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Datascape: exploring 
heterogeneous dataspace
Jakez Rolland  1,2*, Ronan Boutin 2, Damien Eveillard  1 & Benoit Delahaye  1

Data science is a powerful field for gaining insights, comparing, and predicting behaviors from 
datasets. However, the diversity of methods and hypotheses needed to abstract a dataset exhibits a 
lack of genericity. Moreover, the shape of a dataset, which structures its contained information and 
uncertainties, is rarely considered. Inspired by state-of-the-art manifold learning and hull estimations 
algorithms, we propose a novel framework, the datascape, that leverages topology and graph theory 
to abstract heterogeneous datasets. Built upon the combination of a nearest neighbor graph, a set 
of convex hulls, and a metric distance that respects the shape of the data, the datascape allows 
exploration of the dataset’s underlying space. We show that the datascape can uncover underlying 
functions from simulated datasets, build predictive algorithms with performance close to state-of-
the-art algorithms, and reveal insightful geodesic paths between points. It demonstrates versatility 
through ecological, medical, and simulated data use cases.

The quantity of data collected in various fields of societal impacts, such as economy, ecology, medicine, and 
industry, is growing daily, while the nature of the data is constantly evolving and becoming more heterogeneous1. 
Over the last decades, data has been produced only by designed scientific experiments that assure homogeneity 
of the data and the lack of bias. Instead, data is collected thanks to sensors, smartphones, and computers oppor-
tunistically, producing uncontrolled, heterogeneous data2. Datasets embed knowledge that data science aims to 
identify for designing decision support tools, such as those to measure the impact of anthropic activities3,4 or 
health status5. For this purpose, large datasets with many points and dimensions are often abstracted by objects 
like statistical distributions, statistical metrics, or parametric models, which qualify predictions, comparisons, 
and classification. For example, a linear regression model between two variables will summarize the 2-dimen-
sional cloud of points induced by two variables6, a non-linear model such as stated in7 is adapted to certain 
non-linear processes.

However, whether of high practical interest, these approaches are not generic as the choice of abstraction 
relies foremost on the question to answer and the data to process. Indeed, statistical models need the data to 
meet specific requirements for use8. Furthermore, these state-of-the-art abstractions do not allow an exploration 
of the knowledge without performing tedious meta-analyses driven by hypotheses9.

Given the growing data heterogeneity, we advocate for a generic framework for analyzing datasets and extract-
ing insights through their integration, facilitating comprehensive data exploration. We endorse that a generic 
approach to describing data should focus on the topology and geometry of the data rather than its sole statisti-
cal properties. A dataset is sampled on a multidimensional underlying space—the dataspace—with a structure 
and shape. Two complementary properties can describe this space: (1) its topology, i.e., which describes how 
elements of the space connect themselves, and (2) boundaries, i.e., the contour of the space, which describes 
an inside and an exterior. These combined properties allow us to consider natural data uncertainties without 
altering the data topology. The description of these properties relies on seminal works, including the notion of 
manifold (i.e., a generalization of curves and surfaces in high dimension), manifold learning algorithms10, and 
recent topological data analysis approaches11,12.

This study states and formalizes a framework—the datascape—to abstract a dataset thanks to a k-nearest-
neighbor graph and the decomposition of the underlying data space in convex hulls. Worth noticing, this study 
aims not to provide a faithful visualization of a dataset like tSNE, UMAP or PHATE but to illustrate how exciting 
properties of the datascape can be used. As a significant benefit, the datascape can leverage the power of graph 
theory to measure distances between points while considering the topology of the underlying space, exhibit 
path, and geodesics, and assess whether a given point belongs to the dataspace. We illustrate how the datascape 
can be used to abstract and explore a dataset, study its shape, follow up on the evolution of a particular point, 
make predictions, clusters, and more. We demonstrate the performance of the datascape abstraction, which we 
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applied to simulated, longitudinal medical, and spatial ecological data. In particular, we show that the datascape 
can uncover an underlying function from noisy simulated data and can be used to build predictive algorithms in 
the medical field with performance close to state-of-the-art predictive algorithms or to reveal insightful geodesic 
paths between ecological stations.

Results
Datascape rational
Whereas “Materials and methods” presents an extensive description of the datascape, this section proposes a 
less formal description for general and trans-application understanding sake. Let X = {xi}i∈N be a set of points 
of dimension d ∈ N sampled from a space M embedded in an ambient space A . We aim to construct a faithful 
abstraction of M—the datascape D—using the points X. However, building such an abstraction is a complex 
task for heterogeneous data.

We identify three sources of heterogeneity in a dataset X. (1) Certain phenomena live in non-linear spaces, 
such as systems that behave under non-linear processes like population dynamics13, reaction–diffusion sys-
tems, and biological processes14. (2) Using samples or observations to build a dataset can produce a biased 
representation15. For example, rare phenomena occurrences will be less sampled than common ones. Sporadic 
occurrences might not even appear. Consequently, the data X might over-represent some parts of the underly-
ing space M . At the same time, some points might appear isolated because they lie in a region of the space M 
poorly represented in the sample. (3) High dimensionality of data, often called the curse of dimensionality, can 
also produce heterogeneity16 as the distances between points increase drastically. The sample offers a highly 
incomplete view of the actual underlying space with holes and cavities (see “Materials and methods” section 
for a formal definition)17. The higher the dimension, the bigger the dataset must be to approximate its underly-
ing space faithfully. For being robust to this heterogeneity, an abstraction of a dataset must (1) be resilient to 
non-linearity, (2) minimize prior hypothesis and therefore the number of hyper-parameters it relies on, and (3) 
allow the description and comparison of elements of the dataset in respect of the shape of the underlying space.

Constructing the datascape relies on several steps illustrated in Fig. 1. We consider the dataset X as an input, 
sampled from an underlying space M with holes and a non-linear and non-convex structure. We will rely on 
manifold learning18 to capture the topology, i.e., the shape, of this dataset’s underlying space. Manifold learn-
ing techniques assume that the points from the dataset X lie on an underlying manifold, i.e., the space M19. A 
manifold, which is intuitively a generalization of the notion of a curved surface, is a topological space that locally 
behaves as a Euclidean space but may have different global properties. Many algorithms approximate the underly-
ing manifold structure of a dataset X by constructing the nearest neighbor graph11,18,20. Among others, the algo-
rithms PCA21 and MDS22 aim to approximate a supposed linear manifold from a dataset X, while the algorithms 
Isomap23, Local Linear Embedding24, Laplacian Eigenmaps25, Hessian Eigenmaps, TSNE26 and UMAP11 aim to 
approximate non-linear manifolds. In this work, we assume M is a non-linear Riemannian manifold. Inspired by 
existing techniques from the nearest neighbor construction step of Isomap23 and UMAP11, we propose to build 
a nearest neighbor graph G to approximate the manifold M and its topology, whose vertices are the points of X 
and where an edge exists between two points if one of them is among the k nearest neighbors of the other in the 
ambient space A . In order to enable the computation of distances and geodesics between all points, we add con-
necting edges to the graph when it is composed of disconnected components. We store the status of those edges 
and discard them when considering the shape of the datascape to avoid disrupting the topological properties of 
the underlying manifold. The graph is made undirected, thereby establishing a reciprocal notion of neighbor-
hood between points (see “Materials and methods”, section ‘Approximating the underlying manifold M with a 
neighborhood graph G’ for details on the connecting component and symmetrization steps). We equip the edges 
of G with weights corresponding to the distance between two nodes measured using the metric of the ambient 
space A (see Fig. 1b,c, and “Materials and methods” for details). The metric of the ambient space is crucial since 
it determines how the closest neighbors are chosen. Typically, manifold learning algorithms opt for Euclidean 
distance; however, users can select a distance metric that aligns more closely with the similarity among their data 
points, considering the study’s context and the nature of the data being processed.

The graph G captures the topology of the underlying space M and associates to each point of the dataset 
X a set of nearest-neighbor points called its neighborhood. However, G alone does not capture (a) the proper 
shape of the underlying space M and (b) the natural uncertainties of the data as it does not provide a notion of 
volume, interior or exterior.

A naive approximation of a dataset’s shape consists of building the dataset’s convex hull. However, unless 
the space M is convex, approximating M with a convex hull makes holes and cavities vanish, resulting in a loss 
of topological structures and information. Instead, we advocate for generalizing the above approach using the 
concept of Algebraic Topology called a good cover27. A cover of a space is a family of sub-spaces whose union is 
the space itself. This family is a good cover if all the intersections of the sub-spaces are convex. Having convex 
sub-spaces is a sufficient condition. Intuitively, a complex shape, can be decomposed into smaller and simpler 
convex shapes. We want to equip each points of X with a subspace of A that will account for its neighborhood 
and describes a sort of sampling uncertainty around it. The union of these subspaces forms the shape of the 
datascape. In Fig. 1c, one can see that the dataset X is included inside an oversized shape, delimited by the most 
exterior blue edges. This shape is the union of small polyhedrons formed by the graph’s edges G. These convex 
polyhedrons are the convex hulls of the neighborhoods of the vertices X of the graph G. Therefore, we approxi-
mate the neighborhood of every point of X by the convex hull of its graph neighbors, denoting it as local convex 
hull or neighborhood convex hull. The overall shape and volume of M is then approximated by the union of all 
these hulls, respecting the manifold topology of the graph G. In addition, to approximate the boundary surface 
of the dataspace M , we identify the points that lie on this surface—the extreme points E—as the points part 
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of the union of all local convex hulls which are extreme in every local convex hull they lie in. We are especially 
interested by the points of X lying on this surface. For illustration in Fig. 1c, the point C is not extreme in its 
convex hull, whereas D is extreme in its convex hull and extreme or outside every other convex hull. This property 
yields another advantage: it allows assessing if a new point is inside (resp. outside) the datascape by checking if it 
is located inside any (resp. outside every) local convex hull (Fig. 1d). A new point sampled on M but not located 
inside the datascape might reveal interesting, not yet captured, information about M . We also can measure how 
extreme a point is by measuring its distance to an extreme point E . Finally, G allows one to estimate topologi-
cally valid paths between a pair of points of X, and related distances as the sum of the weights of the edges of the 
shortest path, called geodesic, between them (Fig.  1c, for the shortest path and distance between A and B). The 
datascape D is a combination of the k-nearest neighbor graph G that approximates the underlying dataspace 
manifold M on which lies the dataset X, a set of extreme points E which defines its border and a set of convex 
hulls whose union form the shape of the datascape.

Figure 1.   Conceptual steps to build a datascape: (a) sampling dataset X from a continuous d-manifold M with 
a boundary. Within the datascape framework, the distance between two points is measured along the shortest 
path that follows the data’s shape. (b) The topology of the d-manifold M is abstracted with the nearest neighbor 
graph G. The graph might contain unconnected components. In this case, edges are added to connect them. 
(c) Directed edges are converted to undirected edges to symmetric neighbor relationships. The space M is 
approximated by the union of the neighbor convex hulls of all points. (d) Extreme points located on the border 
of the datascape are identified and colored in red. A new point added to the datascape is considered inside the 
latter if it is inside any of the neighbor convex hulls (see point F). Otherwise, they are considered outside the 
datascape (see point E).
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Datascape of a simulated dataset
For preliminary application, we generated 1000 samples from a mathematical formulation that incorporates noise 
around a given function (see “Materials and methods” for details and Fig. 2) and inside a torus. We constructed 
the corresponding datascapes with a k-nearest-neighbor graph (k = 10). Figure 2a depicts the neighborhood 
convex hulls, whose union approximates the data space, in blue and the datascape extreme points in red. It is 
worth noticing that extreme points are accurately located around the shape of the data. Figure 2a also depicts a 
geodesic between two points that follows the shape of the data. Measuring a distance along this geodesic gives 
a good approximation of the distance in the space of the dataset. Figure 2b underlines each point given their 
proximity to an extreme point of the datascape and emphasize a backbone that accurately approximates the func-
tion behind the sinusoidal data and highlights the topological structure of the torus. We artificially generated 
further points within the datascape with a triple density compared to the first estimation to further assess the 
precision (i.e., we randomly sampled three points in every neighborhood convex hull); see Fig. 2c for illustra-
tion, sustaining a similar shape as the original one. This latter property is potentially interesting for imputing 
missing heterogeneous data  (see reference Supplementary Materials for discussion) or generating synthetic data.

To investigate the influence of the parameter k on both the overall shape of the datascape and the accuracy of 
approximating the true metric of M , we conducted a study by sampling 100 points on a unit circle and construct-
ing various datascapes with k values ranging from 1 to 100. The comparison involved assessing the theoretical 
distances on the circle between every pair of points against the distances measured within the datascape. The 
evolution of these distances, depicted in Fig. 3, reveals a non-smooth pattern, exhibiting variations correspond-
ing to key topological changes induced by different values of k. Very small values of k create several components 
(before connecting these components) in the datascape ( k = 1 ), where no distance can be calculated. For the 
sake of visualization, we standardized the error distance associated with the infinite distance in the graph with a 
constant value of 1, which remains maximal in this graph. For k = 4 , the datascape becomes a single component 
with no cycle until k = 5 , and the mean error distance drops significantly. However, we can see in the shape of 
the datascape with k = 5 , that points close to each other on the circle remain, due to sampling noise, abnormally 
distant in the datascape. The topology of the circle appears at k = 6 , which leads to the smallest error distance 
of the plot. The distance approximation in the datascape is the best when the datascape is equipped with the key 
topological features of the circle manifold. Therefore, finding an akin value of k is an important step in building 
the datascape. To establish a systematic method for selecting k in more general cases and higher dimensions, 

Figure 2.   Illustration of the Datascape’s application on simulated datasets in 3d. (a) Datascape of simulated 
datasets. The neighborhood of each point, approximated by a convex hull, is depicted in light blue. The points 
identified as extreme, i.e., lying on the shape’s surface, are colored in red. The points inside the shape are grey. 
The black line depicts the shortest path (i.e., geodesic) between two faraway points in the datascape. (b) We 
colored each point for its proximity to an extreme point of the datascape. The points the farthest from extreme 
points are colored in green, whereas the red points are the closest. (c) Random sampling of 3000 points sampled 
inside the datascape showing that the shape is preserved.
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we propose a topological data analysis of the dataset X based on persistent homology and persistent diagrams. 
Details of this methodology are available in the Supplementary Materials section.

Spatial dataset: clustering and geodesic analysis of the global ocean
Ocean studies tackle some of the most significant spatial data. This field relies on a profound understanding of 
the Earth’s oceans, which hinges upon our ability to dissect and interpret critical measurements encompassing 
temperature, salinity, and water mass momentum. In stark contrast to atmosphere studies, delving into the 
intricate mechanisms of the inner ocean presents a challenge, necessitating a heavy reliance on the analysis of 
in situ observations and measurements. As a significant achievement, unraveling the Lagrangian circulation 
principle, where space is intricately intertwined with time, becomes pivotal in comprehending the dynamic 
nature of oceanic phenomena (i.e., the seascape)28. Furthermore, analyzing these data leads to identifying distinct 
marine provinces, as exemplified by the Longhurst system, which aids in categorizing and comprehending the 
vastness of oceanic ecosystems29. Remark that in such a global ocean context, topological analysis has emerged 
as a valuable tool, facilitating the comparison of models and observations30. However, these global ocean scale 
advancements do not fully integrate recent strides in biological research, such as high-throughput sequencing. 
Addressing this gap, the Tara Oceans campaign emerges as a groundbreaking initiative, aiming to incorporate 
cutting-edge biological techniques into oceanographic exploration31. With a focus on exploring the extreme 
states of the global ocean, Tara Ocean holds the promise of better understanding the intricate interplay between 
physical and biological components within the epipelagic layer of the ocean32.

We computed the datascape of the Tara Oceans dataset for a preliminary application in ocean studies and 
identifying connectivity between samples that describe extreme statuses of the ocean. The Tara Oceans dataset, 
consisting of approximately 900 ecological stations, measures nearly 90 environmental parameters across the 
global ocean33, collected over several years during two oceanographic campaigns. This application aims to clas-
sify ecological stations based on their biochemical properties and compare this clustering with a meta-genomic 
analysis34. We constructed the datascape over several variables (i.e., temperature, nitrate and iron concentra-
tions, oxygen, salinity, chlorophyll A, Light, the flux of Carbon at 150 m depth—see33 for details and units). Our 
analysis confirms that ocean currents (i.e., Lagrangian connectivities) significantly impact station similarities, 
as observed via the sole genomic observations35. We thus identified that stations in the same ocean or province 
belong to the same neighborhoods (higher connections between samples from similar colors). The datascape 
can, therefore, capture known similarities between geographic regions. Still, the connections between stations in 
the datascape show that geographically, two extreme stations far apart can be similar (see Fig. 4). In particular, 
it shows that similar ocean states are linked, like water masses at similar latitudes separated by a continent (i.e., 
horizontal lines in Fig. 4b) or polar samples linked across the globe (i.e., Southern Ocean samples in red are 
connected to the Artic ocean samples in purple).

As the Tara Oceans datascape relies on extreme ocean state samples at a global scale (i.e., few mesoscale sam-
ples), investigating geodesics between these states is also insightful. For illustration, the datascape reveals that the 
shortest path between two stations does not necessarily follow natural geographic or Lagrangian trajectories, as 

Figure 3.   Illustration of the progression of the average error in distances measured within the datascape 
(without connecting the graph components) and the theoretical distance of the underlying manifold (in this 
case, a circle) for a given value of k. Specific values of k were selected, and the resulting shape and topology of 
the datascape were included in the visualization.
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illustrated by the bold geodesics connecting the western Mediterranean Sea to the Arctic Ocean in Fig. 4b,c. It 
proposes the smoothest similarity path between the two stations, which connect water masses from the Humboldt 
Current and those from the Gulf Stream, therefore showing a process of Atlantification of the Arctic Ocean that 
results from climate change36. Our findings provide new insights into the Tara dataset and highlight the potential 
of the datascape framework for analyzing and visualizing large, complex datasets, but call for further analysis, 
including incorporating longitudinal datasets, metagenomics knowledge, or Lagrangian circulation across the 
globe to enrich previous studies that define the concept of the seascape34.

Longitudinal dataset: application to health monitoring
We computed the datascape of clinical data available for the Physionet cardiology challenge37. The data aims to 
monitor patients’ clinical parameters for prediction and personalized medicine over time. Figure 5a illustrates 
the resulting datascape, where nodes (patient data) are colored by category: deceased patients are in red, whereas 
patients in remission are in blue. As the Physionet datascape shows regions relatively specific to the patient’s 
status, we aim to experiment how the datascape performs as an unsupervised classifier. For this purpose, we 
associate a risk score for each patient (i.e., node) by calculating the ratio of deceased patients in its neighborhood 
(see “Materials and methods” for details). It shows that a patient in the upper region of the datascape has a neigh-
borhood enriched with deceased patients compared to the lower region. We computed several datascapes with 
different values for the parameter k to assess this putative predictive feature further. We compared the distribution 
of AUC (area under curve) obtained over a 4-fold with the results of supervised predictive algorithms; two diverse 
random forests38 and a logistic regression (see Fig. 5d); and the unsupervised method k-means, which separates 
the space in k cluster, in a similar manner the datascape does with local convex hulls. In this context of building a 
classifier, k should be chosen so that it maximizes the given objective: the AUC. All algorithms have been trained 
on a train dataset and evaluated on a test dataset. As expected, both supervised algorithm show better AUCs 
than the unsupervised algorithm, datascape included. However, we can see that with k = 50, the sole datascape 
structure shows better AUCs than the 5 different k-means algorithms. Overall, it shows that an unsupervised 
construction of the datascape captures accurate differences between the two populations of patients. As its struc-
ture is relevant for unsupervised prediction, we monitored the trajectory of a patient within the datascape and 
its formalization via geodesics. For illustration, Fig. 5b,c illustrate the trajectories of resp a deceased patient and 
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Figure 4.   Tara Oceans metadata datascape. (a) Graph of the datascape computed on the Tara Oceans metadata 
dataset (i.e., projected in two dimensions for the sake of visualization using the Fruchterman–Reingold layout 
algorithm). Each node is a sample colored by ocean province, and edges connect neighbor samples in the 
datascape. The bold line shows the shortest path (i.e., geodesic) between a point in the western Mediterranean 
Sea and a point in the Arctic Ocean, both circled in red. (b) The datascape and the geodesic are projected on the 
planisphere, emphasizing k-nearest-neighbor edges from the datascape graph. Two stations linked on the map 
are neighbors in the datascape. Colors are proportional to the distance (i.e., the darker lines are smaller distances 
in the datascape). The map has been created with R version 4.1.2 (https://​www.r-​proje​ct.​org/). (c) Zoom on the 
Mediterranean Sea.

https://www.r-project.org/


7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7041  | https://doi.org/10.1038/s41598-024-52493-7

www.nature.com/scientificreports/

a patient in remission. The patients evolve in a datascape region enriched with patients from the same category. 
Furthermore, the patient’s trajectory does not follow a geodesic (blues arrows in Fig. 5b,c) between the vertex 
of the first hour of stay and the vertex of the last hour of stay. Our study illustrates how valuable the datascape 
framework is to studying multidimensional longitudinal data regarding an existing reference space and, with 
the same abstraction, its capacity to leverage graph theory to build predictive models.

Discussion
The datascape abstracts a dataset using a neighbor graph and the union of convex hulls. The construction of the 
neighbor graph depends (1) on the choice of an ambient metric and (2) on the value of a parameter k used for 
initializing the number of neighbors for each vertex in the graph. The choice of the ambient metric is crucial 
in our work since this is how we determine the closest neighbors. Choosing a different metric might result in a 
different structure of the datascape and different weights on all edges. We have chosen the Euclidean distance as 
the ambient metric for applications presented herein. Still, the construction of the datascape is generic, and other 
metrics could be used given the context of the user’s study, such as the Manhattan distance, the Mahalanobis 
distances, or distances adapted to handle qualitative datasets39,40. However, one must carefully select a metric 
defined in the ambient space and that suits the nature of the different dimensions of the data. We illustrate this 
fact with the Wasserstein distance which requires a specific data type and an assumption about the sampled data 
X. The Wasserstein distance allows to measure the distance between two probability distributions over a manifold. 
The underlying concept involves measuring the work needed to transport the mass from a distribution A onto 
a distribution B to obtain distribution B. The transport should respect the geometry, shape, and metric of the 
probability space. Therefore, to use the Wasserstein distance instead of the Euclidean metric in the general case, 
(a) the data must contain a probability distribution as a dimension and (b) the underlying manifold has to be 
known, or an assumption about it has to be made—such as when the user is aware that the data is sampled over 
a sphere. However, in the general case, the underlying manifold remains unknown leading us to assume that 
the data is sampled over ℝn, and  we aim to approximate it through the datascape. In the case of data points X 
with dimensions representing known and probabilized manifolds, i.e. a probability distribution, the Wasserstein 
distance could be combined with the Euclidean distance or other metrics to build a meaningful distance given 

Figure 5.   Physionet datascape. (a) Graph of the datascape on the clinical data measured at the 48th hour. The 
graph is projected in two dimensions thanks to the Fruchterman–Reingold layout algorithm. The red nodes 
represent deceased patients, whereas the blue ones are those in remission. (b,c) On the left, visualization of the 
trajectories of resp. a deceased patient and a patient in remission within the datascape over time. The color of 
the trajectory evolves from purple (1st hour of hospitalization) to yellow (48th hour of hospitalization). The 
blue lines represent the geodesic between the 1st and the 48th hour of hospitalization—the corresponding 
evolution of the ratio of deceased patients in the neighborhood of the studied patients pictured on the right 
panel. (d) Benchmark on 4-fold model training, comparing the distribution of the AUC of the different models 
benchmarked. The predictive model based on the datascape is trained with several values for the parameter k.
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the heterogeneity of the dimensions. At last, The Wasserstein distance could be used on a probabilized datascape, 
once already constructed.

The choice of k is also context-dependent, as it affects the ability of the abstraction we build (the datascape) 
to preserve the geometric and topological properties of the underlying space M . We studied in Fig. 3 how the 
choice of k affects the approximation of the metric of M and we proposed in Supplementary Materials a topo-
logical data analysis pipeline to choose an akin value of k to capture key topological features of M . However, the 
underlying manifold M being unknown, we still cannot guarantee that the datascape will be equipped will all 
the key topological features of M . Techniques have been developed to analyze the effect of k and to help point 
out the value of k that best preserves the underlying properties of M . As an example, one can use topological 
data analysis such as persistent homology41 to study how the choice of k impacts the persistence of “shapes” in 
the abstraction we build of M . It is easy to see that for k = 0, there will be as many components in the abstrac-
tion as there are points in the dataset we use, while for a large enough k, there will be only one component. The 
persistence of components and holes in the abstraction can be studied by a statistical analysis over the potential 
values of k: those with the longest duration of life (when k varies) are called stable topological properties. The 
ultimate choice of  the parameter k should therefore be guided by how the obtained datascape captures those 
stable topological properties. Persistent diagrams provide a tool to explore the duration of life of topological prop-
erties, and a statistical analysis to detect the more stable properties in a persistent diagram and their associated 
k’s will help to reveal an adequate value for the parameter k for a given dataset. However, such topological data 
analysis are usually computationally expensive and most of the users of data representation techniques that use a 
similar parameter k (UMAP, tSNE, PHATE,…) do not perform them and instead choose a trade-off value for k. 
In this work, we have often chosen k = 10 as a tradeoff between computation time and precision of the datascape. 
Still, as shown in Fig. 5d, the ideal value for k depends on the study’s objective and must be chosen by the user.

As for other seminal studies in data science, the datascape is subject to the curse of dimensionality. In the 
context of high-dimensional datasets, the amount of data needed to obtain a sufficiently dense space for further 
analysis increases exponentially with the number of dimensions. For the corresponding datascape, having too 
many dimensions concerning the data density might result in having all the points X located on the border, i.e., 
considered extreme, drastically limiting the interest in assessing whether a point is inside or outside the datascape. 
This issue is the motivation for applying a preliminary dimension reduction. In particular, dimension reduction 
(DR) algorithms41 have been developed to search for a projection of the data in a space with a smaller dimension 
with a minimal deformation for a given metric. Such algorithms can be used on datasets without prior knowledge 
of meaningful metrics. Thus, the metric obtained by building the graph of the datascape can be provided to a DR 
algorithm to pre-process the data. Once done, the datascape can be computed using the same metric (projected 
on the new space) without the dimensionality issue. The datascape does not allow us to distinguish between 
sparse regions and outliers: both are treated as zones in the graph where the density of points is lower than others. 
In the future, we could eventually envision techniques to detect whether a new point (that we want to include 
in the datascape) is far from any point already included, but even in this case we would not be able to decide 
whether this new point belongs to a legitimate region that has not been sampled yet or whether it is an outlier.

Before considering adding a new point in a given datascape, one might be interested in deciding whether 
this addition brings further information to the datascape. Suppose this point is outside the boundaries of the 
existing datascape. In that case, it will provide a new neighborhood and cover a so-far unexplored part of the 
space, making its addition meaningful in knowledge. Reversely, if this point is already inside the boundaries, its 
addition will only be significant if it seriously disrupts the geodesic structure of the datascape. To decide whether 
this is the case, one could compute the matrix of the pairwise geodesic distances of the points “around” this new 
point—which approximates the local Riemannian metric distance—before and after adding the new point in the 
datascape. The difference between those matrices will measure how disruptive the new point is in the datascape 
and whether its addition is meaningful. Remark that choosing a threshold for this measure is akin to finding the 
tradeoff between exploration and exploitation in learning techniques.

By abstracting the data, the datascape is a formal model of the dataset. In other words, it is a proxy that 
one can use to study the dataset itself, from its topology, uncertainties, and use for prediction. The datascape 
framework answers many problems already handled by existing methods. For example, a classical data science 
pipeline proposes generic steps embedded by the datascape42–44. These steps start by imputing data via imputa-
tion algorithms (i.e., MICE45 or ImputePCA46), exploring data via dimension reduction technique (i.e., PCA47, 
t-SNE48 or UMAP11), building a classification tool (i.e., HDBSCAN49 or SVM50) for identifying differences 
between samples by measuring their similarities through a metric40, building a predictive tool (i.e., neural-
networks, random-forests, GLM) that is finally evaluated thanks to different indicators (i.e. MAE, RMSE, area 
under ROC curve51,52). However, while often used sequentially, each of the above steps is performed using dif-
ferent abstractions, whose compatibility is often not guaranteed or even tested. The datascape framework is as 
efficient as the above steps and allows a single abstraction to perform all, from data imputation, and dimensions 
reduction, to classification, prediction, data generation as well as topological data analysis53. As a benefit of an 
integrated framework, it provides the tool to measure the quality of the different operations thanks to a metric 
respecting the topology of the data.

Beyond the incremental construction of the datascape presented above and its direct use in data science, the 
datascape opens several perspectives that are now within reach after its formal definition. In particular, we are 
interested in other types of operations that could be done at the datascape level: the comparison, union, inter-
section, and addition of datascapes. Such operations are the ingredients of a so-called model- or component- 
algebra54,55, studied in different contexts. We advocate that using datascape could open the door to future work 
to better combine data with other modelings used in Life sciences56.
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Materials and methods
Capturing the shape of a set of points X
Let X = {xi}i∈N a finite set of points in dimension n, sampled heterogeneously on M , a compact Riemannian sub-
manifold with a Riemannian metric g embedded in an ambient space A with a metric dA . In the following, we 
propose a graph G that approximates the underlying manifold M and allows us to measure reliable distances on 
M . In the following section, we describe the construction of G inspired by the first step of the Isomap algorithm23. 
For theoretical justification on how a graph approximates a manifold see11,57.

Approximating the underlying manifold M with a neighborhood graph G
Let G = (X,E)ω be an undirected weighted graph, where X are vertices, E ⊆ X × X are edges and ω : E → R

+ is 
a weight function, assigning positive real-valued weights to the edges. In the following, we write Eij for the edge 
between xi and xj , and ωij for its weight. We now briefly recall how the edges of the graph G are constructed in the 
first step of the algorithm from Isomap23. Let k ∈ N be a parameter that we will use for initializing the number 
of neighbors each vertex is connected to. Given k, for each xi , we start by computing the k nearest neighbors of 
xi in X using the existing metric dA of the ambient space. This step has a complexity of O((k + 1) ∗ n2) . This set 
is called the k-nearest natural neighbors of xi and is written Nk(xi) = {xi1 , . . . , xik }.

As we assume the points from X are heterogeneously sampled on the manifold M , an isolated point xi can 
have as one of its k-nearest neighbors a point xj ∈ Nk(xi) that is located in a more dense region of X. As a con-
sequence, it might be the case that xi /∈ Nk(xj) , meaning that the notion of k-nearest natural neighbor is not 
symmetrical. To establish symmetry in the notion of neighborhood, we enlarge the set of neighbors by adding to 
the natural neighbors what we will call the enforced neighbors N+(xi) = {xj ∈ X | ∀xj �∈ Nk(xi), xi ∈ Nk(xj)}.

This allows us to obtain a graph G0 = (X,E′) , where the symmetric edges E′ connect all vertices that are 
neighbors, i.e. Eij ∈ E′ ⇐⇒ xj ∈ Nk(xi) ∪N+(xi) ⇐⇒ xi ∈ Nk(xj) ∪N+(xj).

Unfortunately, the graph G0 is not necessarily connected; therefore, paths between every pair of points of X 
cannot be found. As a consequence, we use the following steps to connect the components to build a connected 
graph G from the graph G0 . 

1.	 We start by identifying every maximal connected components in G0 and call them C1, . . .Cm . This can be 
done in linear time w.r.t. the number of edges in the graph using a simple depth-first search.

2.	 Then, for every pair of connected components (Ci ,Cj) , we identify a pair of points Coni,j = (xi , xj) ∈ Ci × Cj 
that minimizes the pairwise distance using the ambient metric dA , i.e. such that 

3.	 This allows us to define a set of connecting edges Econ = ∪i,j∈{1,...m}Coni,j.
	   However, this set is too large as it connects all connected components pairwise. We therefore consider the 

set Esuf  of all the subsets E′con ⊆ Econ that are sufficient for connecting the graph G0 , i.e., such that the graph 
(X,E′ ∪ E′con) is connected, and choose among them the one that minimizes the total weight addition. This 
set is written Con(G0) and formally defined as follows: 

4.	 Finally, we define the neighbors of a point xi ∈ X as 

 and its connecting neighbors as 

We estimated that connecting c components of a graph with n vertices has a complexity of O(n2 ∗ (1+ t)+ c3) 
with t the time to compute a pairwise distance with the ambient metric.

Using this construction, we obtain a connected graph G = (X,E) , where

Finally, we define the weight function of G as the distance given by the ambient metric dA to points that are 
considered neighbors:

The following explains how distances can be computed in the resulting weighted graph G = (X,E)ω.

Approximating distances on the manifold M with the length of the shortest path in the graph G
By construction, the weights of the edges in G represent the local distance between neighbors in the ambient space 
A . Indeed, we assume that, locally, M has the same structure as A and the metric dA is a local approximation of 

dA(xi , xj) = min
x∈Ci ,y∈Cj

dA(x, y)

Con(G0) = argmin
E′con∈Esuf





�

t∈E′con

dA(t)





(1)N (xi) = Nk(xi) ∪ N
+(xi).

(2)Ncon(xi) = {xj | (xi , xj) ∈ Con(G0)}

Ei,j ∈ E ⇐⇒ xj ∈ N (xi) ∪Ncon(xi) ⇐⇒ xi ∈ N (xj) ∪Ncon(xj)

(3)ωi,j :=

{

dA(xi , xj) if xj ∈ N (xi) ∪ Ncon(xi)
∞ otherwise.
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the metric of M . However, the manifold M ’s shape might differ from the shape of A . As a consequence, distances 
between non-neighboring points in M should not be computed using the ambient metric dA . On a manifold 
like M , global distances should be computed along geodesics (i.e., along a straight line that follows the shape of 
M ). Since the purpose of the graph G is to abstract the structure of M , geodesics of M should correspond to 
shortest paths in G. We, therefore, define a global notion of distance in G based on the shortest cumulative local 
(i.e. ambient) distance between neighbors.

Formally, let xi , xj ∈ X . A path ρ between xi and xj is a sequence ρ = e1, . . . em of edges, where ek = (xkl , x
k
r ) 

and such that x1l = xi , xmr = xj and for all 1 ≤ k ≤ m− 1 , xkr = xk+1
l  . The cumulative weight of the path ρ is the 

sum of the weights of its edges: ω(ρ) =
∑m

k=1 ω(ek) . Let Ŵi,j be the set of all paths in G from xi to xj . The geodesic 
distance dG between xi and xj in G is then defined as

In practice, the shortest path can be found using state-of-the-art graph algorithms, such as Dijkstra58.
The length of such a path p is 

∑np−1
i=1 ω(ei).

Identifying the shape and the boundary of the datascape
Now that we approximated the topology of the manifold M by a graph G and defined a metric that can be used 
to measure distances between points on this manifold, we propose a way to approximate the space spanned by 
the dataset X and its border. We call this space the shape of the datascape shape(D) . The shape of the datascape 
should respect topological features of the manifold M such as holes and cavities.

The notion of cavity of a dataset X is inspired by the convex deficiency of a set of points59. Let x ∈ X a data-
point. Let V(x) be a convex subset of the ambient space A such that x ∈ V(x) . Let Hull(X) be the convex hull of 
⋃

x∈X V(x) . We define as cavities Cav(X) the y ∈ A such that y ∈ Hull(X) and y  ∈
⋃

x∈X V(x) . We propose a 
visualization of this definition in Fig. 6.

From this definition, we see that defining the convex sets V(x) is key to constructing the shape of the datascape 
that takes into account topological features of the underlying space M . Furthermore, as the graph defined in 
the previous section already captures, given the parameter k, the topology of the space M , we seek to define the 
convex sets V(x) based on that graph.

A cover of a space is a family of sub-spaces whose union is the space itself. This family is a good cover if all 
the sub-spaces intersect are convex; having convex sub-spaces is a sufficient condition. Intuitively, a concave 
space can be seen as the union of smaller convex spaces. In the following, we, therefore, use convex hulls built 
on the neighborhoods of the graph’s vertices G as the elementary convex spaces to approximate the concave 
space containing the points X. Given a vertex x ∈ X , we define V(x) as the convex hull conv(N (x)) built upon 
the natural and enforced neighbors of x and call it the local convex hull of x. The connecting neighbors are not 
used to build the hulls so that the shape of the datascape remains composed of disconnected components (when 
this is the case) and respects the topology of the data. We define the shape of the datascape D as the union of all 
the local convex hulls. Computing the local convex hull algorithm thanks to the quickhull algorithm60 for every 
points of X has an expected time complexity of O(n ∗ kd/2/[d/2]!) with d the dimension of the data and k the 
chosen number of neighbors.

Formally:

We define the boundary of the datascape as the points located on the surface of shape(D) . The points located 
on the surface of a convex hull conv(x) are called extreme points and noted E(conv(x)) and are defined as the 
smallest set of points of N (x) such that conv(E(N (x))) = conv(N (x)) . As the different convex hulls might 
intersect, the extreme points of the hull of a point y, written Ey , might be inside the convex hull of another point 

(4)dG(xi , xj) = min
ρ∈Ŵi,j

ω(ρ)

(5)shape(D) =
⋃

x∈X

conv(N (x))

Figure 6.   Set of points X, its convex sets V(x) and the cavities associated.
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z and thereby not globally extreme. To make sure a point is globally extreme, we define the surface of the data-
scape, i.e., the extreme points of the datascape, as the following set of points:

To reduce computation time in practice, we approximate the set of extreme points E(D) by the set E ′(D) that 
reduces the search of extreme points among the points of X. For all x ∈ X , to check if x is globally extreme, we 
check if x is extreme in all the convex hulls of the datascape, or a subset of convex hulls containing x. Formally,

In Fig. 1c, we draw the local convex hull corresponding to the neighborhood of the point D, which is extreme 
in this local convex hull and extreme globally at the datascape scale. On the contrary, the point C at the right of 
the datascape, whose neighborhood is represented by the red convex hull, is not an extreme point of the latter. 
Therefore this point is not a global extreme point. When implementing this methodology on simulated data in 
Fig. 1a, we successfully identify the points located at the 3D border of the sinusoidal shape and the torus.

Now that we have defined a methodology to approximate the shape of the datascape shape(D) and to identify 
the extreme points that lie on the border of this shape, we show how to use this to characterize a new data point 
in regard of the datascape.

Characterizing a given point in the datascape D
Measuring the distance between a given point and the bounds of D
Once we have identified the set E of extreme points of the datascape, we are able, thanks to the metric dG defined 
earlier in (2), to compute the distance between a given point x∗ and the closest extreme point. The idea is to add x∗ 
in the datascape D by adding it to the graph G. Let G∗ be the graph based on G with the supplementary vertex x∗.

We will identify the k-nearest neighbors of x∗ and add the set of edges Ex∗ between x∗ and its neighbors 
x∗i , i ∈ 1, . . . , k with weight dA(x∗, xi) . Formally,

In order to assess if x∗ is close to a border of D , we compute the distance between x∗ and the closest extreme 
point:

Assessing if a given point is inside or outside the datascape D
The datascape is an approximation of the unknown manifold M based on the sample X. X being finite, it might 
provide an incomplete view of M . Therefore, a new sample of M , denoted as X∗ , might help refine the datascape. 
A new point x∗ ∈ X∗ is either inside the datascape, thereby bringing no further information to the datascape, 
or outside the datascape. The shape of the datascape shape(D) being a union of the neighborhoods of the set 
of points X, see Eq. (5), assessing if a point is inside or outside of the datascape is equivalent to determining if 
x∗ is inside any neighborhood or outside every neighborhood. This operation has a maximal time complexity 
of O(n4) . The datascape being a union of convex hulls, it is guaranteed to have an interior of dimension equal 
to or smaller than k − 1 . If k is equal to or smaller than the dimension of the ambient space A (or if the points 
in the dataset used for building the datascape are themselves on a hyper surface), the shape of the datascape is 
considered as an hyper-surface and being in the datascape is equivalent to being on that hyper-surface. Formally:

Complexity analysis of building the datascape
In this section, we estimate the complexity of the different steps of the construction of the datascape.

As a preliminary step, we first need to compute the pairwise distance matrix between every point of the 
dataset. With n points, we have to compute O(n2) distances. The complexity of computing a distance between 
two points depends on the metric used. For the Euclidean distance in dimension d , which we use here, the 
complexity is in O(d).

Once the distance matrix is obtained, identifying the k nearest neighbors of a given point can be done in 
O(k × n) . Therefore computing the k-nearest neighbors of all points can be done in O(k × n2).

Symmetrizing the notion of neighbors involves checking, for each point x , if it belongs to its k neighbors’ 
neighborhood, each one composed of k points. Checking if an element belongs to an array of size k has a time 
complexity of O(k) . For a given point x with k neighbors, the symmetrization step has a time complexity of O(k2) . 
For the whole dataset, the symmetrization step therefore has a complexity of O(n× k2).

After obtaining the graph, identifying connected components can be done in O(n2) , for example with a 
depth-first search algorithm, resulting in at worst n components.

Assuming there are c components, (with c ≥ 2 ), with roughly nc  points each (worst case scenario), we need 
to compute the minimal distances between each pair of components. If we have access to the pairwise distance 
matrix computed at the first step of the algorithm,  which has a space complexity of O(n2) , the time complexity 

(6)E(D) = {t ∈ shape(D) | ∀x ∈ X, t ∈ conv(N (x)) ⇐⇒ t ∈ Ex }

(7)E(D) = {t ∈ shape(D) ∩ X | ∀x ∈ X, t ∈ conv(N (x)) ⇐⇒ t ∈ Ex }

(8)Gx∗ = (X ∪ x∗,E ∪ Ex∗)ω

(9)dG(x
∗, E) := min

∀e∈E
dG(x

∗, e)

(10)x∗ ∈ shape(D) ⇐⇒ ∃ xj ∈ X, x∗ ∈ conv(N (xj))

(11)x∗ �∈ shape(D) ⇐⇒ ∀ xj ∈ X, x∗ �∈ conv(N (xj))
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to retrieve all the distances between two components is O(( nc )
2 × taccess) with taccess the time needed to access 

a specific cell in the pairwise distance matrix. If the pairwise distance matrix is not stored, the time complexity 
becomes O(( nc )

2 × tdistance) with tdistance the time needed to compute the distance between two points given the 
ambient metric chosen. Now that we have the pairwise distance of all points between the two components, we 
keep only the pair of points with minimum distance. Finding this pair of points has a complexity of O(( nc )

2 . We 
repeat the previous tasks for the O(c2) pair of components, which takes O(c2 × (( nc )

2 + ( nc )
2 × tdistance) which 

writes O(n2 ∗ (1+ t)) with t ∈ {taccess, tdistance} . In our naive implementation, we connect the c component by 
picking the c − 1 pair of points in a specific manner and by adding an associated connecting edge in the graph.

We start by connecting the two components with minimum pairwise distance which has a time complexity 
of O(c2) . Then, we update the records of component pairwise distances so that the two components that have 
just been connected have the same id. We need to traverse the array of pairwise distances and replace the id of 
one of the 2 components with the id of the other. This step has a time complexity of O(c2) . Then, we reiterate 
these two steps until all the components have the same id. A total of c − 1 iteration is necessary to obtain a single 
remaining connected component. The overall complexity of this loop is thus in O(c3) . The total time complexity 
to connect c components is therefore O(n2 ∗ (1+ t)+ c3)  with t ∈ {taccess, tdistance}.

Regarding the quickhull algorithm, its expected time complexity for k neighbors of a point x is O(k × log(k)) 
for d ≤ 3 and O(kd/2/[d/2]!) otherwise60. For n points in a dimension of at least 4, the complexity is 
O(n× kd/2/[d/2]!).

Finally, to assess if a point is inside or outside the datascape, we have to check if it belongs to any local convex 
hulls. In the worst case where a point is not in the datascape, we have to check the n convex hulls. To check if a 
point is inside a convex hull, one has to check if the given point can be written as a linear combination of the r 
vertices of the convex hull such that the coefficients are all positive and their sum equals one. To do so we solve 
a system of d + 1 equations and r unknown variables ( r being the number of extreme points in the convex hull) 
with a Gaussian elimination known to be of time complexity O(r3) . In our case, the hull is built on the k nearest 
neighbors and the e enforced neighbors of a given point, the complexity of checking if a point is inside a local 
convex hull is thus at most O((k + e)3) but probably less because not all the k + e points are extreme points of 
the hull. k is constant but e depends on the considered hull. Roughly approximating the worst case, we know that 
k + e < n , and therefore that the time complexity to check whether a point is in the datascape is at worst in O(n4).

To summarize, the main complexities are:

1.	 compute the matrix distance: O(n2)
2.	 find the k-nearest neighbors:  O(k × n2)
3.	 connection of c different components: O(n2 × (1+ t)+ c3)  with t ∈ {taccess, tdistance}
4.	 all local hull computations with the quickhull algorithm:  O(n× kd/2/[d/2]!)
5.	 deciding if a point is inside the datascape or not: O(n4)

Simulated data
The sinusoïdal shape is constructed from the generation of 1000 points in 3 dimensions of the form 
(x + ǫx , y + ǫy , z + ǫz) s u c h  a s  x ∼ U(0, 2 ∗ π), y = cos(x), z = cos(x − 0.5) w i t h  ǫx ∼ U(−1, 1) , 
ǫy ∼ U(−0.3, 0.3) and ǫz ∼ U(−0.3, 0.3).

The torus shape is constructed from the generation of 1000 points in 3 dimensions thanks to the package 
alphashape3D in R.

An R Notebook is available to reproduce an example with 200 points. The number of points simulated can 
be changed in the notebook available in the zenodo package.

Tara Ocean contextual data set
We removed duplicate records of the dataset and focused on the following variables: temperature, nitrate and 
iron concentrations, oxygen, salinity, chlorophyll A, light, and Carbon flux at 150 m depth—see33 for details and 
units. We processed missing data thanks to an unweighted k-nearest neighbor imputation algorithm61 with k = 1 . 
Data are available in the /data folder of the associated repository. The script 02_script_tarascape_data_ingestion.R 
reads and cleans the data for further analysis. The script 03_script_tarascape_make_all_figures.R creates the 
different figures of the tarascape and the computation of the geodesics.

The Physionet Computing in Cardiology Challenge 2012 Data set37

The Physionet Computing in Cardiology Challenge 2012 aims to develop methods for patient-specific prediction 
of in-hospital mortality. Up to 42 variables were recorded at least once during the first 48 hours after admission 
to the ICU. Six of these variables are general descriptors (collected on admission), and the remainder is time 
series, for which multiple observations may be available. We worked on the patients of ICUType = 3, i.e. patients 
admitted to the Medical ICU.

We focused our study on the clinical data that were the most measured. Missing longitudinal values were 
imputed thanks to a naive approach. For a given patient and a given variable, we considered that the missing 
values were equal to the last known value for this patient. For example, if a value for a clinical variable was only 
available at t0 and t5 for a given patient, we assumed that the values at t1,t2,t3,t4 were identical to the value at t0.

To further reduce the dimension of the data, we selected only the most relevant parameters by calculating 
their odd ratio and only keeping those with a p-value lower than 0.01. The datascape was then built using the 
last available measure of each patient (i.e. at the 48th hour).

The physionet dataset needed for our study is available in the folder data/physionet.org/
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The script 04_script_physionet_make_datascape_figures.R reads and cleans the dataset and constructs the 
datascape and the patient’s trajectory and geodesic. Full data of the physionet challenge are available here: https://​
physi​onet.​org/​conte​nt/​chall​enge-​2012/1.​0.0/.

Data availability
The datasets used and/or analysed during the current study and the source code are available from the corre-
sponding author on reasonable request at https://​zenodo.​org/​record/​83403​6262.
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