4] + [J6] ≥

Cs

∫∫
Σ∗

(
|∂tw|2 + |∇τw|2 +

∣∣∣∣∂w1

∂ν1

∣∣∣∣2
)

dσdt

+ s3
∫∫

Σ∗

a22|w|2(γ − λ)
∂µx1

1

∂ν1

[
4

[diam(Ω)]2
(γ(γ − λ) + λ+ γ)− |∂tφ|2

a2

]
dσdt.

Note also that since |∂tφ|2 = 4β2t2, we can deduce, using (31), that{
(t, x) ∈ Σ∗ : φ > 0} = {(t, x) ∈ Σ∗ : µx1(x) > βt2

}
=
{
(t, x) ∈ Σ∗ : 4βµx1(x) > |∂tφ|2

}
=
{
(t, x) ∈ Σ∗ : 4β(1 +M1) > |∂tφ|2

}
.

In this last region, using (A.1), (A.3) and (30) we obtain

s3
∫∫

{(t,x)∈Σ∗:φ>0}
a22|w|2(γ − λ)

∂µx1
1

∂ν1

[
4

[diam(Ω)]2
(γ(γ − λ) + λ+ γ)− |∂tφ|2

a2

]
dσdt

≥ s3
∫∫

{φ>0}
a22|w|2(γ − λ)

∂µx1
1

∂ν1

[
4

[diam(Ω)]2

(
min
x∈Γ∗

λ(x) + γ

)
− 4β(1 +M1)

α0

]
dσdt

≥ 4s3
∫∫

{φ>0}
a22|w|2 (γ − λ)

∂µx1
1

∂ν1

[
1

[diam(Ω)]2

(
2 min
x∈Γ∗

λ(x)

)
− β(1 +M1)

α0

]
dσdt

≥ 4s3
∫∫

{(t,x)∈Σ∗:φ>0}
a22|w|2 (γ − λ)

∂µx1
1

∂ν1

[
2

[diam(Ω)]2
− β(1 +M1)

α0

]
dσdt.

Now, recalling the condition (32) on β that reads 0 < β < 2α0

[diam(Ω)]2(1+M1)
, we obtain

after using again (A.1), (A.3) and (30) that

[J1] + [J3] + [J4] + [J6] ≥ Cs

∫∫
Σ∗

(
|∂tw|2 + s2|w|2 + |∇τw|2 +

∣∣∣∣∂w1

∂ν1

∣∣∣∣2
)

dσdt

− Cs3
∫∫

{(t,x)∈Σ∗:φ<0}
|w|2 dσdt. (38)

Finally, it is not difficult to check that

|[J2] + [J5]| ≤ Cs2
∫∫

Σ∗

|w|2 dσdt+ C

∫∫
Σ∗

∣∣∣∣∂w1

∂ν1

∣∣∣∣2 dσdt+ Cs2
∫
Γ∗

|w(±T )|2dσ.

Then, there exists s0 > 0 such that for all s ≥ s0

[BΓ∗ ] =

6∑
j=1

[Ji] ≥ Cs

∫∫
Σ∗

(
|∂tw|2 + s2|w|2 + |∇τw|2 +

∣∣∣∣∂w1

∂ν1

∣∣∣∣2
)

dσdt

− Cs3
∫∫

{(t,x)∈Σ∗:φ<0}
|w|2 dσdt− Cs2

∫
Γ∗

|w(±T )|2dσ, (39)

and the proof of Proposition 2.3 is complete.
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Step 3 Interior strictly positive terms Here, we work on the minimization of the
interior integrals AΩ1

+ AΩ2
. Our approach follows [3]. Taking into account that the

interface is a zero-measure subset of Ω, each term gathered in AΩ1
+AΩ2

can be seen
as an integral over (−T, T ) × Ω = Q. Also, we will refer to any derivative of a as a
function in Ω1 ∪Ω2, using the notation ∥a∥W 1,∞ = ∥a∥W 1,∞(Ω1∪Ω2), and the same for
other spaces.

We denote by Aj , j = 1, . . . , 7 the seven integrals in (24). First, let us note that

A1 =

∫∫
Q

|∂tw|2 (−2β +∇a · ∇µx1 + a∆µx1 − αa) dxdt

and

A2 +A3 =

∫∫
Q

a|∇w|2
(
−2β − 2∇a · ∇µx1 − a∆µx1 + αa+ 2a

D2 µx1(ξ, ξ)

|ξ|2

)
dxdt,

for all ξ ∈ Rd \ {0}. Notice that the function multiplying |∇w|2 in the above integral
can be bounded by below in (−T, T ) × Q \ Bε(x1) using (13) and (A.4). Indeed, as
soon as we set α = α(x) by

α = ∆µx1 −m1 +
3

2a
∇a · ∇µx1 , (40)

and since µx1 and a defined in (9) and (2) are regular in each one of the sets Ω1

and Ω2, we obtain, using (A.1) that there exists C > 0 (changing from line to line)
depending in particular on ∥µx1∥C2 , ∥a∥W 1,∞ and β > 0 such that

A2 +A3 ≥ (−2β + α0m1ρ)

∫∫
Q

a|∇w|2 dxdt− Cs

∫ T

−T

∫
Bε(x1)

a|∇w|2 dxdt. (41)

Bringing the definition of α in A1 and as a consequence of using (A.4) and (A.1)
we also obtain that there exists C > 0 such that

A1 ≥ (−2β + α0m1ρ)s

∫∫
Q

|∂tw|2 dxdt− Cs

∫ T

−T

∫
Bε(x1)

|∂tw|2 dxdt. (42)

Combining (41) and (42) we get

A1 +A2 +A3 ≥ (−2β + α0m1ρ)s

∫∫
Q

(|∂tw|2 + a|∇w|2) dxdt

− Cs

∫ T

−T

∫
Bε(x1)

(|∂tw|2 + a|∇w|2) dxdt.
(43)

Next, we deal with the term A4 given by

A4 = 2s

∫∫
Q

∂tφ∂tw∇a · ∇w dxdt

= 2s

∫ T

−T

∫
Ω1

∂tφ1∂tw1∇a1 · ∇w1 dxdt+ 2s

∫ T

−T

∫
Ω2

∂tφ2∂tw2∇a2 · ∇w2 dxdt.
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Let us notice that, using (A.1) and (A.2), there exists C > 0 depending on β, T ,
∥a∥W 1,∞ and α0 such that∣∣∣∣∣2s

∫∫
{φ<0}

∂tφ∂tw∇a · ∇w dxdt

∣∣∣∣∣ ≤ Cs

∫∫
{φ<0}

|∂tw|2 + a|∇w|2 dxdt, (44)

where {φ < 0} := {(t, x) ∈ (−T, T ) × Ω : φ(t, x) < 0}. On the contrary, in the set
{φ > 0} := {(t, x) ∈ (−T, T )× Ω : φ(t, x) > 0} i.e.,{

(t, x) ∈ (−T, T )× Ω : µx1(x) > βt2
}
=
{
2
√
β
√

µx1(x) > |∂tφ(t, x)|
}
,

we get, after using Young’s inequality, (A.1), (A.2) and the definition of L in (18):∣∣∣∣∣∣∣2s
∫ ∫
{φ>0}

∂tφ∂tw∇a · ∇w dxdt

∣∣∣∣∣∣∣ ≤ 2s

∫∫
{φ>0}

|∂tφ||∂tw||∇a||∇w| dxdt

≤ 4s
√
βL∥∇a∥L∞
√
α0

∫∫
{φ>0}

|∂tw|
√
a|∇w| dxdt

≤ 2s
√
βL∥∇a∥L∞
√
α0

∫∫
{φ>0}

(
|∂tw|2 + a|∇w|2

)
dxdt.

(45)

Denoting

r :=
L∥∇a∥L∞

√
α0

, (46)

we obtain, after combination of (43), (44) and (45)

A1 +A2 +A3 +A4 ≥
(
−2β + α0m1ρ− 2

√
α0

√
βr
)
s

∫∫
Q

(|∂tw|2 + a|∇w|2) dxdt

− Cs

∫ T

−T

∫
Bε(x1)

(|∂tw|2 + a|∇w|2) dxdt− Cs

∫∫
{φ<0}

(|∂tw|2 + a|∇w|2) dxdt.

Assuming that β satisfies

0 < β < α0

(√(r
4

)2
+

m1ρ

2
− r

2

)2

, (47)

so that −2β + α0m1ρ− 2
√
α0

√
βr ≥ C > 0, then there exists C > 0 such that

A1 +A2 +A3 +A4 ≥ Cs

∫∫
Q

(|∂tw|2 + a|∇w|2) dxdt

− Cs

∫ T

−T

∫
Bε(x1)

(|∂tw|2 + a|∇w|2) dxdt− Cs

∫∫
{φ<0}

(|∂tw|2 + a|∇w|2) dxdt.
(48)
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Let us deal with the integrals A5, A6 and A7. We write the sum these integrals
in (24), as follows

A5 +A6 +A7 = s3
∫∫

Q

|w|3cw dxdt, (49)

where cw = cw(t, x) is given by

cw = (|∂tφ|2 − a|∇φ|2)(3∂2
t φ−∇a · ∇φ− a∆φ+ αa) + 2a2D2 φ(∇φ,∇φ)

+ 2a|∇φ|2∂2
t φ.

On one hand, since φ and a are regular in each one of the sets Ω1 and Ω2, it is clear
that there exists C > 0 such that

sup
(−T,T )×(Ω1∪Ω2)

|cw(t, x)| ≤ C.

On the other hand, since φ(t, x) = µx1(x) − βt2, we can minimize cw in Ω \ Bε(x1),
using (13), (40) and (A.4) as follows:

cw = (4β2t2 − a|∇µx1 |2)(−6β −∇a · ∇µx1 − a∆µx1 + αa) + 2a2D2 µx1(∇µx1 ,∇µx1)

− 4aβ|∇µx1 |2

≥ (4β2t2 − a|∇µx1 |2)
(
−6β +

1

2
∇a · ∇µx1 − am1

)
+ 2a2m1|∇µx1 |2 − 4aβ|∇µx1 |2

≥ −4β2t2
(
6β +

|∇a||∇µx1 |
2

+ am1

)
+ a|∇µx1 |2

(
6β − ∇a · ∇µx1

2
+ 3am1 − 4β

)
≥ −4β2t2

(
6β +

|∇a||∇µx1 |
2

+ am1

)
+ a|∇µx1 |2 (2β + am1(2 + ρ)) .

Moreover, using (14), (A.1), (A.2) and (18) we can continue minimizing cw in the
region

{(t, x) ∈ (−T, T )× Ω\Bε(x1) : φ(t, x) > 0}
=
{
(t, x) ∈ (−T, T )× Ω \Bε(x1) : −4β2t2 ≥ −4βµx1(x)

}
as follows:

cw ≥− 4βµx1

(
6β +

|∇a||∇µx1 |
2

+ am1

)
+ a|∇µx1 |2 (2β + am1(2 + ρ))

=2β
(
a|∇µx1 |2 − µx1 |∇a||∇µx1 |

)
− 24β2µx1 + am1

(
(2 + ρ)a|∇µx1 |2 − 4βµx1

)
≥2β(α0c

2
1 − L2∥∇a∥L∞∥∇µx1∥L∞)− 24β2L2 + am1

(
(2 + ρ)α0c

2
1 − 4βL2

)
.

In particular, recalling the notation for r in (46) and if

β < α0
(2 + ρ)c21

4L2
, (50)
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we get

cw ≥2β(α0c
2
1 − L2∥∇a∥L∞∥∇µx1∥L∞)− 24β2L2 + α0m1

(
(2 + ρ)α0c

2
1 − 4βL2

)
=2βα0

(
c21 − L∥∇µx1∥L∞r

)
− 24β2L2 + α2

0m1(2 + ρ)c21 − 4βα0L
2m1

≥− 24β2L2 − 2βα0

∣∣c21 − L∥∇µx1∥L∞r − 2L2m1

∣∣+ α2
0m1(2 + ρ)c21. (51)

Now, noticing that (51) corresponds to a second order polinomial in β, we assert that
there exists a positive constant C > 0 such that

−24β2L2 − 2βα0

∣∣c21 − L∥∇µx1∥L∞r − 2L2m1

∣∣+ α2
0m1(2 + ρ)c21 ≥ C > 0,

for all β satisfiying

0 < β < α0ρ0, (52)

where

ρ0 :=
1

24L2

[∣∣c21 − L∥∇µx1∥L∞r − 2L2m1

∣∣2 + 24L2m1(2 + ρ)c21

]1/2
−
∣∣c21 − L∥∇µx1∥L∞r − 2L2m1

∣∣ . (53)

Therefore, (49) becomes

A5 +A6 +A7 ≥ Cs3
∫∫

Q

|w|2 dxdt− Cs3
∫ T

−T

∫
Bε(x1)

|w|2 dxdt

− Cs3
∫∫

{φ<0}
|w|2 dxdt. (54)

Step 4 Conclusion On one hand, taking into account that B∂Ω1
+B∂Ω2

= B∂Ω+[BΓ∗ ]
we have, thanks to the Dirichlet homogeneous boundary condition of v = e−sφw,

∇w = ∂νw ν⃗, on ∂Ω

and then we obtain

B∂Ω ≥ −Cs

∫ T

−T

∫
Γ+

µx1

|∂νw|2 dσdt, (55)

where Γ+
µx1 is defined in (15).

On the other hand, let us take β1 such that the conditions (32), (47), (50) and
(52) hold, that is,

0 < β1 < α0 min

 2

[diam(Ω)]2(1 +M1)
,

(√(r
4

)2
+

m1ρ

2
− r

2

)2

,
(2 + ρ)c21

4L2
, ρ0


(56)

where ρ0 is defined in (53). Then, we can combine inequality (39) with estimates (48),
(54) and (55) to conclude that for all β ∈ (0, β1) there exists s0 > 0 and C > 0 such
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that, for all s ≥ s0:

AΩ1
+AΩ2

+B∂Ω1
+B∂Ω2

≥ Cs

∫∫
Q

(|∂tw|2 + a|∇w|2 + s2|w|2) dxdt

− Cs

∫ T

−T

∫
Bε(x1)

(|∂tw|2 + a|∇w|2 + s2|w|2) dxdt− Cs

∫ T

−T

∫
Γ+

µx1

|∂νw|2 dσdt

− Cs

∫∫
{(t,x)∈(−T,T )×Ω: φ<0}

(|∂tw|2 + a|∇w|2 + s2|w|2) dxdt

− Cs3
∫∫

{(t,x)∈Σ∗: φ<0}
|w|2 dσdt− Cs2

∫
Γ∗

|w(±T )|2dσ.

(57)

Recalling the definition of YU in (25), we also need to deal with

YΩ1
+ YΩ2

= s

∫ T

−T

∫
Ω1

a21w1∇w1 · ∇α1 dxdt+ s

∫ T

−T

∫
Ω2

a22w2∇w2 · ∇α2 dxdt.

Notice that from (40) we have α = ∆µx1 −m1 +
3
2a∇a · ∇µx1 and

sup
x∈Ω1∪Ω2

|∇α(x)| ≤ C,

with C depending in particular on ∥aj∥C2 , ∥µx1
j ∥C3 and m1. Indeed, using (A.1) and

Young’s inequality we obtain

|YΩ1
+ YΩ2

| ≤ C

∫∫
Q

a|∇w|2 dxdt+ Cs

∫∫
Q

|w|2 dxdt. (58)

Similarly, from the definition of EU (±T ) in (27) we readily get

|EΩ1
(±T ) + EΩ2

(±T )| ≤ Cs

∫
Ω

(|∂tw(±T )|2 + |∇w(±T )|2 + s2|w(±T )|2) dx.

We also have from Rw = −s(∂2
t φ− div(a∇φ))w− αasw+∇a · ∇w given in (21)∫∫

Q

|Rw|2 dxdt =
∫∫

Q

∣∣−s(∂2
t φ− div(a∇φ))w − αasw +∇a · ∇w

∣∣2 dxdt

≤ Cs

∫∫
Q

|w|2 dxdt+ 2

∫∫
Q

|∇a · ∇w|2 dxdt

≤ Cs

∫∫
Q

|w|2 dxdt+ 2∥∇a∥L∞

α0

∫∫
Q

a |∇w|2 dxdt

≤ Cs

∫∫
Q

|w|2 dxdt+ C

∫∫
Q

a |∇w|2 dxdt.

(59)

Finally, taking into account (22) and since we have estimated by below the
expression

(P1w,P2w)L2((−T,T )×Ω) = AΩ1
+AΩ2

+ YΩ1
+ YΩ2

+B∂Ω1
+B∂Ω2

+ EΩ1
(±T )

+ EΩ2
(±T ),



22

we can use s to absorb (58) and (59) by the positive dominant terms on the right-hand
side of (57). More precisely, we obtain the inequality

s

∫∫
Q

(|∂tw|2 + a|∇w|2 + s2|w|2) dxdt+ s3
∫∫

Σ∗

|w|2 dσdt+
∫∫

Q

|P1w|2 dxdt

≤ C

∫∫
Q

|Pw|2 dxdt+ Cs

∫ T

−T

∫
Γ+

µx1

|∂νw|2 dσdt+ Cs3
∫∫

{(t,x)∈Σ∗: φ<0}
|w|2 dσdt

+Cs

∫∫
{(t,x)∈(−T,T )×Ω: φ<0}

(|∂tw|2 + a|∇w|2 + s2|w|2) dxdt

+Cs

∫
Ω

(|∂tw(±T )|2 + |∇w(±T )|2 + s2|w(±T )|2) dx+ Cs2
∫
Γ∗

|w(±T )|2dσ

+Cs

∫ T

−T

∫
Bε(x1)

(|∂tw|2 + a|∇w|2 + s2|w|2) dxdt,

(60)

for (s ≥ s0), where Pw = esφL(e−sφw) and L = ∂2
t − div(a(x)∇).

Returning to v = e−sφw and using

|Lv|2 ≤ C|Lqv|2 + Cm|v|2,

we can choose s large enough to absorb Cm|v|2 by the dominant terms on the left-hand
side of (60) and then we obtain the desired result for Lq = ∂2

t − div(a(x)∇) + q.

2.2. Carleman estimate with initial kinetic energy

Corollary 2.5 (Carleman with initial kinetic energy) Assuming the same con-
ditions as stated in Theorem 1.5, and with φ given by (8), if

v(0, x) = 0, ∀x ∈ Ω,

then there exists s0 > 0 such that for all s ≥ s0,

J(v) := s1/2
∫
Ω

e2sφ(0)|∂tv(0)|2 dx.

can be added to the left-hand side of (16).

Recalling the notation w = esφv and using the assumption v(0, x) = 0 in Ω, we get
w(0, x) = 0 in Ω. This last condition, combined with the cut-off function χ ∈ C∞(R)
such that 0 ≤ χ ≤ 1 and

χ(τ) =

{
1, if τ > 0,

0, if τ ≤ −T,
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allows us to write the following equivalences:

s1/2
∫
Ω

e2sφ(0)|∂tv(0)|2 dx = s1/2
∫
Ω

|∂tw(0)|2 dx

= s1/2
∫
Ω

(
χ(0)|∂tw(0)|2 − χ(−T )|∂tw(−T )|2

)
dx

= s1/2
∫
Ω

∫ 0

−T

d

dt

(
χ(t)|∂tw(t)|2

)
dt dx

= s1/2
∫ 0

−T

∫
Ω

(
χ′(t)|∂tw(t)|2 + 2χ(t)∂tw∂

2
tw
)
dxdt.

(61)

Using the definition of P1w given in (20), we have ∂2
tw = P1w + a∆w − s2(|∂tφ|2 −

a|∇φ|2)w + 2∇a · ∇w. Then, using Young’s inequality, (61) becomes

s1/2
∫
Ω

e2sφ(0)|∂tv(0)|2 dx ≤ Cs1/2
∫∫

Q

|∂tw|2 dxdt

+ s1/2
∫ 0

−T

∫
Ω

2χ(t)∂tw
(
P1w + a∆w − s2(|∂tφ|2 − a|∇φ|2)w + 2∇a · ∇w

)
dxdt

≤ Cs

∫∫
Q

|∂tw|2 dxdt+ C

∫∫
Q

|P1w|2 dxdt

+ 2s1/2
∫ 0

−T

∫
Ω

χ(t)∂tw(a∆w − s2(|∂tφ|2 − a|∇φ|2)w + 2∇a · ∇w) dxdt.

(62)

The goal is to estimate the right-hand side of the previous inequality using Carleman
estimates (60) in the variable w . To achieve this, we need to perform integration by
parts in the last integral. We can break down the sum of this computation into three
terms: T1, T2 and T3. Therefore, we can write the final result as

2s1/2
∫ 0

−T

∫
Ω

χ(t)∂tw(a∆w − s2(|∂tφ|2 − a|∇φ|2)w + 2∇a · ∇w) dxdt = T1 + T2 + T3.

(63)

As is customary, we will begin by computing each term on a generic set U without
boundary conditions. We will then apply these computations to both sets Ω1 and
Ω2, combining the common integrals supported on Γ∗. We can use the fact that
w(0, x) = 0 in Ω and χ(−T ) = 0. By integrating by parts, using the transmission
conditions (34), Young’s inequality, and assumptions (A.1) - (A.2), it is easy to obtain
the next estimate.

T1 + T2 + T3 ≤ Cs

∫∫
Q

(
|∂tw|2 + a|∇w|2 + s2|w|2

)
dxdt+ Cs3

∫∫
Σ∗

|w|2 dσdt.

Putting together the previous estimates for T1, T2 and T3 in (63), we can write
the inequality (62) as

s1/2
∫
Ω

e2sφ(0)|∂tv(0)|2 dx

≤ Cs

∫∫
Q

(|∂tw|2 + a|∇w|2 + s2|w|2) dxdt+ s3
∫∫

Σ∗

|w|2 dσdt+
∫∫

Q

|P1w|2 dxdt,
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which using simultaneously (60) and (16) give

s1/2
∫
Ω

e2sφ(0)|∂tv(0)|2 dx+ s

∫ T

−T

∫
Ω

e2sφ(|∂tv|2 + a|∇v|2 + s2|v|2) dxdt

≤ C

∫ T

−T

∫
Ω

e2sφ(Lqv)
2 dxdt+ Cs

∫ T

−T

∫
Γ+

µx1

e2sφ |∂νv|2 dσdt

+ Cs

∫∫
{(t,x)∈(−T,T )×Ω: φ<0}

e2sφ(|∂tv|2 + a|∇v|2 + s2|v|2) dxdt

+ Cs

∫ T

−T

∫
Bε(x1)

e2sφ(|∂tv|2 + a|∇v|2 + s2|v|2) dxdt

+ Cs

∫
Ω

e2sφ(±T )(|∂tv(±T )|2 + |∇v(±T )|2 + s2|v(±T )|2) dx

+ Cs3
∫∫

{(t,x)∈(−T,T )×Γ∗: φ<0}
e2sφ|v|2 dσdt+ Cs2

∫
Γ∗

e2sφ(±T )|v(±T )|2dσ.

(64)

3. Lipschitz Stability

In this part of the paper, we present the proof of Theorem 1.4. The proof strategy
is to carefully follow the well-known approach for proving Lipschitz stability for the
potential recovery, specifically in the scenario of smooth a = a(x) wave speed. We will
need to construct a convenient cut-off function that would enable us to apply estimate
(64). Furthermore, we will require the combination of two weights, each allowing us
to remove localized integrals in Bε(x1) and Bε(x2).

3.1. Initiating the Bukgheim-Klibanov method

Let up and uq be the corresponding solutions of (1) associated to potentials p and q.
Then 

(∂2
t − div(a(x)∇) + q)(up − uq) = (q − p)up, in (0, T )× Ω,

up − uq = 0, on (0, T )× ∂Ω,

(up − uq)(0) = 0, ∂t(up − uq)(0) = 0, in Ω.

Next we define y = ∂t(up − uq) and we can notice that y satisfies
(∂2

t − div(a(x)∇) + q)y = (q − p)∂tup, in (0, T )× Ω,

y = 0, on (0, T )× ∂Ω,

y(0) = 0 ∂ty(0) = (q − p)u0, in Ω.

(65)

Let us observe that the assumption up ∈ H1(0, T ;L∞(Ω)) implies that (q −
p)∂tup ∈ L1(0, T ;L2(Ω)) and (q − p)u0 ∈ L2(Ω). It is a classical result that under
these assumptions and for a = a(x) under the setting of assumptions (A.1)- (A.4) and
q ∈ L∞(Ω), equation (65) admits a unique weak solution

y ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)), (66)
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where the energy Ey(t) = ∥∂ty(t)∥2L2(Ω) + a∥∇y(t)∥2L2(Ω) satisfies

Ey(t) ≤ C∥(q − p)u0∥2L2(Ω) + C∥(q − p)∂tup∥2L1(0,T ;L2(Ω)). (67)

Moreover, we can assert that ∂νy belongs to L2(0, T ;L2(∂Ω)) and that there exists a
positive constant C depending in particular on ∥up∥H1(0,T ;L∞(Ω)) such that

∥∂νy∥2L2(0,T ;L2(∂Ω)) ≤ C∥q − p∥2L2(Ω).

To apply Corollary 2.5 in this section, we need to extend the functions y and
∂tup to (−T, T ) by taking their odd extensions in the t-variable. This odd extension
enables us to maintain the regularity (66) in (−T, T ). We will use the same notation
for the extended functions. As a result, we obtain:

(∂2
t − div(a(x)∇) + q)y = (q − p)∂tup, in (−T, T )× Ω,

y = 0, on (−T, T )× ∂Ω,

y(0) = 0 ∂ty(0) = (q − p)u0, in Ω.

(68)

The proof of Lipschitz stability can be obtained by estimating the initial velocity
∂ty(0) = (q − p)u0 in (68) using the right-hand side of the same equation. To achieve
this estimation, we can apply Carleman estimates (64). However, it is important to
ensure that the functions used in the Carleman estimate (64) meet the transmission
conditions (4). Moreover, these functions should allow us to eliminate additional
observations that are supported on (−T, T ) × Bε(x1), as well as terms evaluated at
±T and in the regions of (−T, T )× Ω and (−T, T )× Γ∗ where {φ < 0}. Specifically,
we will require:

• The combination of the weight φ(t, x) = µx1(x) − βt2 with a second weight
ϕ(t, x) = µx2(x) − βt2 defined in (17) to eliminate the corresponding integrals
supported on (−T, T )×Bε(x1) and (−T, T )×Bε(x2).

• The construction of a cut-off function θφ and θϕ(depending either on φ and ϕ) to
get rid of pointwise terms evaluated at ±T and integrals supported on {φ < 0}
and {ϕ < 0} respectively.

3.2. Defining a convenient cut-off function

Consider
φ(t, x) = µx1(x)− βt2 and ϕ(t, x) = µx2(x)− βt2,

with µx1 and µx2 previously defined. From (12) we can chose ε̃ < min{δ1, δ2} with δ1
and δ2 satisfying

µxi(x) ≥ δi > 0 ∀x ∈ (Ω1 ∪ Ω2) \Bε(xi), i = 1, 2.

We can simply choose δ1 = δ2 = ε2/[diam(Ω)]2 and then take ε̃ < ε2/ [diam(Ω)]
2
so

that we have

0 < ε̃ < inf
(Ω1∪Ω2)\Bε(xk)

µxk(x), k = 1, 2.

Recalling the notation φj(t, x) = µx11Ωj
(x) − βt2 for j = 1, 2, we define

θφ ∈ C∞((−T, T ); Ω) as follows. First, in (−T, T )× Ω1 we define
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θφ1 (t, x) =

{
0, if φ1(t, x) < M1,

1, if φ1(t, x) ≥ M1 + ε̃
(69)

and in (−T, T )× Ω2

θφ2 (t, x) =

{
0, if φ2(t, x) < M2,

1, if φ2(t, x) ≥ M2 + γ,
(70)

for constants M1, M2 and γ given in (10). The key observation is that the variation
from zero to one must be done in (−T, T )×Ω1 and (−T, T )×Ω2 satisfying particularly
the trace condition

∂θφ1
∂ν1

=
∂θφ2
∂ν2

= 0, on (0, T )× Γ∗. (71)

Note that for the second weight, ϕ(t, x) = µx2(x) − βt2, we define θϕ ∈
C∞((−T, T )× Ω) in a strictly analogous fashion of (69) and (70).

Figure 3.2(left) represents the context of the application of θφ. The variation of
θφ1 in (−T, T )× Ω1 needs to be done between the upper blue line (φ1 = M1) and the
lower red curved line (φ1 = M1 + ε̃). Similarly, in (−T, T ) × Ω2, the variation of θφ2
must be done between the upper blue line (φ2 = M2) and the lower red curve line
(φ2 = M2 + γ).

In the 1D case, condition (71) can be achieved by allowing just a “perpendicular
variation” at the points of discontinuity. See in particular [1, Section 3.1] for the
situation of two connected branches in the case of waves on networks. In the setting
of Figure 3.2(right), it means that the cut-off function’s level sets going from 0 above
the blue line toward 1 below the red line are parallel when crossing Γ∗ perpendicularly.

Figure 1. Context of the application of θφ and the behaviour of θφ in a
neighborhood of Γ∗ satisfying (71).

3.3. Applying Carleman estimates

Let us take β satisfying
L2

T 2
< β < β0, (72)
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which can be done since the assumption (19) on T . Then, using the function θφ

defined in (69) and (70) and the analogous function θϕ let us set

v1 = θφy and v2 = θϕy,

for y solving (68). Note that as soon as condition (71) is satisfied for θφ and θϕ

respectively and in view of the condition for β in (72), then v1 and v2 satisfies the
next properties.

• v1 and v2 satisfies the same transmission conditions as (4):

v11 = v12 , and a1
∂v11
∂ν1

+ a2
∂v12
∂ν2

= 0, on (0, T )× Γ∗,

v21 = v22 , and a1
∂v21
∂ν1

+ a2
∂v22
∂ν2

= 0, on (0, T )× Γ∗.

• v1(±T ) = v2(±T ) = 0 and ∂tv
1(±T ) = ∂tv

2(±T ) = 0, in Ω.

• v1 and its derivatives vanishes both in the region {(t, x) ∈ (−T, T )× Ω : φ < 0}
and {(t, x) ∈ (−T, T )×Γ∗ : φ < 0}. The same applies to v2 in the corresponding
regions {(t, x) ∈ (−T, T )× Ω : ϕ < 0} and {(t, x) ∈ (−T, T )× Γ∗ : ϕ < 0}.

• The equations
(∂2

t − div(a(x)∇) + q)v1 = θφ(q − p)∂tup + [Lq, θ
φ]y, in (−T, T )× Ω,

v1 = 0, on (−T, T )× ∂Ω,

v1(0) = 0, ∂tv
1(0) = θφ(0)(q − p)up(0), in Ω,

(73)

and
(∂2

t − div(a(x)∇) + q)v2 = θϕ(q − p)∂tup + [Lq, θ
ϕ]y, in (−T, T )× Ω,

v2 = 0, on (−T, T )× ∂Ω,

v2(0) = 0, ∂tv
2(0) = θϕ(0)(q − p)up(0), in Ω,

(74)

are satisfied. Here [A,B]y = A(By) − B(Ay) stands for the commutator of two
operators A and B. Additionally a = a(x) also satisfies the multiplier condition
(A.4) and q ∈ L∞

≤m(Ω).

Now, we are in the position of applying the inequality (64) to both v1 and v2 and
to sum up the resulting inequalities. Consequently, we obtain, for all s ≥ s0,
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s1/2
∫
Ω

e2sφ(0)|∂tv1(0)|2 dx + s

∫ T

−T

∫
Ω

e2sφ(|∂tv1|2 + a|∇v1|2 + s2|v1|2) dxdt

+ s1/2
∫
Ω

e2sϕ(0)|∂tv2(0)|2 dx+ s

∫ T

−T

∫
Ω

e2sϕ(|∂tv2|2 + a|∇v2|2 + s2|v2|2) dxdt

≤ C

∫ T

−T

∫
Ω

e2sφ(Lqv
1)2 dxdt+ C

∫ T

−T

∫
Ω

e2sϕ(Lqv
2)2 dxdt

+ Cs

∫ T

−T

∫
Γ+

µx1

e2sφ
∣∣∂νv1∣∣2 dσdt+ Cs

∫ T

−T

∫
Γ+

µx2

e2sϕ
∣∣∂νv2∣∣2 dσdt

+ Cs

∫ T

−T

∫
Bε(x1)

e2sφ(|∂tv1|2 + a|∇v1|2 + s2|v1|2) dxdt

+ Cs

∫ T

−T

∫
Bε(x2)

e2sϕ(|∂tv2|2 + a|∇v2|2 + s2|v2|2) dxdt.

(75)

3.4. Eliminating “blinds spots” integrals

In this step, we aim to eliminate the last two integrals (on Bε(x1) and Bε(x2)) of the
right-hand side of estimate (75). We will do this in two parts. Firstly, we will compare
v1 and its derivatives with v2 in the region (−T, T )×Bε(x1). Simultaneously, we will
also compare v2 with v1 in the region (−T, T ) × Bε(x2). For this comparison to be
possible, the value of ε needs to be small enough.

In the second part, we will use the integrals on the left-hand side of equation (75)
to absorb the integrals on Bε(x1) and Bε(x2). This absorption will be possible by
choosing an appropriate value of s that is large enough.

Note that using (11) we have the estimate

φ(t, x) = µx1(x)− βt2 ≤
[
pΩx1

1
(x− x1)

]2
− βt2 +M1

≤ ε2

[dist(x1,Γ∗)]
2 − βt2 +M1 in (−T, T )×Bε(x1). (76)

In addition, if we assume

ε < d :=
|x1 − x2|

2
(77)

we also have

ϕ(t, x) =
[
pΩx2

1
(x− x2)

]2
− βt2 +M1 =

|x− x2|2

|y(x)− x2|2
− βt2 +M1

≥ d2

[maxy∈Γ∗ dist(y, x2)]
2 − βt2 +M1 in (−T, T )×Bε(x1). (78)

Notice that the right-hand side of (76) depends on t ∈ (−T, T ). We are
particularly interested in the points of t ∈ (−T, T ) where

ε2

[dist(x1,Γ∗)]
2 − βt2 +M1 ≥ M1, (79)
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because in the other case, the function v1 vanishes according to the definition of θφ.
Using (79) in (78) we obtain

ϕ(t, x) ≥ d2

[maxy∈Γ∗ dist(y, x2)]
2 − ε2

[dist(x1,Γ∗)]
2 +M1 in (−T, T )×Bε(x1),

which for

ε <
d

maxy∈Γ∗ dist(y, x2)

diam(Ω) dist(x1,Γ∗)√
[dist(x1,Γ∗)]

2
+ [diam(Ω)]

2
:= d1, (80)

implies

ϕ(t, x) ≥ M1 + ε̃ in (−T, T )×Bε(x1) (81)

and consequently

|v1|2 = |θφy|2 ≤ |y|2 ≤ |θϕy|2 = |v2|2 in (−T, T )×Bε(x1). (82)

It is direct to check that the condition (81) implies that ∇θϕ and ∂tθ
ϕ neglects

in (−T, T )×Bε(x1). Then we obtain

|∇v2|2 = |∇θϕy + θϕ∇y|2 = |∇y|2 in (−T, T )×Bε(x1)

and

|∂tv2|2 = |∂tθϕy + θϕ∂ty|2 = |∂ty|2 in (−T, T )×Bε(x1).

These two last conditions can be used together with (82) to get

|∇v1|2 = |∇θφy + θφ∇y|2

≤ C|y|2 + C|∇y|2 ≤ C|v2|2 + C|∇v2|2 in (−T, T )×Bε(x1) (83)

and

|∂tv1|2 ≤ C|v2|2 + C|∂tv2|2 in (−T, T )×Bε(x1). (84)

Combining (82), (83) and (84), we observe that following estimate holds

s

∫ T

−T

∫
Bε(x1)

e2sφ(|∂tv1|2 + a|∇v1|2 + s2|v1|2) dxdt

≤Cs

∫ T

−T

∫
Bε(x1)

e2sφ(|∂tv2|2 + a|∇v2|2 + s2|v2|2) dxdt.
(85)

Performing analogous steps to arrive to (85), it is straightforward to obtain an
equivalent inequality to (85) in (−T, T )×Bε(x2); that is, if

ε <
d

maxy∈Γ∗ dist(y, x1)

diam(Ω) dist(x2,Γ∗)√
[dist(x2,Γ∗)]

2
+ [diam(Ω)]

2
:= d2, (86)
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then

s

∫ T

−T

∫
Bε(x2)

e2sϕ(|∂tv2|2+a|∇v2|2 + s2|v2|2) dxdt

≤Cs

∫ T

−T

∫
Bε(x2)

e2sϕ(|∂tv1|2 + a|∇v1|2 + s2|v1|2) dxdt.

(87)

Let us fix ε > 0 such that (77),(80) and (86) hold, i.e.,

ε < min {d, d1, d2} (88)

and note that in particular that the condition (88) also implies

ϕ(t, x)− φ(t, x) = µx2(x)− µx1(x) ≥ ε̃ > 0 in (−T, T )×Bε(x1) (89)

and

φ(t, x)− ϕ(t, x) = µx1(x)− µx2(x) ≥ ε̃ > 0 in (−T, T )×Bε(x2). (90)

Consequently, we observe that

Cse2sφ ≤ s

2
e2sϕ, in (−T, T )×Bε(x1) (91)

and

Cse2sϕ ≤ s

2
e2sφ, in (−T, T )×Bε(x2), (92)

for all s ≥ s0.
Plugging (91) and (92) in (85) and (87) respectively we can finally take s

sufficiently large to obtain (thanks to inequality (75))

s1/2
∫
Ω

e2sφ(0)|∂tv1(0)|2 dx+ s1/2
∫
Ω

e2sϕ(0)|∂tv2(0)|2 dx

≤ C

∫ T

−T

∫
Ω

e2sφ(Lqv
1)2 dxdt+ C

∫ T

−T

∫
Ω

e2sϕ(Lqv
2)2 dxdt

+ Cs

∫ T

−T

∫
Γ+

µx1

e2sφ
∣∣∂νv1∣∣2 dσdt+ Cs

∫ T

−T

∫
Γ+

µx2

e2sϕ
∣∣∂νv2∣∣2 dσdt.

(93)

3.5. Applying Bukhgeim-Klibanov method

Once we obtain (93), the strategy for proving Lipschitz stability in the inverse problem
is rather classic. We will need to pay specific attention to carefully combine the
information from the left-hand side of (93) for getting an estimate of ∥p− q∥L2(Ω).

Taking into account the definition of θφ and θϕ, it is clear that

θφ(0, x) = 1, in Ω \Bε(x1),

θϕ(0, x) = 1, in Ω \Bε(x2).



31

Using the assumption |u0(x)| ≥ δ > 0 a.e. in Ω, the left hand side of (93) is minimized
as follows

s1/2δ2
∫
Ω\Bε(x1)

e2sφ(0)|q − p|2 dx+ s1/2δ2
∫
Ω\Bε(x2)

e2sϕ(0)|q − p|2 dx

≤ Cs1/2
∫
Ω

e2sφ(0)|∂tv1(0)|2 dx+ s1/2
∫
Ω

e2sϕ(0)|∂tv2(0)|2 dx.
(94)

We now deal with the integrals of the right hand side of (93) involving |Lqv
1|2

and |Lqv
2|2. From (73) and (74) these terms satisfy

|Lqv
1|2 ≤ 2|θφ(q − p)∂tup|2 + 2 |[Lq, θ

φ]y|2 , (95)

|Lqv
2|2 ≤ 2|θϕ(q − p)∂tup|2 + 2

∣∣[Lq, θ
ϕ]y
∣∣2 . (96)

It is immediate to note that the commutator [Lq, θ
φ] is confined in regions

depending upon φ. First, in (−T, T ) × Ω1 and (−T, T ) × Ω2 we see that [Lq, θ
φ]

is confined at the points {M1 < φ1 < M1 + ε̃} and {M2 < φ2 < M2 + γ} respectively.
Therefore, substituting (95) into the first integral of the right hand side of (93) and
since φ(t, x) ≤ φ(0, x) in (−T, T )× Ω we obtain

∫ T

−T

∫
Ω

e2sφ(Lqv
1)2 dxdt ≤C

∫ T

−T

∫
Ω

e2sφ(0)|q − p|2|∂tup|2 dx dt

+ Ce2s(M1+ε̃)

∫ T

−T

∫
Ω1

(|y|2 + a1|∇y|2 + |∂ty|2) dxdt

+ Ce2s(M2+γ)

∫ T

−T

∫
Ω2

(|y|2 + a2|∇y|2 + |∂ty|2) dxdt.

(97)

Let us return to the interval (0, T ) in (97).To estimate |y|2, we can use the Poincaré
inequality. Then, we can use the energy estimates in equation (67) for y ∈ H1

0 (Ω) in
the last two integrals of the right-hand side of equation (97). This allows us to conclude
that there exists a positive constant (which change from line to line) depending on
∥up∥H1(0,T ;L∞(Ω)), T , and m such that

∫ T

−T

∫
Ω

e2sφ(Lqv
1)2 dxdt ≤C

∫
Ω

e2sφ(0)|q − p|2 dx+ Ce2s(M1+ε̃)

∫
Ω1

|q − p|2 dx

+ Ce2s(M2+γ)

∫
Ω2

|q − p|2 dx.
(98)

Moreover, according to the estimates

φ1(0, x) =
|x− x1|2

|y(x)− x1|2
+M1 ≥ ε2

[diam(Ω)]
2 +M1 > ε̃+M1 in Ω1 \Bε(x1)
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and

φ2(0, x) = γ
|x− x1|2

|y(x)− x1|2
+M2 ≥ γ +M2 in Ω2,

we deduce from (98) that

∫ T

−T

∫
Ω

e2sφ(Lqv
1)2 dxdt ≤ C

∫
Ω\Bε(x1)

e2sφ(0)|q − p|2 dx

+ C

∫
Bε(x1)

(
e2s(M1+ε̃) + e2sφ(0)

)
|q − p|2 dx. (99)

Similar arguments can be applied to the second integral in the right hand side of
(93). More precisely, using (96) together with the confinedness property of [Lq, θ

ϕ] in
the corresponding regions and since

ϕ1(0, x) =
|x− x2|2

|y(x)− x2|2
+M1 ≥ ε2

[diam(Ω)]
2 +M1 > ε̃+M1 in Ω1 \Bε(x2)

and

ϕ2(0, x) = γ
|x− x2|2

|y(x)− x2|2
+M2 ≥ γ +M2 in Ω2,

we also conclude that there exists a positive constant that may change from line to
line and depending in particular of ∥up∥H1(0,T ;L∞(Ω)), T and m such that

∫ T

−T

∫
Ω

e2sϕ(Lqv
2)2 dxdt ≤ C

∫
Ω\Bε(x2)

e2sϕ(0)|q − p|2 dx

+ C

∫
Bε(x2)

(
e2s(M1+ε̃) + e2sϕ(0)

)
|q − p|2 dx.

After returning to the interval (0, T ) and using the boundary conditions of v1

and v2 in (73) and (74), the boundary integrals in (93) can be expressed as follows in
terms of the variable y = ∂t(up − uq):

s

∫ T

−T

∫
Γµx1

e2sφ
∣∣∂νv1∣∣2 dσdt+ s

∫ T

−T

∫
Γµx2

e2sϕ
∣∣∂νv2∣∣2 dσdt

≤ Cs

∫ T

0

∫
Γ+

µx1

e2sφ |∂ν∂t(up − uq)|2 dσdt+ Cs

∫ T

0

∫
Γ+

µx2

e2sϕ |∂ν∂t(up − uq)|2 dσdt.

Summarizing, we have that using (94), (99), and these last two estimates, the
inequality (93) becomes
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s1/2
∫
Ω\Bε(x1)

e2sφ(0)|q − p|2dx+ s1/2
∫
Ω\Bε(x2)

e2sϕ(0)|q − p|2dx

≤ C

∫
Ω\Bε(x1)

e2sφ(0)|q − p|2dx+ C

∫
Ω\Bε(x2)

e2sϕ(0)|q − p|2dx

+ C

∫
Bε(x1)

(
e2s(M1+ε̃) + e2sφ(0)

)
|q − p|2dx+ C

∫
Bε(x2)

(
e2s(M1+ε̃) + e2sϕ(0)

)
|q − p|2dx

+ Cs

∫ T

0

∫
Γ+

µx1

e2sφ |∂ν∂t(up − uq)|2 dσdt+ Cs

∫ T

0

∫
Γ+

µx2

e2sϕ |∂ν∂t(up − uq)|2 dσdt.

(100)

Next, we notice that taking s sufficiently large, the first two integrals in the right-
hand side of (100) can be absorbed by the two integrals in the left-hand side of (100).
Furthermore, we note that

ϕ(0, x) =
|x− x2|2

|y(x)− x2|2
+M1 ≥ ε2

[diam(Ω)]
2 +M1 > M1 + ε̃ in Bε(x1)

and from (89) we also see that

φ(0, x) ≤ ϕ(0, x) in Bε(x1).

Analogously, we can assert that

φ(0, x) =
|x− x1|2

|y(x)− x1|2
+M1 ≥ ε2

[diam(Ω)]
2 +M1 > M1 + ε̃ in Bε(x2)

and from (90) we obtain

ϕ(0, x) ≤ φ(0, x) in Bε(x2).

According to the latest estimates and since ε satisfies (88), the third and fourth
integrals on the right-hand side of (100) satisfy∫

Bε(x1)

(
e2s(M1+ε̃) + e2sφ(0)

)
|q − p|2 dx ≤ C

∫
Ω\Bε(x2)

e2sϕ(0)|q − p|2 dx

and ∫
Bε(x2)

(
e2s(M1+ε̃) + e2sϕ(0)

)
|q − p|2 dx ≤ C

∫
Ω\Bε(x1)

e2sφ(0)|q − p|2 dx.

Taking s large enough in the left hand side of (100) to absorb the integrals in the right
hand side of these last two estimates we finally obtain

s1/2
∫
Ω\Bε(x1)

e2sφ(0)|q − p|2 dx+ s1/2
∫
Ω\Bε(x2)

e2sϕ(0)|q − p|2 dx

≤ Cs

∫ T

0

∫
Γ+

µx1

e2sφ |∂ν∂t(up − uq)|2 dσdt+ Cs

∫ T

0

∫
Γ+

µx2

e2sϕ |∂ν∂t(up − uq)|2 dσdt.

(101)
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It follows immediately that for fixed s, we can estimate the exponential on both
sides of (101). Indeed, using that we can cover Ω by Ω \ Bε(x1) and Ω \ Bε(x2), we
finally obtain, for Γ0 = Γ+

µx1 ∪ Γ+
µx2 , the inequality∫

Ω

|q − p|2 dx ≤ C

∫ T

0

∫
Γ0

|∂ν∂t(up − uq)|2 dσdt.

This ends the proof of Theorem 1.4 detailing the Lipschitz stability of the inverse
problem considered in this article.
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Reconstruction Algorithm on a wave Network. Preprint, December 2023.

[2] Lucie Baudouin, Maya de Buhan, and Sylvain Ervedoza. Convergent algorithm based on
Carleman estimates for the recovery of a potential in the wave equation. SIAM J. Numer.
Anal., 55(4):1578–1613, 2017.

[3] Lucie Baudouin, Maya de Buhan, Sylvain Ervedoza, and Axel Osses. Carleman-based
reconstruction algorithm for waves. SIAM J. Numer. Anal., 59(2):998–1039, 2021.

[4] Lucie Baudouin, Pamela Godoy, and Alberto Mercado. Carleman estimates for the wave
equation in heterogeneous media with non-convex interface. J. Differential Equations, 311:1–
28, 2022.

[5] Lucie Baudouin and Alberto Mercado. An inverse problem for Schrödinger equations with
discontinuous main coefficient. Appl. Anal., 87(10-11):1145–1165, 2008.

[6] Lucie Baudouin, Alberto Mercado, and Axel Osses. A global Carleman estimate in a
transmission wave equation and application to a one-measurement inverse problem. Inverse
Problems, 23(1):257–278, 2007.

[7] Mourad Bellassoued. Uniqueness and stability in determining the speed of propagation of
second-order hyperbolic equation with variable coefficients. Appl. Anal., 83(10):983–1014,
2004.

[8] Mourad Bellassoued and Masahiro Yamamoto. Carleman estimates and applications to inverse
problems for hyperbolic systems. Springer Monographs in Mathematics. Springer, Tokyo,
2017.

[9] A. L. Bukhgĕım and M. V. Klibanov. Uniqueness in the large of a class of multidimensional
inverse problems. Dokl. Akad. Nauk SSSR, 260(2):269–272, 1981.

[10] Spyridon Filippas. Quantitative unique continuation for wave operators with a jump
discontinuity across an interface and applications to approximate control. Preprint, October
2022.

[11] Ludovick Gagnon. Sufficient conditions for the controllability of wave equations with a
transmission condition at the interface. ESAIM Control Optim. Calc. Var., 29:Paper No.
51, 35, 2023.

[12] Oleg Yu. Imanuvilov and Masahiro Yamamoto. Global uniqueness and stability in determining
coefficients of wave equations. Comm. Partial Differential Equations, 26(7-8):1409–1425,
2001.

[13] Oleg Yu. Imanuvilov and Masahiro Yamamoto. Determination of a coefficient in an acoustic
equation with a single measurement. Inverse Problems, 19(1):157–171, 2003.

[14] Victor Isakov. Inverse problems for partial differential equations, volume 127 of Applied
Mathematical Sciences. Springer, Cham, third edition, 2017.



35

[15] Zifan Jiang and Wensheng Zhang. Stability of inverse source problem for a transmission
wave equation with multiple interfaces of discontinuity. ESAIM Control Optim. Calc. Var.,
29:Paper No. 38, 31, 2023.

[16] M. V. Klibanov and A. Timonov. Carleman estimates for coefficient inverse problems and
numerical applications. Inverse and Ill-posed Problems Series. VSP, Utrecht, 2004.

[17] I. Lasiecka, J.-L. Lions, and R. Triggiani. Nonhomogeneous boundary value problems for second
order hyperbolic operators. J. Math. Pures Appl. (9), 65(2):149–192, 1986.
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