
HAL Id: hal-04672554
https://hal.science/hal-04672554v1

Preprint submitted on 19 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

On the structure of the geometric tangent cone to the
Wasserstein space

Averil Prost

To cite this version:
Averil Prost. On the structure of the geometric tangent cone to the Wasserstein space. 2024. �hal-
04672554�

https://hal.science/hal-04672554v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


On the structure of the geometric tangent cone
to the Wasserstein space

Abstract. This work aims at providing a simple characterization of the geometric
tangent cone to the Wasserstein space. The canonical construction in positively curved
spaces builds from the set of geodesics up to an abstract closure in an appropriate
topology. However, in the particular case of the Wasserstein space, it is further known
that this abstract closure lies in the larger set of measures over the underlying tangent
space. It is shown in this work that each member of this larger set is equivalent near 0 to
its projection over the geometric tangent cone, which allows to understand the latter
as a quotient structure. The argument relies on a seemingly new Helmholtz-Hodge
decomposition for measure fields.
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1 Introduction
The space P2(Rd) of Borel probability measures with finite second moment, endowed with the Wasserstein
distance, focuses the interest from various mathematical communities ranging from metric geometry, PDEs,
optimal transport to statistical physics, image processing and machine learning. In several respects, P2(Rd)
behaves like an infinite-dimensional manifold of nonnegative curvature. The analogy proved fruitful in the
development of differential theories in P2(Rd), and lead for instance to the celebrated Otto calculus [Ott01,
Vil09].

However, various notions of a tangent space to P2(Rd) coexist in the literature. A very naive definition
would be to consider the measures over the tangent space of the base space, that we denote P2(TRd). A
member ξ ∈ P2(TRd) generalizes a vector field by allowing to distribute mass over several vectors, and may
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be seen as a direction issued from its base measure. In effect, this set is so large that it is often impractical
to deal with, and one would prefer to restrict to more amenable subsets.

For most applications in gradient flows or continuity equations, it is sufficient to consider a regular tangent
space, morally built from gradients of smooth functions (see [AGS05, Chap. 8] or (4) below). Intuitively, the
elements contained in this regular tangent space allow a measure µ ∈ P2(TRd) to move in all directions as
soon as it does not split in the process: for instance, the regular tangent space to a Dirac mass points only
towards other Dirac masses. Consequently, the regular tangent space is most suited for applications in some
regular dense subset of P2(Rd), such as absolutely continuous measures with various regularity assumptions
imposed on their density. Even smoother subsets have been considered to extend the computations of
Riemannian geometry, as the dual theory in [GKP11] or the Christoffel symbols computed in [GRM24].
However, in some cases, the restriction to absolutely continuous measures becomes is overly restrictive, and
one would want to work in a more general setting [AF14, Pic19].

Another construction has been done in [Gig08, Chap. 4], by viewing P2(Rd) as a metric space with
curvature bounded from below. Such spaces enjoy a canonical abstract definition of a tangent cone, to be
implemented in any particular case. The resulting geometric tangent space contains the regular one, and
allows to split mass. Shortly, one starts from the set of velocities of geodesics, then builds up the positive
cone over it, and takes the closure in P2(TRd) with respect to an appropriate distance. However, it is not
clear whether there would not remain interesting directions in P2(TRd).

The purpose of this paper is to give a negative answer to this question, in the following sense: any straight
line directed by an element of P2(TRd) is equivalent near 0 to a straight line directed by an element of
the geometric tangent space (see Lemma 5.1 for a precise statement). In other words, the geometric tangent
space is isometric to the quotient of P2(TRd) by an equivalence relation, as in manifolds (see Theorem 5.2).

The equivalence near 0 between a measure field ξ ∈ P2(TRd) and its projection is already known in
the case where ξ is supported on the graph of a vector field, as shown by Nicola Gigli in his PhD thesis
[Gig08, Theorem 4.41]. In the general case, our strategy is to decompose an element ξ ∈ P2(TRd) in its
tangent component, and a divergence-free − or solenoidal − component. The latter does not influence the
behavior of the exponential of ξ near 0, and gets eliminated by the quotient. In the case where ξ is induced
by a vector field, this decomposition exactly corresponds to the Helmholtz-Hodge theorem [Lad87, Chap.1,
Section 2]. Let us point that it is distinct from the non-linear Brenier factorization [Bre91], which expresses
ξ as a composition between a gradient-like map and a permutation-like map g such that µ = g#µ.

The structure of the paper is the following. In Section 2, we collect definitions and useful results from
the literature. Section 3 introduces solenoidal measure fields and their first properties, including upper
semicontinuity with respect to the base measure. Section 4 is devoted to a more involved characterization
of these measure fields, as the ones that let their base measure infinitesimally invariant. This is then used
in Section 5, which contains our main results. Finally, Section 6 focuses on the reconstruction of measure
fields with prescribed tangent and solenoidal components.

2 Notations and preliminaries
If X,Y are topological spaces and f : X → Y is measurable, we denote by # the pushforward of measures,
that allows to transport a measure µ ∈ P(X) to a measure f#µ ∈ P(Y ) by (f#µ)(A) := µ

(
f−1(A)

)
for all measurable A ⊂ Y . Let P2(Rd) be the set of Borel probability measures over Rd that has finite
second moment, i.e. satisfying

∫
x∈Rd |x|2dµ(x) < ∞. If πx, πy are the canonical projections from the product

space (Rd)2 to the first and second component, we denote by Γ(µ, ν) the set of transport plans α such that
πx#α = µ and πy#α = ν.

Definition 2.1 (Wasserstein distance). The Wasserstein distance between two given measures µ, ν ∈ P2(Rd)
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is defined as

d2W(µ, ν) := inf
η∈Γ(µ,ν)

∫
(x,y)∈(Rd)2

|y − x|2 dη(x, y).

The application dW induces a complete distance on P2(Rd), and the infimum is attained in a set
denoted Γo(µ, ν) [Vil09]. The convergence with respect to dW can be characterized as the combination of
narrow convergence, in duality with continuous and bounded functions, and the convergence of the second
moments. We will extensively use the fact that the application (µ, ν) 7→ Γo(µ, ν) of optimal transport plans is
sequentially upper semicontinuous and has compact images in the Wasserstein topology (see [Vil09, Lemma
4.4 and Theorem 5.20] and [AGS05, Proposition 7.1.5]).

Measure fields Denote by TRd :=
⋃

x∈Rd{x}×Tx Rd the tangent bundle of Rd, where here Tx Rd can be
identified to Rd. It is a metric space when endowed with |(x, v)− (y, w)|2 := |x− y|2 + |v − w|2. Similarly,
we define

Tm Rd :=
⋃

x∈Rd

{x} × (Tx Rd)m

for any m ∈ N, and endow it with the Euclidean distance. Given µ ∈ P2(Rd), the set P2(TRd)µ denotes
the subset of ξ ∈ P2(TRd) such that πx#ξ = µ. By a change of variable, any plan η = η(x, y) between µ
and ν ∈ P2(Rd) is associated to a unique measure field ξ ∈ P2(TRd)µ by

ξ = (πx, πy − πx)#η, η = (πx, πx + πv)#ξ.

We say that the plan η is induced be the measure field ξ, or that ξ induces η. The terminology of measure
fields is inspired from [Pic19], and enhances the connection with vector fields f ∈ L2

µ(Rd; TRd), that measure
fields generalize by allowing to distribute mass along several vectors for each point x ∈ Rd.

Definition 2.2 (Rescaling). For any λ ∈ R, the rescaled measure field λ · ξ is defined as (πx, λπv)#ξ. For
convenience, −1 · ξ is shortened in −ξ, and 0 · ξ in 0µ.

Each ξ ∈ P2(TRd)µ can be seen as the initial velocity of the “straight line” parameterized by

[0, 1] ∋ s 7→ expµ(s · ξ) := (πx + sπv)#ξ.

If ξ induced an optimal plan, i.e. if (πx, πx + πv)#ξ is optimal between its marginals, then s 7→ expµ(s · ξ)
describes a geodesic in the Wasserstein space. At the opposite, to recover the initial velocities of geodesics,
we follow [Gig08] in denoting

exp−1
µ (ν) :=

{
ξ ∈ P2(TRd)µ

∣∣ (πx, πx + πv)#ξ ∈ Γo(µ, ν)
}

∀ν ∈ P2(Rd).

The application ν 7→ exp−1
µ (ν) inherits the properties of optimal transport plans, in that it has nonempty

and compact images in the Wasserstein topology over P2(TRd), and is sequentially upper semicontinuous.

Metric structure on P2(TRd)µ For any fixed µ ∈ P2(Rd), it is convenient to define an appropriate set
of plans between ξ, ζ ∈ P2(TRd)µ by

Γµ (ξ, ζ) :=
{
α = α(x, v, w) ∈ P2(T

2 Rd)
∣∣ (πx, πv)#α = ξ, (πx, πw)#α = ζ

}
.

This set differs from Γ(ξ, ζ) in that it prevents mass to be transferred from (x, v) to (y, w) if x ̸= y.
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Definition 2.3 (Cone distance [Gig08]). Given ξ, ζ ∈ P2(TRd)µ, denote

W 2
µ(ξ, ζ) := inf

α∈Γµ(ξ,ζ)

∫
(x,v,w)∈T2 Rd

|v − w|2 dα(x, v, w).

Then Wµ induces a complete distance over P2(TRd)µ, and the infimum is attained over a nonempty
set denoted Γµ,o(ξ, ζ). We shorten Wµ(ξ, 0µ) in ∥ξ∥µ, and notice that Wµ(λ · ξ, λ · ζ) = |λ|Wµ(ξ, ζ) for any
λ ∈ R.

The definition of the distance comes jointly with the following metric scalar product.

Definition 2.4 (Metric scalar product). Given µ ∈ P2(Rd), define ⟨·, ·⟩µ :
(
P2(TRd)µ

)2 → R by

⟨ξ, ζ⟩µ :=
1

2

[
∥ξ∥2µ + ∥ζ∥2µ −W 2

µ(ξ, ζ)
]
.

By the definition of Wµ, there holds

⟨ξ, ζ⟩µ = sup
α∈Γµ(ξ,ζ)

∫
(x,v,w)∈T2 Rd

⟨v, w⟩ dα =

∫
(x,v,w)∈T2 Rd

⟨v, w⟩ dβ ∀β ∈ Γµ,o(ξ, ζ). (1)

The metric scalar product is positively homogeneous, in the sense that ⟨λ · ξ, ζ⟩µ = ⟨ξ, λ · ζ⟩µ = λ ⟨ξ, ζ⟩µ for
all λ ⩾ 0, but not homogeneous nor linear in any sense. Indeed, for any ξ, ζ ∈ P2(TRd)µ,

⟨ξ,−ζ⟩µ = sup
α∈Γµ(ξ,−ζ)

∫
(x,v,w)

⟨v, w⟩ dα = − inf
α∈Γµ(ξ,ζ)

∫
(x,v,w)

⟨v, w⟩ dα ⩾ −⟨ξ, ζ⟩µ . (2)

It however retains the link with the directional derivative of the squared Wasserstein distance through the
crucial identity [AGS05, Section 7.3]

Dµd
2
W(·, ν)(ξ) := lim

h↘0

d2W(expµ(h · ξ), ν)
h

= inf
η∈exp−1

µ (ν)
−2 ⟨ξ, η⟩µ . (3)

Tangent spaces Two sets are usually considered in the literature as tangent spaces to P2(Rd) at a measure
µ, namely the regular tangent space

Tanµ P2(Rd) := {∇φ | φ ∈ C∞
c (Rd;R)}

L2
µ(R

d;TRd)
, (4)

and the geometric tangent space

Tanµ P2(Rd) :=
{
λ · ξ

∣∣ λ ∈ R+ and ξ ∈ exp−1
µ (ν) for some ν ∈ P2(Rd)

}Wµ

. (5)

The regular tangent space may be seen as a subset of the geometric one through the injection f 7→ (id, f)#µ.
Modulo identification, they coincide on “sufficiently regular” measures, characterized in [Gig11]. In the
sequel, we drop the term geometric and refer to Tanµ as the tangent space. The set Tanµ is closed in(
P2(TRd)µ,Wµ

)
, and enjoys a well-defined projection

πµ
T : P2(TRd)µ → Tanµ

such that πµ
T ξ minimizes Wµ(ξ, ζ) among all ζ ∈ Tanµ [Gig08, Proposition 4.30]. The notation πµ

T differs
from the usual notation πµ in order to highlight the projection on the tangent component, as opposite to
the projection πµ

S on the solenoidal component to come in the following sections.
Let us gather some useful properties from Propositions 4.25, 4.29, 4.30 and 4.33 in [Gig08].
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Proposition 2.1 (Properties of the tangent space). Let µ ∈ P2(Rd). The set Tanµ P2(Rd)

− is stable by horizontal interpolation, in the sense that for any ξ, ζ ∈ Tanµ, any α ∈ Γµ(ξ, ζ) and
t ∈ [0, 1], the measure field (πx, (1− t)πv + tπw)#α also belongs to Tanµ,

− is stable by rescaling, i.e. λ · ξ ∈ Tanµ whenever ξ ∈ Tanµ and λ ∈ R,

− enjoys a metric projection, in the sense that for any ξ ∈ P2(TRd)µ, there exists an unique minimizer
πµ
T ξ of Wµ(ξ, ζ) among all ζ ∈ Tanµ P2(Rd),

− satisfies ⟨ξ, ζ⟩µ = ⟨πµ
T ξ, ζ⟩µ for any ξ ∈ P2(TRd)µ and ζ ∈ Tanµ P2(Rd).

Results of the paper Our main result, stated in Lemma 5.1 below, lies in the equality

lim
h↘0

dW
(
expµ(h · ξ), expµ(h · πµ

T ξ)
)

h
= 0

for any ξ ∈ P2(TRd)µ. If one sees h 7→ expµ(h · ξ) and h 7→ expµ(h ·π
µ
T ξ) as two curves issued from µ, then

the above inequality means that they are equivalent near 0 at order 1. Denoting this equivalence by ∼µ, we
further show that Tanµ is isometric to the quotient P2(TRd)µ/ ∼µ.

Let us give a brief intuition of the argument. The key tool is to decompose ξ ∈ P2(TRd)µ as a “sum”
of a tangent component and another component, that we call solenoidal, generalizing divergence-free vector
fields. This decomposition allows to write expµ(h · ξ) as the composition of two exponentials: one following
the solenoidal component, that essentially turns around the base measure µ, and a second one that morally
follows the tangent component πµ

T ξ. The curling or winding behavior of solenoidal fields is made precise
in Lemma 4.1, in which it is shown that such solenoidal measure fields ξ,

lim
h↘0

dW
(
expµ(h · ξ), µ

)
h

= 0.

The reader that would like a mental picture can think about the measure field ξ := (id, f)#µ, where
f : R2 → R2 is given by the rotation f(x, y) = (−y, x) and µ is the normalized Lebesgue measure on the unit
circle S1. In this example, expµ(h · ξ) is concentrated on the circle of radius

√
1 + h2, and is at Wasserstein

distance
√
1 + h2 − 1 = o(h) of µ.

3 Solenoidal fields
In the literature of fluid dynamics, divergence-free vector fields are termed solenoidals in reference to their
swirling flows. This visual behavior has been precisely described by Smirnov in [Smi94], where it is shown
that the flow of a smooth divergence-free vector field follows “almost-closed” paths. The picture is even
clearer in dimension 2, where flow lines follow closed loops with constant velocity [BG22]. Consequently,
the L2 scalar product against a potential vector field will vanish. This provides the basis for a geometrical
definition of solenoidal fields.

Definition 3.1 (Solenoidal measure fields). Let µ ∈ P2(Rd). An element ζ ∈ P2(TRd)µ is solenoidal, or
divergence-free, if

⟨ζ, ξ⟩µ = 0 ∀ ξ ∈ Tanµ .

The set of solenoidal elements is denoted Solµ P2(Rd).

This definition is coherent with the solenoidal fields in L2
µ, since for any f, g ∈ L2

µ(Rd; TRd), there holds
⟨f#µ, g#µ⟩µ = ⟨f, g⟩L2

µ
.
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Remark 3.1 (Interpretation with plans). Using the formula (1) for the metric scalar product, we may give
an interpretation of Definition 3.1 in terms of transport plans. Indeed, if ξ ∈ Tanµ, then −ξ ∈ Tanµ by
Proposition 2.1, and

⟨ζ, ξ⟩µ = sup
α∈Γµ(ξ,ζ)

∫
(x,v,w)∈T2 Rd

⟨v, w⟩ dα = 0 = ⟨ζ,−ξ⟩µ = − inf
α∈Γµ(ξ,ζ)

∫
(x,v,w)∈T2 Rd

⟨v, w⟩ dα.

Consequently, a measure field ζ is solenoidal if for any ξ ∈ Tanµ and any transport plan α ∈ Γµ(ξ, ζ), the
integral of (x, v, w) 7→ ⟨v, w⟩ with respect to α vanishes.

The following properties are deduced immediately.

Lemma 3.1 (First characterization of solenoidal measure fields). Let µ ∈ P2(Rd). The following propositions
are equivalent:

a. ξ ∈ Solµ,

b. Dµd
2
W(·, ν)(ξ) = 0 for all ν ∈ P2(Rd),

c. πµ
T ξ = 0µ.

Proof. Recalling that ⟨ξ, ζ⟩µ = ⟨πµ
T ξ, ζ⟩µ for any ζ ∈ Tanµ, the implication (c) ⇒ (a) holds trivially. Assume

now that (a) holds. By the formula (3) of the directional derivative of the squared distance, and using that
−2 · ζ ∈ Tanµ as soon as ζ ∈ exp−1

µ (ν) (see Proposition 2.1),

Dµd
2
W(·, ν)(ξ) = inf

ζ∈exp−1
µ (ν)

−2 ⟨ξ, ζ⟩µ = 0.

Assume now that (b) holds for some ξ ∈ P2(TRd)µ. By the construction of the tangent cone, there exists
(an, ηn)n∈N ⊂ R+ ×Tanµ such that ηn ∈ exp−1

µ (expµ(ηn)), and limn→∞ Wµ(π
µ
T ξ, an · ηn) = 0. By [AGS05,

Lemma 7.2.1], the unique optimal transport plan between µ and expµ(1/2 · ηn) is induced by 1/2 · ηn. Then

⟨πµ
T ξ, ηn⟩µ = 2

〈
πµ
T ξ,

1

2
· ηn
〉
µ
= −Dµd

2
W(·, expµ(1/2 · ηn))(ξ) = 0.

Notice that by definition, the metric scalar product is continuous with respect to Wµ. Multiplying by an ⩾ 0,
we get 0 = ⟨πµ

T ξ, an · ηn⟩µ →n ⟨πµ
T ξ, π

µ
T ξ⟩µ = ∥πµ

T ξ∥2µ. Thus (c) holds.

The tangent space enjoys good properties of stability by scaling and interpolation, as mentioned in Proposition 2.1.
As one could guess, solenoidal measure fields share the same “algebraic” properties, that will be used in the
sequel.

Lemma 3.2 (Properties of the solenoidal space). Let µ ∈ P2(Rd). The set Solµ P2(Rd)

− is stable by horizontal interpolation, in the sense that for any ξ, ζ ∈ Solµ, any α ∈ Γµ(ξ, ζ) and
t ∈ [0, 1], the measure field (πx, (1− t)πv + tπw)#α also belongs to Solµ,

− is stable by rescaling, i.e. λ · ξ ∈ Solµ whenever ξ ∈ Solµ and λ ∈ R.

Proof. By [Gig08, Proposition 4.27], the metric scalar product is convex in the sense that

⟨(πx, (1− t)πv + tπw)#α, η⟩µ ⩽ (1− t) ⟨(πx, πv)#α, η⟩µ + t ⟨(πx, πw)#α, η⟩µ

for any t ∈ [0, 1], α ∈ P2(T
2 Rd)µ and η ∈ P2(TRd)µ. Choosing now α as a transport plan between two

solenoidal measure fields ξ, ζ, and η ∈ Tanµ, we get

⟨(πx, (1− t)πv + tπw)#α, η⟩µ ⩽ 0.

Taking now −η in place of η and recalling from (2) that ⟨ζ,−η⟩µ ⩾ −⟨ζ, η⟩µ, we obtain that the interpolation
(πx, (1−t)πv+tπw)#α is solenoidal. Similarly, if λ ∈ R and ξ ∈ Solµ, then ⟨λ · ξ, η⟩µ = |λ| ⟨ξ, sign(λ) · η⟩µ =
0 for any η ∈ Tanµ.
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One may wonder if solenoidal measure fields are stable with respect to µ in some sense, i.e. if the set-
valued map µ ⇒ Solµ P2(Rd) has any continuity property. We first treat the case of µ ⇒ Tanµ P2(Rd),
which happens to be sequentially lower semicontinuous. Although we could not find any clear statement in
the literature, the argument is well-known in the community of optimal transport, and Lemma 3.3 seems to
belong to folklore knowledge.

Lemma 3.3 (Sequential lower semicontinuity of Tan). Let (µ, ξ) ∈ TanP2(Rd) and (µn)n∈N ⊂ P2(Rd) be
a sequence converging towards µ in the Wasserstein topology. There exists (ξn)n∈N with ξn ∈ Tanµn P2(Rd)
such that ξn → ξ with respect to dW,TRd .

Proof. First assume that ξ ∈ exp−1
µ (σ) for some σ ∈ P2(Rd). Denote σt := expµ((1 − t) · ξ) for some

t ∈ (0, 1). By [AGS05, Lemma 7.2.1], the unique optimal transport plan between µ and σt is induced by
the velocity (1 − t) · ξ. For each n ∈ N, pick ξtn ∈ exp−1

µn
(σt), which belongs to Tanµn

P2(Rd). Since the
application ν 7→ exp−1

µ (ν) is upper semicontinuous with nonempty compact images in
(
P2(TRd), dW,TRd

)
,

the union
⋃

n∈N exp−1
µn

(ν) is itself relatively compact (see [Ber59, Theorem VI.3]). Thus so is the sequence
(ξtn)n∈N. Since Wasserstein limits of optimal plans are optimal between their marginals [Vil09, Theorem
5.20], each of its limit point lies in the singleton exp−1

µ (σt) = {(1 − t) · ξ}. Hence for any fixed t > 0, the
whole sequence (ξtn)n∈N converges towards (1 − t) · ξ. Let now (tm)m∈N be a vanishing sequence, and for
each m, let nm be large enough so that dW,TRd((1− tm) · ξ, ξtmn ) ⩽ 2−m for all n ⩾ nm. Define ξn := ξtmn if
nm ⩽ n < nm+1. Then

dW,TRd(ξ, ξn) ⩽ dW,TRd(ξ, (1− tm) · ξ) + dW((1− tm) · ξ, ξtmn ) ⩽ tm∥ξ∥µ + 2−m −→
m→∞

0.

This provides the desired sequence (ξn)n∈N in the case where ξ induces a geodesic. If now ξ = α · ζ for some
α > 0 and ζ inducing a geodesic, the sequence of renormalized plans (α · ζn)n∈N fills the claim. Finally, if
ξ = limk→∞ αkζk with respect to Wµ, the same diagonal argument applies.

The relation between solenoidal measure fields and tangent measure fields reverses the continuity of Sol
with respect to that of Tan.

Proposition 3.1 (Sequential upper semicontinuity of Sol). Let (µn, ξn)n∈N ⊂ SolP2(Rd) be a sequence
such that µn →n µ ∈ P2(Rd) and ξn →n ξ ∈ P2(TRd) in the respective Wasserstein topologies. Then
ξ ∈ Solµ P2(Rd).

Proof. Let η ∈ Tanµ P2(Rd). By Lemma 3.3, there exists a sequence (ηn)n∈N such that ηn →n η in the
Wasserstein topology, and ηn ∈ Tanµn

P2(Rd). For each n ∈ N, pick αn ∈ Γµn,o(ξn, ηn). Since the latter set
is compact in P2(T

2 Rd), and using again the stability of optimality [Vil09, Theorem 5.20], we may extract
a subsequence (αnk

)k that converges towards some α ∈ Γµ,o(ξ, η) with respect to dW,T2 Rd . Thus

⟨ξ, η⟩µ =

∫
(x,v,w)∈T2 Rd

⟨v, w⟩ dα = lim
n→∞

∫
(x,v,w)∈T2 Rd

⟨v, w⟩ dαn = lim
n→∞

⟨ξn, ηn⟩µ = 0.

Here we used the continuity and quadratic growth of the integrand (x, v, w) 7→ ⟨v, w⟩ to ensure the convergence.
Since η ∈ Tanµ is arbitrary, ξ ∈ Solµ P2(Rd).

To illustrate Proposition 3.1, let us consider the dimension d = 1. In this particular case, the set of
divergence-free vector fields (i.e. induced by an application) is reduced to the null field: indeed, it is the
closure in L2

µ of smooth and compactly supported divergence-free vector fields, which satisfy div f(x) =
f ′(x) = 0, hence identically vanish. However, there are nontrivial measure fields, as for instance ξ :=
1
2 (g#µ) + 1

2 (−g#µ), where g(x) := 1I{0⩽x⩽1} and µ is the Lebesgue measure supported on [0, 1]. The fact
that ξ ∈ Solµ can be verified by direct computation using Lemma 4.1 below, but also in a more geometric
way. If γn ∈ C([0, 1];R2) is a constant-speed parameterization of the ellipsoid

x2 + 2ny2 = 1,
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define µn := γn#L[0,1] and ξn := (γn, γ̇n)#L[0,1]. Each ξn is an elementary solenoid in the terminology
of [Smi94], and it is easy to prove that it belongs to Solµn

. As µn →n µ and ξn →n ξ in the respective
Wasserstein topology, using the stability of Sol, we get that ξ is indeed solenoidal. This raises the question
of the validity of a decomposition à la Smirnov, by means of a vertical superposition of possibly degenerate
elementary solenoids, among which ξ would be. Although it may be possible to proceed by regularization,
the author has currently no working proof of this fact.

4 Characterization as non-escaping directions
By [Gig08, Theorem 4.19], the tangent cone is characterized by

ξ ∈ Tanµ ⇐⇒ lim
h↘0

dW(µ, expµ(h · ξ))
h

= ∥ξ∥µ. (6)

Equation (6) means that the “norm” of tangent elements coincides with the speed with which the curve
h 7→ expµ(h · ξ) escapes from µ. At the opposite, solenoidal measure fields are characterized as the initial
velocities of curves that do not leave µ at the infinitesimal level.

Lemma 4.1 (Second characterization of solenoidal measure fields). A measure field ξ ∈ P2(TRd)µ is
solenoidal if and only if

lim
h↘0

dW(µ, expµ(h · ξ))
h

= 0. (7)

To prepare for the proof of Lemma 4.1, define Wµ,ν : P2(TRd)µ × P2(TRd)ν → R+ by

W 2
µ,ν(ξ, ζ) := inf

{∫
((x,v),(y,w))∈(TRd)2

|v − w|2 dα

∣∣∣∣∣ α ∈ Γ(ξ, ζ) and (πx, πy)#α ∈ Γo(µ, ν)

}
.

The application Wµ,ν(·, ·) does not induce a distance, but naturally appears in estimates. We refer the reader
to [Pic19, Definition 4.1] for further comments. As one could expect, it vanishes when ξ and ζ are close, in
the following sense.

Lemma 4.2 (Lower semi-continuity with respect to dW). Let ξ ∈ P2(TRd) and (ξn)n∈N ⊂ P2(TRd) such
that dW,TRd(ξ, ξn) →n 0. Denote µ := πx#ξ and µn := πx#ξn their respective marginals. Then

lim
n→∞

Wµ,µn(ξ, ξn) = 0.

Proof. Denote again (µn, ξn)n∈N a maximizing subsequence such that

lim
n↘0

W 2
µ,µn

(ξ, ξn) = lim
n→∞

W 2
µ,µn

(ξ, ξn) = lim
n→∞

∫
(x,v),(y,w)∈(TRd)2

|v − w|2 dαn

for some αn ∈ Γ(ξ, ξn) with (πx, πy)#αn ∈ Γo(µ, µn). By assumption, the set {ξ} ∪ {ξn | n ∈ N} is compact
in the Wasserstein topology over TRd. As the application (ξ, ξn) 7→ Γ(ξ, ξn) has nonempty compact
images and is upper semicontinuous with respect to dW,(TRd)2 , the set Γ(ξ, ξ) ∪

⋃
n∈N Γ(ξ, ξn) is compact

in
(
P2((TRd)2), dW,(TRd)2

)
. Hence up to a further subsequence, we may assume that (αn)n → α∗ ∈

P2((TRd)2) for some α∗ ∈ Γ(ξ, ξ). By stability of optimality [Vil09, Theorem 5.20], (πx, πx)#α∗ ∈ Γo(µ, µ)

and α∗ reaches the infimum defining Wµ,µ(ξ, ξ). Hence, as ((x, v), (y, w)) 7→ |v − w|2 has quadratic growth
and is continuous,

lim
n↘0

∫
(x,v),(y,w)∈(TRd)2

|v − w|2 dαn =

∫
(x,v),(y,w)∈(TRd)2

|v − w|2 dα∗ = W 2
µ,µ(ξ, ξ) = 0.
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Lemma 4.2 is sharp in the sense that there is no way to bound W·,· uniformly by dW,TRd , as shown in
[Pic19, Remark 6]. Recall that in Rd, any (x, v), (y, v) ∈ TRd satisfy

Dy |· − x|2 (w) +Dx |y − ·|2 (v) = 2 ⟨y − x,w⟩+ 2 ⟨x− y, v⟩ ⩽ 2 |x− y| |v − w| .

This inequality generalizes in the Wasserstein space, in which the role of the term |v − w| is taken by Wµ,ν .

Lemma 4.3 (First-order estimate). For all µ, ν ∈ P2(Rd), ξ ∈ P2(TRd)µ and ζ ∈ P2(TRd)ν , there holds

Dνd
2
W (µ, ·) (ζ) +Dµd

2
W (·, ν) (ξ) ⩽ 2dW(µ, ν)Wµ,ν(ξ, ζ). (8)

Proof. Indeed, by the formula (3) of the directional derivative of d2W , the left hand-side of (8) writes as

I := inf
γ∈exp−1

ν (µ)
−2 ⟨ζ, γ⟩ν + inf

η∈exp−1
µ (ν)

−2 ⟨ξ, η⟩µ

⩽ inf
ω∈Γo(µ,ν)

−2 ⟨ζ, (πy, πx − πy)#ω⟩ν − 2 ⟨ξ, (πx, πy − πx)#ω⟩µ

⩽ inf
ω∈Γo(µ,ν)

inf
β∈Γν(ζ,(πy,πx−πy)#ω)
α∈Γµ(ξ,(πx,πy−πx)#ω)

−2

∫
(x,v,w)∈T2 Rd

⟨v, w⟩ dβ − 2

∫
(x,v,w)∈T2 Rd

⟨v, w⟩ dα. (9)

Any couple (α, β) in (9) gives rise to at least one plan ϖ = ϖα,β ∈ Γ(ξ, ζ) such that

(πx, πv, πy − πx)#ϖ = α and (πy, πw, πx − πy)#ϖ = β.

Indeed, the applications (x, v, w) 7→ (x, x+w) and (x, v, w) 7→ (x+w, x) are continuous from T2 Rd to (Rd)2.
Then we may disintegrate

α(x, v, w) =

∫
(a,b)∈(Rd)2

α(a,b)(x, v, w)dω(a, b) and β(x, v, w) =

∫
(a,b)∈(Rd)2

β(a,b)(x, v, w)dω(a, b),

with supp α(a,b) ⊂
{
(x, v, w) ∈ T2 Rd

∣∣ x = a and x+ w = b
}
, and in a symmetrical way, supp β(a,b) ⊂{

(x, v, w) ∈ T2 Rd
∣∣ x+ w = a and x = b

}
. Consequently, there exists σ(a,b) ∈ P2(Ta Rd) such that α(a,b) =

δa × σ(a,b) × δb−a, and τ(a,b) ∈ P2(Tb Rd) such that β(a,b) = δb × τ(a,b) × δa−b. Define now ϖ ∈ Γ(ξ, ζ) by∫
((x,v),(y,w))∈(TRd)2

φ(x, v, y, w)dϖ

=

∫
(a,b)∈(Rd)2

∫
(v,w)∈Ta Rd ×Tb Rd

φ(a, v, b, w)d
[
σ(a,b) ⊗ τ(a,b)

]
(v, w)dω(a, b).

It is easy to verify that ϖ has the right marginals, and that (πx, πy)#ϖ = ω is optimal between µ and ν.
This makes it an admissible plan for the definition of Wµ,ν(ξ, ζ). Denoting Aω the set of all ϖα,β when α, β
range in their respective sets, (9) rewrites as

I ⩽ inf
ω∈Γo(µ,ν)

inf
ϖ∈Aω

∫
((x,v),(y,w))∈(TRd)2

−2 ⟨w, x− y⟩ − 2 ⟨v, y − x⟩ dϖ

⩽ 2 inf
ω∈Γo(µ,ν)

inf
ϖ∈Aω

(∫
(x,y)∈(Rd)2

|y − x|2 dω

)1/2(∫
((x,v),(y,w))∈(TRd)2

|w − v|2 dϖ

)1/2

= 2dW(µ, ν)Wµ,ν(ξ, ζ).

We are now in position to prove the second characterization of solenoidal fields.
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Proof of Lemma 4.1. If (7) holds for some ξ ∈ P2(TRd)µ, then for any ν ∈ P2(Rd),

∣∣Dµd
2
W(·, ν)(ξ)

∣∣ = lim
h↘0

∣∣d2W(expµ(h · ξ), ν)− d2W(µ, ν)
∣∣

h

⩽ lim
h↘0

(
dW(expµ(h · ξ), ν) + dW(µ, ν)

) dW(expµ(h · ξ), µ)
h

= 0.

The first characterization given by Lemma 3.1 then implies ξ ∈ Solµ. Reciprocally, assume that ξ is
solenoidal. The function φ : s 7→ d2W(µ, expµ(s · ξ)) being Lipschitz-continuous over [0, 1], there holds

φ(h) =

∫ h

s=0

d

ds
φ(s)ds. (10)

Notice that for any s, ε ⩾ 0, there holds

expµ((s+ ε) · ξ) = (πx + sπv + επv)#ξ = (πx + επv)#ξs = expexpµ(s·ξ)(ε · ξs),

where ξs := (πx + sπv, πv)#ξ. Then for any point s ∈ [0, 1] of differentiability of φ,

d

ds
φ(s) = lim

ε↘0

d2W(µ, expµ((s+ ε) · ξ))− d2W(µ, expµ(s · ξ))
ε

= Dexpµ(s·ξ)d
2
W (µ, ·) (ξs).

Applying the inequality (8) with ν = expµ(s · ξ) and ζ = ξs,

Dexpµ(s·ξ)d
2
W (µ, ·) (ξs) +Dµd

2
W
(
·, expµ(s · ξ)

)
(ξ) ⩽ 2dW(µ, expµ(s · ξ))Wµ,expµ(s·ξ)(ξ, ξs).

Since ξ ∈ Solµ, Lemma 3.1 implies that the second term of the left hand-side vanishes. Plugging this into
(10) yields

φ(h) ⩽
∫ h

s=0

2dW(µ, expµ(s · ξ))Wµ,expµ(s·ξ)(ξ, ξs)ds.

Using 2ab ⩽ a2/h+ hb2 for any h > 0,

φ(h) ⩽
∫ h

s=0

[
φ(s)

h
+ hW 2

µ,expµ(s·ξ)(ξ, ξs)

]
ds,

so that with a Grönwall Lemma,

φ(h) = d2W(µ, expµ(h · ξ)) ⩽ h2e1 sup
s∈[0,h]

W 2
µ,expµ(s·ξ)(ξ, ξs).

Since dW,TRd(ξ, ξs) ⩽ dW(µ, expµ(s · ξ)) ⩽ s∥ξ∥ goes to 0 with s, we may apply Lemma 4.2 to obtain that
dW(µ, expµ(h · ξ)) =

√
φ(h) = o(h).

5 Structure of the tangent space
In this Section, we identify the solenoidal component of any ξ ∈ P2(TRd)µ, and use it in Theorem 5.2 to
prove the quotient structure of the tangent space. To this aim, we heavily rely on the following fine analysis
of the projection over the tangent space.
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Proposition 5.1 (Optimal plans towards the projection [Gig08, Proposition 4.32]). Let µ ∈ P2(Rd),
ξ ∈ P2(TRd)µ, and πµ

T ξ ∈ Tanµ P2(Rd) be the unique projection of ξ on Tanµ P2(Rd). Then there exists
an unique element γ ∈ Γµ,o(ξ, π

µ
T ξ), that is induced by a map in the following sense: there exists a measurable

map T : TRd → TRd such that T (x, v) = (x, T2(x, v)), and

γ = (πx, πv, πv + T2)#ξ.

Proposition 5.1 allows us to define a “difference” between ξ and its projection πµ
T ξ unambiguously. We

now show that this difference is solenoidal. This generalizes the usual Helmholtz-Hodge decomposition to the
set P2(TRd)µ of measure fields. Indeed, whenever ξ = f#µ for some f ∈ L2

µ(Rd; TRd), then the projection
πµ
T ξ is precisely given by g#µ, where g ∈ Tanµ P2(Rd) is the projection of f over the closure of smooth

gradients in L2
µ [Gig08, Proposition 4.38]. The difference f − g is then the divergence-free component of f

in the classical theory.

Theorem 5.1 (Helmholtz-Hodge decomposition). Let µ ∈ P2(Rd) and ξ ∈ P2(TRd)µ. Denote πµ
T ξ the

projection of ξ over Tanµ P2(Rd), and γ the unique element of Γµ,o(ξ, π
µ
T ξ), given by Proposition 5.1. Then

ω := (πx, πv − πw)#γ (11)

is a solenoidal measure field which satisfies

⟨ξ, ζ⟩µ = ⟨ω, ζ⟩µ and W 2
µ(ξ, ζ) = W 2

µ(ξ, ω) +W 2
µ(ω, ζ) ∀ζ ∈ Solµ P2(Rd). (12)

Consequently, ω = πµ
S ξ is the metric projection of ξ over the set Solµ P2(Rd), i.e. minimizes Wµ(ξ, ζ)

among all ζ ∈ Solµ P2(Rd).

Proof. According to Proposition 5.1, ω is of the form ω = (−T )#ξ for some measurable map T : TRd →
TRd. We first show that ω ∈ Solµ, then establish (12).

Let η ∈ Tanµ P2(Rd) be arbitrary, and denote Γµ(γ, η) the set of β = β(x, v, w0, w1) ∈ P2(T
3 Rd)

such that (πx, πv, πw0
)#β = γ, and (πx, πw1

)#β = η. As the tangent space Tanµ is stable by scaling and
interpolation using any transport plan (see Proposition 2.1), the measure field ζ := (πx, πw0 − hπw1)#β
belongs to Tanµ for any β ∈ Γµ(γ, ζ) and h ∈ [0, 1]. Then

W 2
µ(ξ, π

µ
T ξ) ⩽ W 2

µ(ξ, ζ) = inf
α∈Γµ(ξ,ζ)

∫
(x,v,w)∈T2 Rd

|v − w|2 dα(x, v, w)

= inf
β∈Γµ(γ,η)

∫
(x,v,w0,w1)∈T3 Rd

|v − w0 + hw1|2 dβ(x, v, w0, w1).

Developing and using the optimality of γ, there holds

W 2
µ(ξ, π

µ
T ξ) ⩽ W 2

µ(ξ, π
µ
T ξ) + 2h inf

β∈Γµ(γ,η)

∫
(x,v,w0,w1)∈T3 Rd

⟨v − w0, w1⟩ dβ + h2∥η∥2µ,

so that dividing by h > 0 and sending h to 0,

0 ⩽ inf
β∈Γµ(γ,η)

∫
(x,v,w0,w1)∈T3 Rd

⟨v − w0, w1⟩ dβ

= inf

{∫
(x,v,w)∈T2 Rd

⟨v, w⟩ dα

∣∣∣∣∣ ∃β ∈ Γµ(γ, η) such that α = (πx, πv − πw0
, πw1

)#β ∈ Γµ(ω, η)

}
.

Let us show that the set of α that may be attained as (πx, πv −πw0
, πw1

)#β for some β ∈ Γµ(γ, η) covers
all Γµ(ω, η). First disintegrate ω = ωx ⊗ µ, η = ηx ⊗ µ and γ = γx ⊗ µ. As the map (v, w0) → v − w0 =: w
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is continuous, we may further disintegrate γx = (γx)w ⊗ϖx, where ϖx and ωx coincide for µ−almost every
x ∈ Rd. Now, pick any α ∈ Γµ(ω, η) and disintegrate it into α = αx⊗µ, where αx ∈ Γ(ϖx, ηx) for µ−almost
every x ∈ Rd. The transport plan β ∈ P2(T

3 Rd) given by∫
(x,v,w0,w1)∈T3 Rd

φ(x, v, w0, w1)dβ

=

∫
(x,w)∈TRd

∫
(v,w0,w1)∈T3

x Rd

φ(x, v, w0, w1)d [(γx)w ⊗ αx] (v, w0, w1)dω(x,w).

indeed satisfies

(πx, πv, πw0)#β = γ, (πx, πw1)#β = η, (πx, πv − πw0 , πw1)#β = α.

Consequently, using the equivalent formulation (1) of the metric scalar product,

0 ⩽ inf
α∈Γµ(ω,η)

∫
(x,v,w)∈T2 Rd

⟨v, w⟩ dα = −⟨ω,−η⟩µ .

Taking −η in place of η, there also holds 0 ⩽ −⟨ω, η⟩µ, so that ⟨ω, η⟩µ = 0 for any η ∈ Tanµ P2(Rd). This
shows that ω is solenoidal.

On the other hand, let ζ ∈ Solµ. From the particular structure of ω = (−T )#ξ, there holds

⟨ξ, ζ⟩µ = sup
α∈Γµ(ξ,ζ)

∫
(x,v,w)∈T2 Rd

⟨v + T2(x, v), w⟩ dα+

∫
(x,v,w)∈T2 Rd

⟨−T2(x, v), w⟩ dα

= sup
α∈Γµ(ξ,ζ)

∫
(x,v,w)∈T2 Rd

⟨v, w⟩ d(πx, πv + T2, πw)#α+

∫
(x,v,w)∈T2 Rd

⟨−T2(x, v), w⟩ dα.

As (πx, πv + T2, πw)#α ∈ Γµ(π
µ
T ξ, ζ) is a transport plan between πµ

T ξ ∈ Tanµ and ζ ∈ Solµ, the first
summand vanishes by Remark 3.1. Then

⟨ξ, ζ⟩µ = sup
α∈Γµ(ξ,ζ)

∫
(x,v,w)∈T2 Rd

⟨−T2(x, v), w⟩ dα = ⟨ω, ζ⟩µ .

Taking in particular ζ = ω yields ⟨ξ, ω⟩µ = ∥ω∥2µ. Consequently, for any ζ ∈ Solµ P2(Rd),

W 2
µ(ξ, ζ) = ∥ξ∥2µ − 2 ⟨ξ, ζ⟩µ + ∥ζ∥2µ = ∥ξ∥2µ − 2 ⟨ξ, ω⟩µ + 2∥ω∥2µ − 2 ⟨ω, ζ⟩µ + ∥ζ∥2µ

= W 2
µ(ξ, ω) +W 2

µ(ω, ζ).

Remark 5.1 (Some Pythagoras identities). Under the notations of the proof of Theorem 5.1, there holds

∥ξ∥2µ = ∥πµ
T ξ∥2µ + ∥πµ

S ξ∥2µ

for any ξ ∈ P2(TRd)µ. Indeed, by definition,

W 2
µ(ξ, π

µ
S ξ) = inf

α∈Γµ(ξ,π
µ

S
ξ)

∫
(x,v,w)∈T2 Rd

|v + T2(x, v)− T2(x, v)− w|2 dα

= ∥πµ
T ξ∥2µ + inf

α∈Γµ(ξ,π
µ

S
ξ)

∫
(x,v,w)∈T2 Rd

⟨v + T2(x, v),−T2(x, v)− w⟩+ |−T2(x, v)− w|2 dα.

As (πx, πv + T2(πx, πv))#α = πµ
T ξ is tangent, and (πx,−T2(πx, πv) − πw)#α is an horizontal interpolation

between two solenoidal fields, hence solenoidal by Lemma 3.2, the integral of the scalar product vanishes for
any α (see Remark 3.1). Hence, taking α = (πx, πv,−T2)#ξ,

W 2
µ(ξ, π

µ
S ξ) = ∥πµ

T ξ∥2µ + inf
α∈Γµ(ξ,π

µ

S
ξ)

∫
(x,v,w)∈T2 Rd

|−T2(x, v)− w|2 dα = ∥πµ
T ξ∥2µ.
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By a symmetric reasoning, W 2
µ(ξ, π

µ
T ξ) = ∥πµ

S ξ∥2µ. We deduce from (12) applied with ζ = 0µ that

∥ξ∥2µ = W 2
µ(ξ, π

µ
S ξ) +W 2

µ(π
µ
S ξ, 0µ) = ∥πµ

T ξ∥2µ + ∥πµ
S ξ∥2µ.

However, we warn the reader that the general Pythagoras formula does not hold, as explained in Section 6.

We may now extend to any measure field the identity of Lemma 4.1.

Lemma 5.1 (Equivalence to the projection near 0). Let µ ∈ P2(Rd) and ξ ∈ P2(TRd)µ. There holds

lim
h↘0

dW
(
expµ(h · ξ), expµ(h · πµ

T ξ)
)

h
= 0. (13)

Proof. Under the notations of Theorem 5.1, let T : TRd → TRd be the measurable map such that the
projection of ξ on the tangent space is given by πµ

T ξ = (πx, πv + T2)#ξ, and the solenoidal component as
πµ
S ξ = (−T )#ξ. Notice that

expµ(h · ξ) = (πx + hπv)#ξ = (πx + h(−T2) + h(πv + T2))#ξ = expexpµ(h·π
µ

S
ξ)(h · (πµ

T ξ)h), (14)

where (πµ
T ξ)h := (πx + h(−T2), πv + T2)#ξ. For each h > 0, let α ∈ Γ(πµ

T ξ, (π
µ
T ξ)h) realize the infimum in

Wµ,expµ(h·π
µ

S
ξ)(π

µ
T ξ, (π

µ
T ξ)h). By (14),

(πx + hπv, πy + hπw)#α ∈ Γ
(
expµ(h · πµ

T ξ), expexpµ(h·π
µ

S
ξ)(h · (πµ

T ξ)h)
)
= Γ

(
expµ(h · πµ

T ξ), expµ(h · ξ)
)
.

Consequently, as the projection (πx, πy)#α is optimal between its marginals by definition of W·,·,

dW
(
expµ(h · πµ

T ξ), expµ(h · ξ)
)
⩽

(∫
((x,v),(y,w))∈(TRd)2

|x+ hv − (y + hw)|2 dα

)1/2

⩽

(∫
(Rd)2

|x− y|2 d(πx, πy)#α

)1/2

+ h

(∫
(TRd)2

|v − w|2 dα

)1/2

= dW(µ, expµ(h · πµ
S ξ)) + hWµ,expµ(h·π

µ

S
ξ)(π

µ
T ξ, (π

µ
T ξ)h).

(15)

One easily gets that dW,TRd (πµ
T ξ, (π

µ
T ξ)h) vanishes when h goes to 0. Using the characterization of solenoidal

measure fields established in Lemma 4.1 and the estimate of Lemma 4.2, there holds

lim
h↘0

dW
(
expµ(h · πµ

T ξ), expµ(h · ξ)
)

h
⩽ lim

h↘0

dW(µ, expµ(h · πµ
S ξ))

h
+ lim

h↘0
Wµ,expµ(h·π

µ

S
ξ)(π

µ
T ξ, (π

µ
T ξ)h)

= 0.

The estimate (13) allows us to recast the geometric tangent space as the quotient of the larger set
P2(TRd)µ. The intuition is the same as in manifolds, where smooth curves are used to define a first space
of possible directions, and then identified if they share the same germ. Here, we consider only exponential
curves, but the mental picture remains the same. For convenience, denote

dlim(ξ, ζ) := lim
h↘0

dW(expµ(h · ξ), expµ(h · ζ))
h

.

Consider the equivalence relation ∼µ on P2(TRd)µ given by ξ ∼µ ζ if dlim(ξ, ζ) = 0, and let [ξ] be the
equivalence class of a measure field ξ ∈ P2(TRd)µ. With a slight abuse of notation, we denote

Wµ([ξ], [ζ]) := inf
{
Wµ(ξ

′, ζ ′)
∣∣∣ (ξ′, ζ ′) ∈ (P2(TRd)µ

)2
, ξ′ ∼µ ξ, ζ ′ ∼µ ζ

}
.
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Theorem 5.2 (Quotient structure of the tangent space). The metric spaces
(
Tanµ P2(Rd),Wµ

)
and(

P2(TRd)µ/ ∼µ,Wµ

)
are isometric. The isometry associates to any ξ ∈ Tanµ the equivalence class [ξ]

for the relation ∼µ, and to any equivalence class in P2(TRd)µ/ ∼µ, the common projection of its members
on the tangent space.

Proof. The crucial point is that ξ ∼µ ζ if and only if πµ
T ξ = πµ

T ζ. Indeed, if ξ and ζ share the same projection,
Lemma 5.1 implies that

dlim(ξ, ζ) ⩽ dlim(ξ, πµ
T ξ) + dlim(πµ

T ζ, ζ) = 0,

and ξ, ζ are equivalent. On the other hand, if ξ ∼µ ζ, then

Wµ(π
µ
T ξ, π

µ
T ζ) = dlim(πµ

T ξ, π
µ
T ζ) ⩽ dlim(πµ

T ξ, ξ) + dlim(ξ, ζ) + dlim(ζ, πµ
T ζ) = 0.

Hence the quotient P2(TRd)µ/ ∼µ is given by the collection of equivalence classes [ξ] for ξ ∈ Tanµ P2(Rd).
Let us show that for any ξ, ζ ∈ Tanµ P2(Rd), there holds Wµ(ξ, ζ) = Wµ([ξ], [ζ]): this would prove that Wµ

induces a distance on the quotient, and would provide the desired isometry. One the one hand, choosing an
appropriate tangent plan, one gets that dlim(ξ, ζ) ⩽ Wµ(ξ, ζ) for any ξ, ζ ∈ P2(TRd)µ. On the other hand,
by [Gig08, Theorem 4.3], equality holds whenever ξ and ζ are tangent. Hence for any ξ, ζ ∈ Tanµ P2(Rd),

Wµ(ξ, ζ) = dlim(ξ, ζ) = inf
ξ′∼µξ

ζ′∼µζ

dlim(ξ′, ζ ′) ⩽ inf
ξ′∼µξ

ζ′∼µζ

Wµ (ξ
′, ζ ′) = Wµ([ξ], [ζ]) ⩽ Wµ(ξ, ζ).

Consequently, equality holds everywhere, which completes the proof.

Remark 5.2 (Quotient topology). The distance [ξ], [ζ] 7→ Wµ([ξ], [ζ]) metrizes the quotient topology on
P2(TRd)µ/ ∼µ, in which O ⊂ P2(TRd)µ/ ∼µ is open if π−1

T (O) ⊂ P2(TRd)µ is open with respect to Wµ.
Assume on the one hand that O is open for the quotient topology, and let [ξ] ∈ O for some ξ ∈ Tanµ. Then
ξ ∈ (πµ

T )
−1(O), which is open by definition. Let r > 0 be the radius of a ball centered in ξ and contained in

(πµ
T )

−1O. Then

Wµ([ξ], [ζ]) ⩽ r =⇒ Wµ(ξ, ζ) ⩽ r =⇒ ζ ∈ (πµ
T )

−1(O) =⇒ [ζ] ∈ O.

On the other hand, if O is open for the topology induced by Wµ, let ξ ∈ (πµ
T )

−1(O). Denote r > 0 a radius
so that Wµ([ξ], [ζ]) ⩽ r implies [ζ] ∈ O. As Wµ([ξ], [ζ]) ⩽ Wµ(ξ, ζ), there holds

Wµ(ξ, ζ) ⩽ r =⇒ Wµ([ξ], [ζ]) ⩽ r =⇒ [ζ] ∈ O =⇒ ζ ∈ (πµ
T )

−1(O),

and (πµ
T )

−1(O) is open in
(
P2(TRd)µ,Wµ

)
. Hence the equivalence.

6 Reconstruction from projections
In L2

µ(Rd; TRd), it is trivial that vector fields are uniquely determined by their projections on tangent and
solenoidal fields, since any f ∈ L2

µ can be reconstructed from its projections by sum. Curiously enough,
this uniqueness does not stand in P2(TRd)µ, and there might be several measure fields sharing the same
projections on Tanµ and Solµ. For instance, consider µ to be the normalized Lebesgue measure on the circle
S1 ⊂ R2. Let f, g : R2 → R2 be defined as f(x, y) := (−y, x) and g(x, y) := (x, y), and consider

ξ0 :=
1

2
((id, f + g)#µ) +

1

2
((id,−f − g)#µ), ξ1 :=

1

2
((id, f − g)#µ) +

1

2
((id,−f + g)#µ).

Then πµ
T ξ

i = 1
2 (id, f)#µ+ 1

2 (id,−f)#µ and πµ
S ξ

i = 1
2 (id,−g)#µ+ 1

2 (id, g)#µ for i ∈ {0, 1}. In this example,
the projections are arranged in such a way that the set Γµ,o

(
πµ
T ξ

i, πµ
S ξ

i
)

of optimal transport plans for Wµ

contains more than one element. In the following result, we show that this situation is generic: one may
build as many fields with prescribed projections η, ω as there are ways to “sum” η and ω, each sum being
identified with an optimal transport plan in Γµ,o(η, ω).
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Proposition 6.1 (Characterization by projections). Let ξ ∈ P2(TRd)µ, η ∈ Tanµ P2(Rd) and ω ∈
Solµ P2(Rd). Then the following statements are equivalent:

a. πµ
T ξ = η and πµ

S ξ = ω,

b. there exists α ∈ Γµ,o(η, ω) such that ξ = (πx, πv + πw)#α.

Proof. Assume that (a) holds, and denote again T : TRd → TRd the measurable application such that
T (x, v) = (x, T2(x, v)), η = (πx, πv + T2)#ξ, and ω = (−T )#ξ. On the one hand, there holds by definition
of the metric scalar product that

W 2
µ(η, ω) = ∥η∥2µ − 2 ⟨η, ω⟩µ + ∥ω∥2µ = ∥η∥2µ + ∥ω∥2µ.

On the other hand, consider the plan α := (πx, πv + T2,−T2)#ξ ∈ Γµ(η, ω). Then∫
(x,v,w)∈T2 Rd

|v − w|2 dα =

∫
(x,v)∈TRd

|(v + T2(x, v))− (−T2(x, v))|2 dξ(x, v)

= ∥η∥2µ − 2

∫
(x,v)∈TRd

⟨v + T2(x, v),−T2(x, v)⟩ dξ(x, v) + ∥ω∥2µ,

and the middle summand vanish by Remark 3.1. Consequently, α is optimal between η and ω, and as
ξ = (πx, πv + πw)#α, (b) holds.

Reciprocally, assume that (b) stands. To identify the tangent component of ξ, we use the same reasoning
as in the proof of Lemma 5.1. For any h > 0, there holds

expµ(h · ξ) = (πx + hπv)#ξ = (πx + hπw + hπv)#α = expexpµ(h·ω) (h · ηh) ,

where ηh := (πx + hπw, πv)#α. Let β ∈ Γ (η, ηh) realize the infimum in Wµ,expµ(h·ω)(η, ηh). Then (πx +

hπv, πy + hπw)#β ∈ Γ(expµ(h · ξ), expµ(h · η)), and replicating the computation of (15),

dW
(
expµ(h · ξ), expµ(h · η)

)
⩽ dW

(
expµ(h · ω), µ

)
+ hWexpµ(h·ω),µ (ηh, η) .

As dW,TRd (ηh, η) ⩽ dW(expµ(h ·ω), µ) goes to 0 when h does, using again the characterization of Lemma 4.1
and the estimate of Lemma 4.2, we get that dW

(
expµ(h · ξ), expµ(h · η)

)
= o(h). Consequently, πµ

T ξ = η.
Now, using the identity (13) with ζ = ω and ω = πµ

S ξ, there holds

W 2
µ (ω, πµ

S ξ) = W 2
µ (ξ, ω)−W 2

µ (ξ, πµ
S ξ) ⩽

∫
(x,v,w)∈T2 Rd

|(v + w)− w|2 dα− ∥η∥2µ = 0.

This shows that ξ has the desired projections, and (a) holds.

Remark 6.1 (Pythagoras fails). As a corollary of Proposition 6.1, the formula

W 2
µ(ξ, ζ) = W 2

µ(π
µ
T ξ, π

µ
T ζ) +W 2

µ(π
µ
S ξ, π

µ
S ζ)

does not hold. Indeed, there may be distinct ξ, ζ sharing the same marginals, so that the left hand-side is
positive while the right hand-side vanishes. However, the inequality ⩾ always holds: indeed, if T, S are the
measurable applications given by Proposition 5.1 respectively associated to ξ and ζ, then

W 2
µ(ξ, ζ) = inf

α∈Γµ(ξ,ζ)

∫
(x,v,w)∈T2 Rd

|v − w|2 dα

= inf
α∈Γµ(ξ,ζ)

∫
(x,v,w)∈T2 Rd

|v + T − (w + S)|2 + 2 ⟨v + T2 − (w + S2),−T2 − S2⟩+ |−T2 − S2|2 dα

⩾ W 2
µ(π

µ
T ξ, π

µ
T ζ) +W 2

µ(π
µ
S ξ, π

µ
S ζ) + 2 inf

α∈Γµ(ξ,ζ)

∫
(x,v,w)∈T2 Rd

⟨v + T2 − (w + S2),−T2 − S2⟩ dα.

By Proposition 2.1 and Lemma 3.2, the measure field (πx, πv +T2(πx, πv)− (πw +S2(πx, πw)))#α is tangent
while (πx,−T2(πx, πv)− S2(πx, πw))#α is solenoidal, and the last term vanishes.
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