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Abstract—We consider the application of a machine-learning
(ML)-based method to the demodulation of the received signal
in underwater wireless optical communication (UWOC) links.
This approach is justified when the underwater optical channel
is subject to strong variations due to various phenomena such
as pointing errors and turbulences, which directly impact the
received optical power, requiring accurate and agile channel
estimation. The investigated ML method is based on the well-
known K-nearest neighbors (KNN). We demonstrate excellent link
performance for different types of modulation schemes even under
high data rates and low received optical powers, for instance,
achieving effective bit rates of 2.96 and 2.54 Gbps using 16-
QAM and 32-QAM modulation schemes, respectively, at a received
optical power of −16.4dBm. We also discuss the implementation
aspects of the proposed approach, including its computational
complexity.

Index Terms—Underwater wireless optical communications;
Machine learning; Signal demodulation; KNN classification.

I. INTRODUCTION

With the expansion of human activities underwater and
the recent advancements in the Internet of Underwater
things (IoUT), encompassing robotics and underwater sen-
sors and vehicles, underwater wireless optical communications
(UWOC) has been receiving a surge of interest in recent years
due to its capability to provide exceptionally high data rates
and energy-efficient transmission over short to moderate link
ranges [1]–[3]. Despite the significant potential of the UWOC
technology, its performance is hindered by various factors due
to the unique characteristics of the underwater channel. These
factors include: water absorption and scattering, especially
notable in relatively high-turbidity waters; pointing errors, in
particular, when communicating with a mobile unit or a floating
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node at the water surface; and, in specific situations, air bubbles,
fish schools, and oceanic turbulence [4]–[10].

To effectively tackle the challenges posed by channel im-
pairments in complex and unpredictable underwater scenarios,
it is crucial to employ efficient signal transmission methods
ensuring resilient communication links between the involved
underwater nodes. Specifically, accurately estimating the chan-
nel state information under extreme variability conditions and
for high-speed links can be challenging and requires sub-
stantial resource allocation for pilot transmission. Under such
conditions, leveraging machine learning (ML) techniques for
signal demodulation shows great potential. ML’s capacity to
“learn” from training data and extract “information” makes it
a compelling solution. It has demonstrated impressive results
across various domains, including signal processing and wire-
less communications [11].

Several recent works have explored the use of ML-based
or deep-learning (DL)-based methods for signal detection in
UWOC systems. For instance, Jiang et al. in [12] proposed
a two-connection multilayer perceptron network (MLP), in
which the first subnetwork functions as a channel equalizer
and the second one as a demodulator. This was applied to
a UWOC link using DC-biased optical orthogonal frequency-
division multiplexing (DCO-OFDM) modulation and a single-
photon avalanche diode (SPAD) at the receiver, showing results
superior to conventional signal detection in terms of bit-error
rate (BER). Also, Ma et al. in [13] proposed an UWOC
demodulator based on three-layer deep belief networks (DBNs)
and evaluated its performance with a real signal dataset (the
same that we use in this work), showing that it outperforms
maximum likelihood classification (MLC), convolutional neural
networks (CNNs), and the naive Bayes-based classifier (NBC)
in terms of effective bit rate (EBR) for different considered
modulation techniques and received signal levels. Lastly, the
authors of [14] proposed a deep neural network (DNN)-based



on-off keying (OOK) demodulator and compared its BER
performance with an optimal-threshold [15] OOK demodulator
at different signal-to-noise ratios (SNRs), without needing any
prior knowledge of the channel.

This paper studies the use of ML for signal demodulation
in an UWOC system. We consider different intensity-based
signal modulation techniques, including OOK, pulse position
modulation (PPM), quadrature amplitude modulation (QAM)
with sub-carrier intensity modulation (SIM) [1], and DCO-
OFDM [16]. The considered ML algorithm is the K-nearest
neighbors (KNN) [17], which is a high-performance algorithm
for classifying data samples, with proven efficiency in RF signal
detection [18]. We demonstrate the exceptional performance
of KNN in terms of classification accuracy and EBR, even
at relatively low received signal levels. Considering the lower
complexity of the proposed approach, particularly in contrast
to that of [13], and its robustness across different modulation
schemes, it emerges as a highly promising solution for signal
detection within the studied context.

The remainder of the paper is organized as follows: Sec-
tion II provides a brief overview of the system model. Then,
Section III introduces the KNN-based UWOC demodulator
along with the experimental dataset utilized for training and
performance evaluation. The numerical results demonstrating
the performance of the proposed approach for UWOC signal
demodulation are presented and discussed in Section IV. Fi-
nally, Section V concludes the paper.

II. SYSTEM MODEL

We have used in our study the data set made available by Ma
et al. related to the work presented in [13]. This dataset was
obtained by an experimental set-up, where at the transmitter a
blue laser diode was used with a maximum output optical power
of 20 mW, and at the receiver a plano-convex lens was used
before an avalanche photo-diode (APD). The received signal
was resampled with a sampling rate of 12.5 Giga-samples/s
(Gsps). The optical signal propagated through a controlled
underwater channel in a water tank with a total length of 21 m
with the use of a metal optical filter with variable neural density
to simulate the attenuation of light in water and thus obtain the
different levels of received optical power (ROP), as shown in
the synaptic diagram of Fig. 1 (the dataset can be accessed via
the link provided in [19], see [13]).

We have selected six modulation schemes from the original
dataset, i.e., OOK, 4-PPM, 4-QAM, 8-QAM, 16-QAM, 32-
QAM, with three different numbers M of sample points per
symbol, i.e., M = 8, 16, and 64 (QAM schemes are based on
SIM). In addition, we consider the DCO-OFDM modulation
scheme with 4 (main) subcarriers, an IFFT size of 10, and 4-
QAM constellation mapping. The ROP in the experiments was
varied from −30 to −10 dBm [13]. The transmitted symbol
x(t) is then expressed as:

x(t) = Re
[
s(t) p(t) ej2πfct

]
, 0 ≤ t ≤ T (1)

where s(t), p(t), fc, and T represent the baseband symbol,
pulse shaping function (considered here as rectangular, for
simplicity), sub-carrier frequency (for QAM schemes), and
symbol duration, respectively, and Re[.] denotes the real part.

The signal detection task can be analogized to the classifica-
tion of received symbols. This way, the algorithm performance
(in other words, the classification quality) is evaluated based
on the two metrics of accuracy [17] and EBR [1], defined as:

Accuracy =
number of correctly classified symbols

total number of samples
, (2)

EBR = Accuracy B
Fs
M

, (3)

where B, Fs, and M refer to the number of bits per sym-
bol, sampling frequency, and number of samples per symbol,
respectively.

III. KNN-BASED SIGNAL DEMODULATION

KNN is one of the simplest supervised ML algorithms, first
developed by E. Fix and J. Hodges in 1951 [20]. Like any
other supervised ML algorithm, KNN requires two phases: a
learning phase, followed by an evaluation phase. The learning
phase consists of putting each training dataset sample in a
space where each dimension represents one of the dataset
features. In our case, features are the different samples of a
symbol, where the symbol itself represents the class (or label).
During the evaluation phase, a new set of symbols is introduced
into the space, and the distance of each symbol from its K
nearest neighbors is calculated based on a distance metric. The
most commonly used distances are Euclidean, Manhattan, and
Canberra [21]. By selecting the K nearest neighbors, the classes
(symbols) to which they belong are observed, and the new
received symbol is assigned the majority class in its neighbor-
hood. This operation is conducted across all received symbols,
and the algorithm’s performance is assessed by comparing
predicted classes to the actual classes of each received symbol.
Subsequently, the overall performance is evaluated based on
classification accuracy. The two most key parameters in the
KNN algorithm are the selected distance metric and the number
of nearest neighbors K considered for classification.

Figure 2 illustrates an example of the application of KNN to
a two-dimensional classification scenario, where the Euclidean
distance is considered as metric. First, we place the training
samples, which are partitioned into two categories, represented
by blue and brown squares. Then, for a new test sample, shown
by a yellow triangle, we should determine its class; for K = 3,
the majority class is blue, whereas for K = 7, the majority class
is brown. This indicates the importance of careful selection of
the K parameter. In our case, after investigating the appropriate
distance metric and number of neighbors, achieving a balanced
compromise between algorithm complexity and performance,
we have selected the Euclidean distance d, defined below, and
set the number of neighbors to K = 7.

d(a, b) =

√√√√ M∑
0

(xi − yi)2 (4)

Remember that M denotes the number of samples per
symbol. Also, xi represents the ith sample of the new element
x added to the feature space, and yi denotes the ith sample of
a training symbol y.



Fig. 1: Schematic diagram of the experimental setup, similar to the approach used in [13].

Fig. 2: Illustration of KNN based on the Euclidean distance metric
with K = 3 and 7.

IV. NUMERICAL RESULTS AND DISCUSSIONS

To evaluate the algorithm performance, we have carried out
training and algorithm evaluation for each modulation scheme
separately, where 70% of the dataset for each ROP level was
used for model training (i.e., 70000, 35000, and 8750 samples
for M = 8, 16, and 64, respectively), and the remainder for
performance evaluation.

We have compared in Fig. 3 the algorithm performance in
terms of accuracy versus ROP in the evaluation phase, for the
considered modulation schemes, M = 8, 16, and 64, and an
ROP range from −28 to −16 dBm. Note that the considered
ROP range corresponds to the available dataset. Also, the
performance in the training phase is similar to the evaluation
phase, and are not presented for the sake of brevity.

As expected, the performance generally improves with an
increase in the ROP, since symbols can be better distinguished
and classified. We can also see from these results that the
parameter M plays a predominant role in the classification
quality: As seen from Fig. 3a, with M = 8 and for 4-PPM,
8-QAM, 16-QAM, and 32-QAM, we obtain an accuracy of
less than 35%. Note, we conjecture that the better performance
of 16-QAM, compared to 8-QAM, is due to the limited quality
of the available dataset. Only for OOK and 4-QAM we can
reach an accuracy of more than 50%.

Furthermore, we notice from Fig. 3b that by increasing
M to 16, for most modulation schemes, the training quality
and the performance improve, exceeding 60% accuracy. The
performance even reaches 100% for OOK and 4-QAM for
ROP> −22.5 dBm. This trend is confirmed in Fig. 3c with
M = 64, where we observe a significant performance of the
model performance, attaining perfect classification for OOK,
4-PPM, and 4-QAM for ROP> −25 dBm, for instance.
The significant impact of the parameter M can in particular
be seen in the case of 4-PPM. For this modulation, the

performance is rather poor with M = 8 and 16, whereas a
significant performance improvement is achieved with M = 64,
surpassing even 4-QAM. Overall, these results demonstrate the
outstanding performance of the proposed algorithm for signal
detection and its ability of accurate classification for a wide
range of modulation schemes.

We have further presented in Fig. 4 the EBR plots for M = 8,
16, or 64 samples per symbol, considering the sampling rate
of 12.5 Gsps. These results highlight the trade-off between the
classification performance and the parameter M that needs to be
considered. For a too small M (here, M = 8, shown in Fig 4a),
the algorithm struggles in accurately classifying the different
symbols of a modulation scheme, especially, for higher-order
modulations. Note that in Fig. 4a, the superior performance
of 4-QAM over OOK can be explained by the relationship
between the accuracy and EBR, see (3), resulting in a better
ratio of Accuracy/EBR for the former scheme. We notice that
the best results are obtained for M = 16, see Fig. 4b, where,
for instance, EBRs of about 3 and 1.5 Gbps are obtained for
16-QAM and 4-QAM, respectively, for sufficiently high ROPs.
On the other hand, although for M = 64 from Fig. 4c the best
accuracy is achieved, given that this represents 4 times as more
samples as for M = 16, the EBR remains below 1 Gbps (which
is still noticeable, however), see (3). Overall, from these results,
we can deduce that a trade-off needs to be made between the
classification accuracy and the number of samples per symbol
to reach the target EBR.

To make a comparison with the DBN approach proposed in
[13], we have contrasted the classification accuracy of the two
methods in Fig. 5 for 16-QAM modulation and M = 32. We
notice that our proposed approach performs very similarly to
DBN, but with the added benefit of lower computational com-
plexity, making it more suitable for practical implementation.

Lastly, Fig. 6 shows the performance in terms of accuracy
and EBR for the case of DCO-OFDM signaling with 4-QAM
modulation, and an ROP range between −23.5 and −13 dBm.
We notice that, like for the previously-considered modula-
tion schemes, the accuracy increases with increased ROP, as
the algorithm can better recognize the received symbols. For
ROP> −19 dBm, we obtain an accuracy close to 100%, which
is equivalent to an EBR of 10 Gbps. We also obtain a good
EBR performance of higher than 1 Gbps for lower ROPs. We
have also shown on this figure the results corresponding to
the DBN method from [13, Fig. 5], where we notice a similar
performance. Once again, our KNN-based approach maintains
an advantage due to its lower computational complexity.



(a)

(b)
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Fig. 3: Percentage of the correctly detected symbols using the KNN-
based demodulator for different modulation schemes; (a) M = 8, (b)
M = 16, (c) M = 64 samples per symbol.

(a)

(b)

(c)

Fig. 4: Achieved EBR using the KNN-based demodulator for (a)
M = 8, (b) M = 16, and (c) M = 64.



Fig. 5: Accuracy of the proposed KNN-based demodulator for 16-
QAM modulation and M = 32, compared with that of the DBN
approach, presented in [13].

Fig. 6: EBR and accuracy of the KNN-based demodulator for DCO-
OFDM signaling with 4-QAM modulation per sub-carrier and FFT
size of 10, compared with that of the DBN approach in [13].

V. CONCLUSIONS AND DISCUSSIONS

In this work, we investigated the efficiency of KNN-based
signal demodulation in the context of UWOC. We demonstrated
the significant performance of the proposed method in terms
of both accuracy and EBR by considering various modulation
schemes and signal sampling rates. It is worth mentioning that
the computational complexity of the proposed method remains
very low, where we only need to calculate the distance between
each new received symbol and the symbols making up the
training base, and then to select the K-nearest neighbors.

Nevertheless, the limitation of the proposed approach is
the inability of the model to “learn” below a certain ROP
level, which is around −25 dBm, where consequently, the
classification is not effective. This is mainly because at very
low ROPs, the noise level is too high, making it impossible
to distinguish between different symbols. This problem can be
addressed in different ways, which is the subject of our future
research. One potential research direction is to develop more
robust and efficient models, such as those based on MLPs or
CNNs, which could provide better performance at lower ROPs.
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