On the structure of the geometric tangent cone to the Wasserstein space - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

On the structure of the geometric tangent cone to the Wasserstein space

Résumé

This work aims at providing a simple characterization of the geometric tangent cone to the Wasserstein space. The canonical construction in positively curved spaces builds from the set of geodesics up to an abstract closure in an appropriate topology. However, in the particular case of the Wasserstein space, it is further known that this abstract closure lies in the larger set of measures over the underlying tangent space. It is shown in this work that each member of this larger set is equivalent near~0 to its projection over the geometric tangent cone, which allows to understand the latter as a quotient structure. The argument relies on a seemingly new Helmholtz-Hodge decomposition for measure fields.
Fichier principal
Vignette du fichier
structure_geometric_tangent_cone.pdf (401.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04672554 , version 1 (19-08-2024)

Licence

Identifiants

  • HAL Id : hal-04672554 , version 1

Citer

Averil Prost. On the structure of the geometric tangent cone to the Wasserstein space. 2024. ⟨hal-04672554⟩
45 Consultations
33 Téléchargements

Partager

More