A Python Toolbox for Data-Driven Aerodynamic Modeling Using Sparse Gaussian Processes - Archive ouverte HAL
Article Dans Une Revue Aerospace Année : 2024

A Python Toolbox for Data-Driven Aerodynamic Modeling Using Sparse Gaussian Processes

Une boîte à outils Python pour la modélisation aérodynamique basée sur les données à l'aide de processus gaussiens creux

Résumé

In aerodynamics, characterizing the aerodynamic behavior of aircraft typically requires a large number of observation data points. Real experiments can generate thousands of data points with suitable accuracy, but they are time-consuming and resource-intensive. Consequently, conducting real experiments at new input configurations might be impractical. To address this challenge, data-driven surrogate models have emerged as a cost-effective and time-efficient alternative. They provide simplified mathematical representations that approximate the output of interest. Models based on Gaussian Processes (GPs) have gained popularity in aerodynamics due to their ability to provide accurate predictions and quantify uncertainty while maintaining tractable execution times. To handle large datasets, sparse approximations of GPs have been further investigated to reduce the computational complexity of exact inference. In this paper, we revisit and adapt two classic sparse methods for GPs to address the specific requirements frequently encountered in aerodynamic applications. We compare different strategies for choosing the inducing inputs, which significantly impact the complexity reduction. We formally integrate our implementations into the open-source Python toolbox SMT, enabling the use of sparse methods across the GP regression pipeline. We demonstrate the performance of our Sparse GP (SGP) developments in a comprehensive 1D analytic example as well as in a real wind tunnel application with thousands of training data points.
Fichier principal
Vignette du fichier
aerospace-11-00260-v2.pdf (1.77 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04673602 , version 1 (20-08-2024)

Licence

Identifiants

Citer

Hugo Valayer, Nathalie Bartoli, Mauricio Castaño-Aguirre, Rémi Lafage, Thierry Lefebvre, et al.. A Python Toolbox for Data-Driven Aerodynamic Modeling Using Sparse Gaussian Processes. Aerospace, 2024, 11 (4), pp.260. ⟨10.3390/aerospace11040260⟩. ⟨hal-04673602⟩
128 Consultations
31 Téléchargements

Altmetric

Partager

More