Computing the basins of attraction of periodic solutions in a 4D model of a musical instrument - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Computing the basins of attraction of periodic solutions in a 4D model of a musical instrument

Calcul des bassins d'attraction des solutions périodiques dans un modèle 4D d'un instrument de musique.

Résumé

We investigate the multistable dynamics of a simple model of reed musical instrument written as a system of four ordinary differential equations. A bifurcation analysis is performed considering the blowing pressure -which is the main control parameter for the musician -as a bifurcation parameter. This unveils that several stable periodic solutions corresponding to different musical notes coexist on a range of the blowing pressure. We employ a machine learning technique (namely an explicit design space decomposition technique combined with an support-vector learning machine) to construct, in a well-chosen 3D subspace of the phase space, the boundary between the basins of attraction of the coexisting periodic solutions. Basins are of particular interest from a practical point of view: they relate to the playability of the regimes and to their sensitivity to perturbations.
Fichier principal
Vignette du fichier
Abstract_ENOC_HALL.pdf (714.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04682226 , version 1 (30-08-2024)

Identifiants

  • HAL Id : hal-04682226 , version 1

Citer

Thomas Passa, Soizic Terrien, Sylvain Maugeais, Bruno Gazengel. Computing the basins of attraction of periodic solutions in a 4D model of a musical instrument. 11th European Nonlinear Dynamics Conference 2024 (ENOC 2024), Jul 2024, Delft, Netherlands. ⟨hal-04682226⟩
50 Consultations
26 Téléchargements

Partager

More