Datascape: exploring heterogeneous dataspace - Archive ouverte HAL
Article Dans Une Revue Scientific Reports Année : 2024

Datascape: exploring heterogeneous dataspace

Résumé

Data science is a powerful field for gaining insights, comparing, and predicting behaviors from datasets. However, the diversity of methods and hypotheses needed to abstract a dataset exhibits a lack of genericity. Moreover, the shape of a dataset, which structures its contained information and uncertainties, is rarely considered. Inspired by state-of-the-art manifold learning and hull estimations algorithms, we propose a novel framework, the datascape, that leverages topology and graph theory to abstract heterogeneous datasets. Built upon the combination of a nearest neighbor graph, a set of convex hulls, and a metric distance that respects the shape of the data, the datascape allows exploration of the dataset’s underlying space. We show that the datascape can uncover underlying functions from simulated datasets, build predictive algorithms with performance close to state-of-the-art algorithms, and reveal insightful geodesic paths between points. It demonstrates versatility through ecological, medical, and simulated data use cases
Fichier principal
Vignette du fichier
s41598-024-52493-7.pdf (3.3 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04674835 , version 1 (21-08-2024)

Licence

Identifiants

Citer

Jakez Rolland, Ronan Boutin, Damien Eveillard, Benoit Delahaye. Datascape: exploring heterogeneous dataspace. Scientific Reports, 2024, 14, pp.7041. ⟨10.1038/s41598-024-52493-7⟩. ⟨hal-04674835⟩
107 Consultations
9 Téléchargements

Altmetric

Partager

More