AI-Driven Identification of Contrail Sources: Integrating Satellite Observations and Air Traffic Data - Archive ouverte HAL
Article Dans Une Revue TU Delft OPEN Publishing Année : 2023

AI-Driven Identification of Contrail Sources: Integrating Satellite Observations and Air Traffic Data

Résumé

Despite large uncertainties, it is now clear that condensation trails play a major role in aviation contribu-tion to climate change. In order to assess these uncertainties and reduce them, a database of observationsneeds to be built up to improve prediction models and to enable aircraft trajectories optimization basedon climate considerations. Detecting contrails in images is a time-consuming task without automation.In this paper, a dataset from GOES-16 satellite images is used to create a detection algorithm based onsegmentation methods. Then, a method is introduced for associating contrails with aircraft trajectoriesbased on ADS-B data. The Hough transform and meteorological forecast reanalysis data are applied tolink any contrail with a group of flights that may have contributed to its formation.
Fichier principal
Vignette du fichier
DTIS2024-172-joas-7209-1-Publiée.pdf (3.73 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04672478 , version 1 (19-08-2024)

Licence

Identifiants

Citer

Emmanuel Riggi-Carrolo, Thomas Dubot, Claire Sarrat, Judicaël Bedouet. AI-Driven Identification of Contrail Sources: Integrating Satellite Observations and Air Traffic Data. TU Delft OPEN Publishing, 2023, 1 (2), pp.221-236. ⟨10.59490/joas.2023.7209⟩. ⟨hal-04672478⟩
74 Consultations
15 Téléchargements

Altmetric

Partager

More