Application of Machine Learning to Signal Detection in Underwater Wireless Optical Communication Links - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Application of Machine Learning to Signal Detection in Underwater Wireless Optical Communication Links

Mohamed Nennouche
  • Fonction : Auteur
  • PersonId : 1407725
Mohammad Ali Khalighi
  • Fonction : Auteur
  • PersonId : 860372
Alexis Dowhuszko
  • Fonction : Auteur
  • PersonId : 1118375
Djamal Merad
  • Fonction : Auteur
  • PersonId : 1150307

Résumé

We consider the application of a machine-learning (ML)-based method to the demodulation of the received signal in underwater wireless optical communication (UWOC) links. This approach is justified when the underwater optical channel is subject to strong variations due to various phenomena such as pointing errors and turbulences, which directly impact the received optical power, requiring accurate and agile channel estimation. The investigated ML method is based on the wellknown K-nearest neighbors (KNN). We demonstrate excellent link performance for different types of modulation schemes even under high data rates and low received optical powers, for instance, achieving effective bit rates of 2.96 and 2.54 Gbps using 16QAM and 32-QAM modulation schemes, respectively, at a received optical power of −16.4 dBm. We also discuss the implementation aspects of the proposed approach, including its computational complexity.
Fichier principal
Vignette du fichier
Nennouche_UWOC_Final.pdf (2.89 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04671602 , version 1 (15-08-2024)

Identifiants

  • HAL Id : hal-04671602 , version 1

Citer

Mohamed Nennouche, Mohammad Ali Khalighi, Alexis Dowhuszko, Djamal Merad. Application of Machine Learning to Signal Detection in Underwater Wireless Optical Communication Links. IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP 2024), Jul 2024, Rome, Italy. ⟨hal-04671602⟩
23 Consultations
34 Téléchargements

Partager

More